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SQUARE-FREE LUCAS d-PSEUDOPRIMES AND

CARMICHAEL-LUCAS NUMBERS

W. Carlip, Lancaster, L. Somer, Washington, D.C.

(Received April 27, 2005)

Abstract. Let d be a fixed positive integer. A Lucas d-pseudoprime is a Lucas pseu-
doprime N for which there exists a Lucas sequence U(P, Q) such that the rank of N in
U(P, Q) is exactly (N − ε(N))/d, where ε is the signature of U(P, Q). We prove here that
all but a finite number of Lucas d-pseudoprimes are square free. We also prove that all but
a finite number of Lucas d-pseudoprimes are Carmichael-Lucas numbers.
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1. Introduction

An odd composite integer N is a Lucas pseudoprime if there exists a Lucas se-

quence U(P,Q) with signature ε for which the rank of N divides UN−ε(N). If, in
addition, the rank %(N) is equal to (N − ε(N))/d, then N is a Lucas d-pseudoprime.
The concept of Lucas d-pseudoprimes generalizes that of Fermat d-pseudoprimes,
and was introduced by the second author in [10]. In this paper, we consider the

question of when a Lucas d-pseudoprime is square free. We prove that all but a
finite number Lucas d-pseudoprimes are square free.

Carmichael-Lucas numbers are analogous to the Carmichael numbers associated

with Fermat pseudoprimes: they are integers N that are Lucas pseudoprimes for
every Lucas sequence with a given signature. H. C. Williams studied Carmichael-

Lucas numbers in [11] and proved that Carmichael-Lucas numbers are always square
free. This leads us to wonder when Lucas d-pseudoprimes are Carmichael-Lucas

numbers. We prove that all but a finite number of Lucas d-pseudoprimes are, in
fact, Carmichael-Lucas numbers.
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A good account of Lucas pseudoprimes may be found in [1] and primality tests

involving Lucas pseudoprimes are presented in [1] and [2]. A discussion of Lucas
d-pseudoprimes appears in [8, pp. 131–132] and also in [9].

2. Basic properties of Lucas pseudoprimes

Throughout this paper, let N denote a positive odd composite integer with prime

decomposition

(1) N =
t∏

i=1

pki

i ,

where p1 < p2 < . . . < pt are primes and ki > 1 are integers. Let U(P,Q) be the
recurrence sequence defined by U0 = 0, U1 = 1, and

(2) Un+2 = PUn+1 −QUn

for all n > 0. The sequence U(P,Q) is called a Lucas sequence of the first kind
with parameters P and Q, and also sometimes referred to as a generalized Fibonacci
sequence. The integer D = P 2 − 4Q is said to be the discriminant of U(P,Q).
The semigroup homomorphism ε :

� → {−1, 0, 1} given by the Jacobi symbol
ε(n) =

(
D
n

)
is called the signature function of the sequence U(P,Q). In general,

we refer to any semigroup homomorphism from the natural numbers
�
to the mul-

tiplicative semigroup {−1, 0, 1} as a signature function. If N is an integer with
decomposition (1), δ(N) = {p1, . . . , pt}, the set of prime divisors of N , and ε a given
signature function, then the restriction ε : δ(N) → {−1, 0, 1} is called the signature
of N , and N is said to be supported by ε if ε(N) 6= 0. Since the signature functions
of interest to us here arise as a Jacobi function ε(n) =

(
D
n

)
, for D = P 2 − 4Q the

discriminant of a Lucas sequence, such signature functions are called admissible.
We denote by %U (N), or simply %(N) when the sequence U is evident, the rank

of appearance, or simply the rank, of N , i.e., the least positive integer n such that
N divides Un. If the greatest common divisor (N,Q) = 1, then it is well known that
U(P,Q) is purely periodic modulo N and, since U0 = 0, it follows that %(N) exists.
Moreover, in this case, Un ≡ 0 (mod N) if and only if %(N) divides n. It was
proven by Lucas [7] that if an odd prime p does not divide QD, then Up−ε(p) ≡ 0
(mod p), and therefore %(p) divides p−ε(p). Lucas’ observation leads to the following
definition.

