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SUBDIRECT PRODUCTS OF CERTAIN VARIETIES OF

UNARY ALGEBRAS

M. Ćirić, Niš, T. Petković, Turku, and S. Bogdanović, Niš

(Received December 7, 2004)

Abstract. J. P lonka in [12] noted that one could expect that the regularization R(K)
of a variety K of unary algebras is a subdirect product of K and the variety D of all
discrete algebras (unary semilattices), but is not the case. The purpose of this note is to
show that his expectation is fulfilled for those and only those irregular varieties K which
are contained in the generalized variety TDir of the so-called trap-directable algebras.
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The basic algebraic notions are defined here as for algebras in general (cf. [6], [9],
for example), but we reformulate some of them, to fit them into specific notation
which comes from the theory of automata. In what follows, X is always a nonempty

alphabet, X∗ denotes the free monoid over X , and e denotes its identity. An algebra
of type X , or an X-algebra, is a system A = (A, X) where A is a nonempty set

and every symbol x ∈ X is realized as a unary operation xA : A → A. For any
a ∈ A and x ∈ X , we write axA for xA(a). For any word w = x1x2 . . . xn ∈ X∗,

wA : A → A is defined as the composition of the mappings xA
1 , xA

2 , . . . , xA
n , that is

to say, awA = axA
1 xA

2 . . . xA
n for any a ∈ A. In particular, eA is the identity mapping

of A. If A is known from the context, we write simply aw instead of awA.

We define terms of type X over a set V of variables as expressions of the form gu,

where g ∈ V and u ∈ X∗, and we denote by TX(V ) the set of all such terms. The term
X-algebra TX(V ) = (TX(V ), X) is defined so that (gu)x = g(ux) for all gu ∈ TX(V )
and x ∈ X (see § 1.6 of [8]). An identity of type X over V is an expression gu ≈ hv,
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where gu, hv ∈ TX(V ). An X-algebra A is said to satisfy an identity gu ≈ hv if

(gα)uA = (hα)vA for all valuations α : V → A of the variables. Identities of the
form gu ≈ gv are called regular, whereas identities of the form gu ≈ hv, with g 6= h,
are irregular. A variety of X-algebras is regular if it is determined by a set of regular

identities, otherwise it is irregular. A class of X-algebras is said to be a generalized
variety if it is closed under subalgebras, homomorphic images, finite direct products

and arbitrary direct powers, or equivalently, if it is a directed union of varieties
(see [1], [2], [3]).

In the paper we consider only algebras of a fixed type X , and for brevity we simply
say ‘algebra’ instead of ‘X-algebra’. The least subalgebra of an algebra A, if it exists,

is called the kernel of A, and if A has a least nontrivial subalgebra, it is called the
core of A. The monogenic subalgebra of A generated by a ∈ A is denoted by 〈a〉. It

is obvious that 〈a〉 = {aw : w ∈ X∗}. An element a ∈ A is called a trap if ax = a,
for every x ∈ X . An algebra is called discrete if all of its elements are traps. For a

set H , ∆H and ∇H denote respectively the diagonal and the universal relation on H .
The Rees congruence %B on an algebra A modulo a subalgebra B of A is defined by

%B = ∇B ∪ ∆A. The corresponding Rees quotient A/%B is denoted by A/B, and
A is said to be an extension of B by an algebra C if A/B ∼= C. If this is the case,

C evidently has a trap which corresponds to the image of B under the canonical
epimorphism of A onto A/B. In other words, we may regard C as the result of

contracting the subalgebra B of A into one element, a trap of‘ C. A trap-extension
of an algebra is obtained by adjoining to it a trap, that is to say, A is a trap-extension

of B if it is an extension of B by a two-element discrete algebra. If B is a subalgebra
of A, a congruence θ on A is called a B-congruence if θ ∩ ∇B = ∆B , and if ∆A is

the only B-congruence on A, we say that A is a dense extension of B. In particular,
every algebra is a dense extension of itself.

