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Abstract. In [3] it was shown that a (real) signed measure on a cyclic coarse-grained
quantum logic can be extended, as a signed measure, over the entire power algebra. Later
([9]) this result was re-proved (and further improved on) and, moreover, the non-negative
measures were shown to allow for extensions as non-negative measures. In both cases the
proof technique used was the technique of linear algebra. In this paper we further generalize
the results cited by extending group-valued measures on cyclic coarse-grained quantum
logics (or non-negative group-valued measures for lattice-ordered groups). Obviously, the
proof technique is entirely different from that of the preceding papers. In addition, we
provide a new combinatorial argument for describing all atoms of cyclic coarse-grained
quantum logics.
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1. Introduction

In this paper we investigate the problem of extending a measure on a coarse-

grained quantum logic over the entire power algebra. The problem is motivated by
the quantum logic theory and the measurement theory (see [3], [4] and [12]). In

our generalized setup we take up measures ranging in a group. The intention is to
enlarge the area of potential applications (the values measured may not allow for

scalar multiplication, a typical example being the values expressed by integers) as
well as mathematical curiosity (can we prove the extension results without the use
of real scalars?).

The authors acknowledge the support of Progetto di Ricerca di Interesse Nazionale “Anal-
isi Reale e Teoria della Misura” (Italy) and the support of the grant GAČR 201/03/0455
of the Czech Grant Agency.
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Let n > 2 and l > 2 be natural numbers. Let Ω = {0, 1, 2, . . . , nl − 1} and let us
denote by ∆n,l the smallest system of subsets of Ω that contains all sets of the type
Ih = {h, h + 1, . . . , h + l − 1} (h ∈ Ω), where the sum is understood modulo nl, and
which is closed under the formation of complements in Ω and under the formation of
disjoint unions. Let us call the collection ∆n,l the coarse-grained quantum logic and
the sets Ih the generating sets of ∆n,l. (It should be noted that any ∆n,l constitutes

a so called quantum logic (abbr. a logic, alternatively also called an orthomodular
poset). Moreover, ∆n,l belongs to the important class within quantum theories of

the so called “concrete quantum logics”, see [5] and [12]. Various measure-theoretic
results on concrete logics motivated by quantum logic considerations can be found

in [2], [5], [6], [7], [8], [10], [11], etc.)

2. Results

Let (G, +, 0) be an abelian group. Let m : ∆n,l → G be a mapping such that
m(0) = 0, and m(A ∪ B) = m(A) + m(B) for any pair of disjoint sets A, B ∈ ∆n,l.

Then m is said to be a coarse-grained-group-valued measure with values in G. If G
is given, we shall simply call m a G-measure on ∆n,l.

Suppose that m : ∆n,l → G is a G-measure on ∆n,l. Let us again write Ω =
{0, 1, . . . , nl− 1} and let us denote by exp Ω the (Boolean) power algebra on Ω (i.e.,
let exp Ω stand for the set of all subsets of Ω). A natural question arises whether
m can be extended, as a G-measure p, over the entire exp Ω. Since all singletons
belong to exp Ω, p is in fact given by a function fp : Ω → G in such a way that
p(A) =

∑
a∈A

fp(a). In [3] and [9] the authors show by making use of certain linear

algebra reasonings that m can indeed be extended if G =
�
(= the additive group of

real numbers). Our first result says that a generalized extension theorem for group-

valued measures can be obtained. Moreover, uniqueness can be guaranteed when
initial conditions are preassigned. Prior to formulating the result, observe that if

two G-valued measures on ∆n,l agree on all generating sets, they have to agree on
the entire ∆n,l (indeed, if two G-measures agree on a collection C of sets then they

have to agree on any set obtained either as a complement of a set of C or as a disjoint
union of sets of C ).

Theorem 2.1. Let G be an abelian group. Let n, l ∈ � , n > 2, l > 2. Let
m : ∆n,l → G be a G-measure, where the underlying set of ∆n,l is the set Ω =
{0, 1, 2, . . . , nl − 1}. Let g0, g1, . . . , gl−2 be elements of G. Then there is exactly

one G-measure p : exp Ω → G such that p extends m and p({i}) = gi for any i =
0, 1, . . . , l− 2.