An algebra A is connected if for all a, b ∈ A there exist u, v ∈ X∗ such that

au = bv, and it is strongly connected if for all a, b ∈ A there exists u ∈ X∗ such
that au = b. Obviously, A is strongly connected if and only if 〈a〉 = A, for ev-

ery a ∈ A. A connected algebra can have at most one trap, and if it has a trap,
it is called trap-connected. Furthermore, a nontrivial algebra A is strongly trap-

connected if it has a trap a0 and 〈a〉 = A, for every a ∈ A \ {a0}. Every strongly
trap-connected algebra is trap-connected, but the converse does not hold. An al-

gebra A is directable if there exists a word u ∈ X∗ such that au = bu, for every
pair of elements a, b ∈ A. Any directable algebra is connected, so it can have at

most one trap, and if it has a trap, it is called trap-directable. Let Dir, TDir and
D denote respectively the classes of all directable, trap-directable and discrete alge-

bras. It is known that D is a variety and Dir and TDir are generalized varieties
(see [2], [5], [10]). Moreover, a variety K of unary algebras is regular if and only
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if it contains D, and it is irregular if and only if it is contained in Dir (cf. [2], [5],

[10]).
An algebra A is the direct sum of algebras Aα, α ∈ Y , if A =

⋃
α∈Y

Aα and

Aα ∩ Aβ = ∅, for all α, β ∈ Y such that α 6= β. If A can not be decomposed into a
direct sum of two or more algebras, then it is direct sum indecomposable. For more

information on direct sum decompositions we refer to [7]. Let K1 and K2 be two
classes of algebras. The subdirect product K1 ⊗K2 of K1 and K2 is the class of all

subdirect products of an algebra from K1 and an algebra from K2, and the Mal’cev
product K1 ◦K2 is the class of all algebras A which have a congruence % such that
A/% ∈ K2 and every %-class which is a subalgebra of A belongs to K1. In particular,

K ◦D is the class of all direct sums of algebras from K.
J. P lonka in [11], [12] studied the regularization operator R : K 7→ R(K) on the

lattice of varieties of unary algebras and proved, among other things, that

R(K) = K ∨D = K ◦D

(for some related results we refer to [2]). He also noted in [12] that one could expect

that R(K) = K ⊗ D, but is not the case. In terminology from the theory of
automata, in the example which confirms this note he assumed K to be the variety

of reset or 1-definite algebras, and A to be a trap-extension of a two-element reset
algebra, and showed that A belongs to R(K), but does not belong to K ⊗D.

In this paper we show that a considerably large class of varieties of unary algebras
fulfills the P lonka’s expectation. Namely, for an irregular variety K of unary alge-

bras1 we prove that R(K) = K ⊗D if and only if K ⊆ TDir. For that purpose
we use a lot of specific notions which come from the theory of automata (cf. [2], [4],

[5], [7], [10]), and a general characterization of subdirectly irreducible unary algebras
from [4]. This is the following result:

Theorem 1. A nontrivial algebra A is subdirectly irreducible if and only if it

is a dense extension of a nontrivial subdirectly irreducible subalgebra B by a trap-

connected algebra and this B satisfies one of the following conditions:

(C0) B is the core of A and strongly connected;

(C1) B is the core of A and strongly trap-connected, or B is a trap-extension of

the core of A and the core is strongly connected;

(C2) B is the core of A and a two-element discrete algebra.

Moreover, for each k = 0, 1, 2, B satisfies the condition (Ck) if and only if A has

exactly k traps.

1 Contrary to P lonka, who studied algebras having both unary and nullary fundamental
operations, here we consider only algebras all of whose operations are unary.
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We also need the following lemma.

Lemma 1. Let A′ be a trap-extension of an algebra A. Then A′ is a dense

extension of A if and only if A does not have a trap.
���������

. Let a ∈ A′ \A be the trap adjoined to A. We shall prove that A′ is not
a dense extension of A if and only if A has a trap.

Suppose that A′ is not a dense extension of A, i.e., there exists an A-congruence θ

on A′ different than ∆A′ . Then there exists (b, c) ∈ θ such that b 6= c, and since θ is

an A-congruence, then one of b and c, say c, must be equal to a. For every x ∈ X

we have that (ax, bx) ∈ θ, i.e., (a, bx) ∈ θ, which together with (b, a) ∈ θ yields

(b, bx) ∈ θ ∩ ∇A = ∆A.