738



�������	�
. Let p({i}) = gi for i = 0, 1, . . . , l−2. Further, let p({h}) = m(Ih−l+1)−

h−1∑
r=h−l+1

p({r}), where h = l−1, l, l+1, . . . , nl−1. We claim that p, uniquely extended

to a G-measure on exp Ω, p(A) =
∑

a∈A

p({a}), extends the measure m. Consider p

restricted to ∆n,l. We have to verify that it agrees with m on the generating sets

Ih (h = 1, . . . , nl − 1) of ∆n,l. This is obviously true for h 6 (n − 1)l—we have
constructed p to have this property. Suppose h > (n− 1)l. Then Ih is a complement

of a disjoint union of generating sets Ik with k 6 (n − 1)l. Since both m and p are
measures and since they both agree on the generating sets Ik with k 6 (n−1)l, they
have to agree on Ih, too. The proof is complete. �

A natural question arises whether Theorem 2.1 remains valid if G is a semigroup.
The following example shows that it does not.

Example. Let n = 2 and l = 3 (thus, Ω = {0, 1, 2, 3, 4, 5}). Let � + be the

additive semigroup of all non-negative numbers. Let t : Ω → R be defined as follows:
t(0) = 1, t(1) = −1, t(2) = 1, t(3) = t(4) = t(5) = 0. This t defines an R-measure, t̃,

on exp Ω. When restricted to ∆n,l, the measure t̃ is a (two-valued) measure which
ranges in R+. By Theorem 2.1 every extension t̃ : exp Ω → �

of t has the property

t̃({1}) = −1 and therefore there is no extension of t which ranges in
� + .

It is worth noting that in the previous theorem we did not need to know which sets

the logic ∆n,l actually consists of. However, if we want to know which exact “initial
conditions” we can preassign, the complete description of ∆n,l is needed. Since other
problems we want to address also require a complete description of ∆n,l, we will now

present it. (It should be noted that the description was found in [9] where a fairly
involved combinatorial argument was employed. We want to demonstrate a rather

straightforward inductive reasoning that provides another proof of the description
and that gives a good insight of how ∆n,l can be obtained from the generating sets

Ih (h = 0, 1, . . . , nl − 1). Moreover, some of this reasoning will be used in our main
result of Theorem 2.6.

Let us first introduce some terminology. As before, let Ω = {0, 1, . . . , nl − 1} and
let ∆n,l denote the corresponding coarse-grained logic. By a segment in Ω we mean
a set of “consecutive” points in Ω, {a, a+1, . . . , a+h}, where addition is understood
modulo nl. By an equidistributed set in Ω (abbr., an ED set) we mean a subset of Ω
which consists of rl points (r 6 n, r ∈ � ) distributed in such a manner that exactly
r points lie in one class of modulo l-equivalence. If r is specified, we call such a set

an EDr set. In particular, an ED1 set consists of l points each point belonging to
a different class modulo l. (Since the collection of all ED sets is closed under the

formation of the complement in Ω and under the formation of disjoint unions, it is
obvious that this collection constitutes a quantum logic).
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We want to show that if n is at least 3, the family of ED1 sets consists of all atoms

of ∆n,l. It is sufficient to show that each ED1 set belongs to ∆n,l as the following
proposition asserts.

Proposition 2.2. Let n > 3, l > 2, and let ∆n,l denote the coarse-grained logic

on Ω = {1, 2, . . . , nl − 1}. Let each ED1 set belong to ∆n,l. Then ∆n,l consists of

all ED sets.
�������	�

. Let ∆ be the logic consisting of all ED sets. Then ∆n,l ⊂ ∆ since all
generating sets Ih(h = 0, 1, . . . , nl − 1) are ED1 sets and forming the complements

of ED sets in Ω and the disjoint unions of ED sets in Ω always produces an ED set.
But if any ED1 set belongs to ∆n,l, we have ∆ ⊂ ∆n,l and therefore ∆ = ∆n,l. �

Proposition 2.3. If n is at least 3, then each ED1 set belongs to ∆n,l.
�������	�

. We will proceed by induction over the number of segments in a given

ED1 set. Let B be an ED1 set. Let p be the number of segments the set B consists
of. Thus, let B = B1∪B2∪ . . .∪Bp, where Bi (p > 2) are clockwise ordered segments
in Ω such that B cannot be expressed as a union of strictly less than p segments.
We will show that if all ED1 sets consisting of strictly less than p segments belong

to ∆n,l, then so does B. Since each ED1 set consisting of exactly one segment is
necessary a generating set of ∆n,l and therefore it belongs to ∆n,l, this will constitute

the proof of Proposition 2.3. Our task is therefore to verify the inductive step.
We first need an auxiliary result. �

Lemma 2.4. Assume that n > 3. If any ED1 set consisting of at most p segments

belongs to ∆n,l, then any ED set consisting of at most p segments belongs to ∆n,l.
�������	�

. Suppose that p > 2 (for p = 1 the lemma is trivial). Let B be an

ED set in ∆n,l and let us suppose that B consists of at most p segments, B =
B1 ∪ B2 ∪ . . . ∪ Bp. We may (and will) suppose that each of the sets Bi (i 6 p)

is shorter than l (if some Bi is longer, we would subtract from Bi the appropriate
disjoint union of generating sets). We claim that B can be obtained as a disjoint

union of an ED1 set and an ED set, each consisting of at most p− 1 segments. This
by induction proves our lemma.

Consider B1 = {b, b + 1, . . . , b + k}. Then among the segments Bi (2 6 i 6 p)
there must be one, say B2

1 , the left-most end point of which is an element equivalent

to b + k + 1 (mod l). Indeed, if all sets Bj which contain such an element had a
predecessor, an element equivalent to b + k (mod l), we would have more elements

of the class b+k (mod l) in B than the elements of the class b+k +1 (mod l). This
is excluded. Let us consider the set B1 ∪ B2

1 . If it contains an ED1 set of the type
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B1 ∪ C, we are done. If not, we consider the set B1 ∪ B2
1 and denote its right-most

end point by s. Then there is a set, B3
1 , among the sets B1, B2, . . . , Bp such that

B3
1 6= B1, B3

1 6= B2
1 and the left-most end point of B

3
1 is equivalent to s + 1 (mod l),

etc. As soon as we construct in this way a set which contains an ED1, we can easily

arrange for writing the original ED set as a disjoint union of an ED1 an ED set
consisting of at most p− 1 segments. This completes the proof of the lemma. �

Let us now return to the proof of Proposition 2.3. Let B = B1∪B2∪ . . .∪Bp. Let

us first “translate” the segments B1, B2, . . . , Bp on the set {0, 1, . . . , l− 1}. In other
words, let us write {0, 1, . . . , l− 1} = A1 ∪A2 ∪ . . .∪Ap, where for any i = 1, 2, . . . , p

there is exactly one j (j 6 p) and h (h 6 n) such that Ai +hl = Bj . We now “copy”
these segments A1, . . . , Ap on all the sets Ik,l = {kl, . . . , l(k+1)−1}, (1 6 k 6 n−1).
Expressed formally, we set Ai+kp = Ai + kl. In this way we obtain a partition of
Ω = {0, 1, . . . , nl − 1} in the segments A1, A2, . . . , Anp. Before going on with the

proof, let us observe that if we organize these sets in a natural manner in an n× p

matrixM , a choice of Ak1 , Ak2 , . . . , Akp would mean an ED1 set, Ak1∪Ak2∪. . .∪Akp ,

just in case when we have chosen exactly one element from each column of M .
Let us denote by i1, i2, . . . , ip the indices such that

B1 = Ai1 , B2 = Ai2 , . . . , Bp = Aip .

For j ∈ {1, 2, . . . , p} let us denote by rj the number of segments between Bj and
Bj+1. Thus, let us define

rj = card{Aij+1, Aij+2, . . . , Aij+1−1}.