Therefore, b = bx, and we have obtained that A has a trap b.
Conversely, suppose that A has a trap b. Then C = {a, b} is a subalgebra of A′ and

the Rees congruence on A′ modulo C is an A-congruence on A′ different than ∆A′ ,
so A′ can not be a dense extension of A. �

Recall that every irregular variety of unary algebras is contained in the generalized
variety Dir of all directable automata (Corollary 5.1 of [2]).

Theorem 2. Let K be an irregular variety of algebras. Then the following

conditions are equivalent:

(i) K ⊆ TDir;

(ii) K does not contain a nontrivial strongly connected algebra;

(iii) K does not contain a nontrivial subdirectly irreducible strongly connected al-

gebra.
���������

. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious, and it remains
to prove the implication (iii) ⇒ (i).

Suppose that (iii) holds. Let A ∈ K be any nontrivial subdirectly irreducible
algebra. Then A has a nontrivial subdirectly irreducible subalgebra B which satisfies

one of the conditions (C0), (C1) and (C2) of Theorem 1. We can immediately exclude
the case (C2), since A is directable and can not have two different traps, whereas the

case (C0) is excluded by our hypothesis (iii), because B ∈ K. Therefore, B must
satisfy (C1), and we conclude that A has a trap. Having in mind that A is directable,

the existence of a trap in A implies A ∈ TDir. Hence, we have proved that every
subdirectly irreducible algebra from K belongs to TDir.

Further, consider an arbitrary algebra A ∈ K. Then A is a subdirect product
of subdirectly irreducible algebras Ai, i ∈ I , and evidently, Ai ∈ K, and hence
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Ai ∈ TDir, for every i ∈ I . Let P ‘ be the direct product of the algebras Ai, i ∈ I .

Since every Ai has exactly one trap, P also has exactly one trap. On the other hand,
P ∈ K ⊆ Dir, so we conclude that P ∈ TDir, and now A ∈ TDir, as a subalgebra
of P . Therefore, we have proved (i). This completes the proof of the theorem. �

Note that a variety K is contained in TDir if and only if it satisfies a set of
identities {gux ≈ hu : x ∈ X}, for some u ∈ X∗ (see [10] or [5]).

Now we are ready to state and prove the main theorem of the paper.

Theorem 3. Let K be an irregular variety of algebras. Then

K ∨D = K ⊗D ⇐⇒ K ⊆ TDir.

���������
. Let K ∨D = K ⊗D. Suppose that K 6⊆ TDir. Then by Theorem 2,

there exists a nontrivial subdirectly irreducible strongly connected algebra A ∈ K.

Since A is a nontrivial strongly connected algebra, it has no trap, thus A ∈ K\TDir.
According to Lemma 1, A′ is a dense extension of A. Now, by Theorem 5.1 of [4]

it follows that A′ is subdirectly irreducible. On the other hand, A′ is a direct sum
of A and a one-element algebra, which both belong to K, so our starting hypothesis

yields

A′ ∈ K ◦D = K ∨D = K ⊗D.

But, A′ ∈ K ⊗D and subdirect irreducibility of A′ imply that

A′ ∈ D or A′ ∈ K,

which is not true, because A′ is neither discrete nor directable algebra. Therefore,
we conclude that K ⊆ TDir.

Conversely, let K ⊆ TDir. Since every algebra from K ∨ D is a subdirect

product of subdirectly irreducible algebras from K ∨D, it is enough to prove that
every subdirectly irreducible algebra from K ∨D belongs either to K or to D.

Let A ∈ K∨D = K◦D be an arbitrary subdirectly irreducible algebra. Then A is

a direct sum of algebras Aα, α ∈ Y , where Aα ∈ K ⊆ TDir, for each α ∈ Y . This
means that every Aα has exactly one trap, and by Theorem 1, |Y | 6 2. If |Y | = 2,

then Theorem 1 says that A has exactly two traps a1 and a2, and B = {a1, a2} is
the core of A. If B 6= A, then A is connected and direct sum indecomposable, which

contradicts the hypothesis |Y | = 2. Thus, we conclude that A must be a two-element
discrete algebra, and hence A ∈ D. Finally, if |Y | = 1, then clearly A ∈ K. This

completes the proof of the theorem. �
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