Of course, rj = ij+1 − ij − 1 for j 6= 1 and r1 = i1 − ip − 1 + nl. Denote now by

cj the index of the column of matrix M to which Bj belongs. Then (c1, c2, . . . , cp)
is a permutation of (1, 2, . . . , p). Observe also that rj > 1 for at least one index j

(otherwise B will be a complement of an ED1 set, which is impossible in view of
n > 2).
We will proceed by induction. Let us assume that B consists of at most p segments

and assume that any ED1 set consisting of strictly less than p segments belongs to

∆n,l. We will show that there is an ED set, C, such that B ∩ C = ∅ and both the
sets B ∪ C and C consist of strictly less than p segments. By Lemma 2.4 this will

prove the theorem.
We shall consider the following three cases.

Case 1. There exists h ∈ {1, 2, . . . , p} such that rh = mp (m ∈ � ).
Case 2. There exists h ∈ {1, 2, . . . , p} such that rh = mp + r with m ∈ � 0 and

1 < r < p.
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Case 3. rj ≡ 1 mod p for all j ∈ {1, 2, . . . , p}.

It is obvious that one of the above cases must occur. We will discuss the cases in

order. For the sake of simplicity, let us rename the “follower” of any Bj by writing
Aij+1 = Cj . Then {C1, C2, . . . Cp} is a family of p segments such that each of them
lies in exactly one column of the matrix M and therefore

p⋃
i=1

Ci is an ED1 set.

Case 1. We simply set

C =
ih+1−1⋃

s=ih+1

As.

Thus, in this case C is the union of all segments between Bh and Bh+1. Of course,

C is a generating set and B ∪ C is an ED set consisting of p− 1 segments.

Case 2. Without any loss of generality we can assume that m = 0 (otherwise we
pass to this case by subtracting from B a connected ED set). For k = rh, let us
denote by {D1, D2, . . . , Dk} the segments between Bh and Bh+1. These segments

are in k different columns of the matrix M described above. Let us extend the sys-
tem {D1, D2, . . . , Dk} by adding to it p − k sets of the collection {C1, C2, . . . Cp}
chosen from the remaining columns of the matrix. We will obtain a collection
{D1, D2, . . . , Dk, Cik+1 . . . , Cip} such that its union C is an ED set and C consists

of p− k + 1 segments.

As a result, C consists of strictly less than p segments and so does B ∪ C. We
have verified Case 2.

Case 3. As already seen, it is impossible that rj = 1 for all j = 1, 2, . . . , p.

Assume rj = 1 for at least one index j. We then choose two segments Bh and Bk

among the sets Bj ’s such that rh = 1, rk > 1 and ck = ch + 1 (Bh and Bk lie in two

consecutive columns of M). Let us set E =
rk+p−1⋃
s=rk+1

As and write

C = E ∪ Ch.

Since the set C is the union of p− 1 consecutive segments with Ch, it consists of two
segments. Moreover, the choice of Ch decreases the number of segments in B ∪ C.

Finally, in case rj > 1 for all j = 1, 2, . . . , p, it is sufficient to take C = D ∪ E,

where

D =
i2−1⋃

s=i1+1

As, E =
ih+p−1⋃

s=ih+1

As

for ch = c1 + 1. The proof is complete.
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The first consequence of the description of ∆n,l is the following slight improvement

of Theorem 2.1 (the case of n = 2, l = 2 which we did not consider above is trivial).

Theorem 2.5. Let n > 2 and l > 2 and let G be an abelian group. Let B =
{b1, b2, . . . , bl} be an ED1 set of ∆n,l. Let m : ∆n,l → G be a measure and let

g1, g2, . . . , gl−1 ∈ G. Then there is exactly one measure p : exp Ω → G such that p is

an extension of m over exp Ω and such that p({bi}) = gi for any i = 1, 2, . . . , l − 1.

In the second consequence (the main result of the paper) we ask when a state

(= a non-negative G-measure where G is a lattice-ordered group) on ∆n,l extends
as a state to exp Ω. This question has been considered in [3] and [9], first partially
and then completely and affirmatively solved for real-valued states. We want to
show that an affirmative answer is in force also in this generalized case (again, we

cannot use the linear algebra technique utilized for real states, of course). Let G be
a lattice-ordered group. That is, let G be an abelian group which is given a partial

order making G a lattice-ordered group (see [1] for more detail; we shall only use
simple properties of the lattice-ordered group calculus). Let m : ∆n,l → G be a

non-negative measure (i.e., let m(A) > 0 for any A ∈ ∆n,l). Then m is said to be a
G-valued state. Our result reads as follows.

Theorem 2.6. Let n > 3 and l > 2. Let Ω = {0, 1, . . . , nl − 1} and let ∆n,l be

the coarse-grained quantum logic on Ω. Let G be a lattice-ordered group and let

m : ∆n,l → G be a G-valued state. Then there is a G-valued state t : expΩ → G

such that t is an extension of m.
�������	�

. We will first prove a lemma (we use the assumptions of Theorem 2.6
and the notation established above). �

Lemma 2.7. Let A = {a ∈ Ω: a ≡ 0 mod l} and let da = m({0, 1, . . . , l −
1}) − m({a, 1, 2, . . . , l − 1}). Let {0, x1, x2, . . . , xl−1} be an ED1 set. Then da =
m({0, x1, x2, . . . , xl−1})−m({a, x1, . . . , xl−1}).
�������	�

. This is obviously true if a = 0. Suppose a 6= 0. Write X0 = {0,

x1, . . . , xl−1} and Xa = {a, x1, . . . , xl−1}. Take sets Y0, Ya such that Y0 = {0, y1,

y2, . . . , yl−1}, Ya = {a, y1.y2, . . . , yl−1} and {1, 2, . . . , l − 1} ∩ {y1, y2, . . . , yl−1} = ∅,
{x1, x2, . . . , xl−1} ∩ {y1, y2, . . . , yl−1} = ∅. This can be done since n > 3. Then we
have X0∩Ya = Xa∩Y0 = ∅ and X0∪Ya = Xa∪Y0. It follows that m(X0)+m(Ya) =
m(Xa) + m(Y0) and therefore m(X0)−m(Xa) = m(Y0)−m(Ya) = da. The proof of

the lemma is complete. �

Let us return to the proof of Theorem 2.6. Let A and da be as in Lemma 2.7.
Denote by s the supremum of da in G, s =

∨{da : a ∈ A }. Consider the function
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f : A → G such that f(a) = s− da. Obviously, f(a) > 0 for each a ∈ A . We claim

that for any X ∈ ∆n,l such that a ∈ X we have f(a) 6 m(X). Indeed, suppose that
X1 is an ED1 set with a ∈ X1, X1 ⊂ X . Since m must be order-preserving, it is
sufficient to show that f(a) 6 m(X1). Suppose first that a = 0. By Lemma 2.7, we
have m(X1) > f(0) = s. Assume therefore a 6= 0. Thus, X1 = {a, x1, x2, . . . , xl−1}.
Setting Y = {0, x1, x2, . . . , xl−1}, we have

f(a) = s− da = s−m(Y ) + m(X) 6 m(X)

as asserted.
Let us pass from our original logic ∆n,l to a new logic ∆n,l−1 by excluding all

elements of A from Ω (i.e., let us delete all elements congruent to 0 modulo l). We
have now n “segments” each of the length l − 1 which generate the logic ∆n,l−1.

Let us define a state m1 on this new logic ∆n,l−1 in the following way: Consider
an element X in ∆n,l−1. It is an EDr set (i.e., it contains r(l − 1) points equally
distributed). Let us take r elements {a1, a2, . . . , ar} in the set A and put

m1(X) = m(X ∪ {a1, a2, . . . , ar})−
r∑

i=1

f(ai).

Let us first prove that the definition is correct. For arbitrary subsets {a1, a2, . . . , ar}
and {b1, b2, . . . , br} of A , let us show that

m(X ∪ {a1, a2, . . . , ar})−
r∑

i=1

f(ai) = m(X ∪ {b1, b2, . . . , br})−
r∑

i=1

f(bi).

Write X as a disjoint union of ED1 sets X1, X2, . . . , Xr. Then we obtain

m(X ∪ {a1, a2, . . . , ar}) =
r∑

i=1

m(Xi ∪ {ai}).

Analogously,

m(X ∪ {b1, b2, . . . , br}) =
r∑

i=1

m(Xi ∪ {bi}).

The rest follows from the observation that

m(Xi ∪ {ai})− f(ai) = m(Xi ∪ {bi})− f(bi) for any i = 1, 2, . . . , r.

(Note that, by the definition of da and f , m(X ∪ {a})− f(a) = m(X ∪ {0})− f(0)
for all a ∈ A .) The function m1 is obviously non-negative. Let us prove that it is
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additive. Let us take disjoint sets X and Y in ∆n,l−1. Then, for any {a1, a2} ⊆ A ,

we have
m1(X ∪ Y ) = m(X ∪ Y ∪ {a1, a2})− f(a1)− f(a2).

Then it follows that

m1(X ∪ Y ) = m(X ∪ {a1}) + m(Y ∪ {a2})− f(a1)− f(a2) = m1(X) + m1(Y ).

We have a group-valued non-negative measure m1 on ∆n,l−1. If l− 1 > 1, we repeat
the procedure, obtaining a value f(a) for n elements of Ω, and a measure m2 on
∆n,l−2. After a finite number of steps, we reach atoms of length one (and then we

put f(a) = ml−1({a})). As a result, we assign to each point a ∈ Ω a non-negative
element of the group G.

It only remains to prove that the function f : exp Ω → G defined by f(X) =∑
x∈X

f(x) is the required extension of m. Let us take an ED1 set X = {x0, x1, . . . ,

xl−1} in ∆n,l and compute the value m(X). We obtain

m(X) = m({x0, x1, . . . , xl−1}) = f(x0) + m1({x1, x2, . . . , xl−1})
= f(x0) + f(x1) + m2({x2, x3, . . . , xl−1})
= f(x0) + f(x1) + f(x2) + m3({x3, x4, . . . , xl−1})

=
l−2∑

i=0

f(xi) + ml−1({xl−1}) =
l−1∑

i=0

f(xi).

We have shown that m(X) =
l−1∑
i=1

f(xi) and this completes the proof.

Let us note in concluding that the only case not covered by Theorem 2.6, the
extension question for n = 2 and l = 3, answers in the negative. Indeed, the state t

constructed in Example before Prop. 2.2 cannot be extended as a state to exp Ω.

References

[1] M.R.Darnel: Theory of Lattice-Ordered Groups. Dekker, New York, 1995. zbl
[2] A.De Simone, M.Navara and P.Pták: Extensions of states on concrete finite logics. To
appear in Intern. J. Theoret. Phys.

[3] S.Gudder and J. P.Marchand: A coarse-grained measure theory. Bull. Polish Acad. Sci.
Math. 28 (1980), 557–564. zbl

[4] S.Gudder: Stochastic Methods in Quantum Mechanics. North Holland, 1979. zbl
[5] S.Gudder: Quantum probability spaces. Proc. Amer. Math. Soc. 21 (1969), 286–302. zbl
[6] S.Gudder: An extension of classical measure theory. SIAM 26 (1984), 71–89. zbl
[7] P. de Lucia and P.Pták: Quantum logics with classically determined states. Colloq.
Math. 80 (1999), 147–154. zbl

[8] M.Navara and P.Pták: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60
(1989), 105–111. zbl

745



[9] P.Ovtchinikoff: Measures on the Gudder-Marchand logics. Constructive Theory of Func-
tions and Functional Analysis 8 (1992), 95–98. (In Russian.) zbl

[10] P.Pták: Some nearly Boolean orthomodular posets. Proc. Amer. Math. Soc. 126 (1998),
2039–2046. zbl

[11] P.Pták: Concrete quantum logics. Internat. J. Theoret. Phys. 39 (2000), 827–837. zbl
[12] P.Pták and S. Pulmannová: Orthomodular Structures as Quantum Logics. Kluwer, Dor-

drecht/Boston/London, 1991. zbl

Authors’ addresses: 
��	� 
 � � � � � ��� � , Dipartimento di Matematica, e Statis-
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