Definition 2.1. An odd composite integer N is called a Lucas pseudoprime
with respect to the Lucas sequence U(P,Q), with discriminant D and signature ε, if
(N,QD) = 1 and UN−ε(N) ≡ 0 (mod N).
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If there exists a Lucas sequence U(P,Q) such that N is a Lucas pseudoprime
with respect to U(P,Q) and %(N) = (N − ε(N))/d, then N is said to be a Lucas
d-pseudoprime.

Note that if N is a Lucas pseudoprime with signature ε(n) =
(

D
n

)
, then the re-

quirement that (N,D) = 1 implies that ε supportsN . Thus every Lucas pseudoprime
is supported by its own signature.

We define several number theoretic functions that are useful for studying Lucas

pseudoprimes (see, e.g., [4]). If N an odd integer with decomposition (1) that is
supported by signature ε, define

λ(N, ε) = lcm{pki−1
i (pi − ε(pi)) : 1 6 i 6 t},(3)

λ′(N, ε) = lcm{pi − ε(pi) : 1 6 i 6 t},(4)

ψ(N, ε) =
1

2t−1

t∏

i=1

(pi − ε(pi)),(5)

ξ(N, ε) =
1
N

t∏

i=1

(pi − ε(pi)) =
t∏

i=1

pi − ε(pi)
pki

i

(6)

and

T (N, ε) =

t∏
i=1

(pi − ε(pi))

lcm{pi − ε(pi) : 1 6 i 6 t} =
Nξ(N, ε)
λ′(N, ε)

.(7)

Each of these functions depends only on the value of ε on the primes that divideN ,

that is, they depend only on the signature of N . When N is a Lucas pseudoprime,
we always have in mind a corresponding Lucas sequence U(P,Q) with signature
function ε. When no signature is explicitly given, it is this signature that appears in
the evaluation of the functions defined above.

Carmichael [6] proved that if U(P,Q) is a Lucas sequence with signature ε and
discriminant D satisfying (N,QD) = 1, then

(8) Uλ(N,ε) ≡ 0 (mod N).

It follows that %(N) | λ(N, ε), and λ(N, ε) is called the universal rank of N . If N is a
Lucas d-pseudoprime with signature ε, then (N − ε(N))/d divides λ(N, ε) and, since
(N,N − ε(N)) = 1,

(9)
N − ε(N)

d

∣∣∣ λ′(N, ε).
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If pi is any prime divisor of N , then %(pi) | %(N). Therefore, if N is a Lucas
d-pseudoprime, then %(pi) | (N − ε(N))/d. Since %(pi) also divides pi − ε(pi) and
%(pi) > 1, it follows that

(10)
(N − ε(N)

d
, pi − ε(pi)

)
> 1,

for all prime factors pi of N .
In fact, (9) and (10) together characterize Lucas d-pseudoprimes. To show this we

require several preliminary results.

Lemma 2.2. Let U(P,Q) be a Lucas sequence of the first kind with signature εU .

For a fixed positive integer k, let W be the subsequence of U given by Wn = Ukn.

ThenW is a second-order recurrence sequence with the property that εW (p) = εU (p)
for all primes p such that (p, Uk) = 1.
���������

. Let V (P,Q) be the Lucas sequence of the second kind, i.e., the second-
order recurrence sequence that satisfies (2) and has initial terms V0 = 2 and V1 = P .

By Lemma 2.10 of [5],W is, indeed, a second-order recurrence sequence, and satisfies
the relation

(11) Wn+2 = P ′Wn+1 −Q′Wn,

where P ′ = Vk and Q′ = Qk. Thus it remains only to show that εW (p) = εU (p)
when p 	 Uk.
Let D = P 2− 4Q be the discriminant of U and D′ = (P ′)2− 4Q′ the discriminant

of W . By Lemma 2.9 of [5], (Vk)2 −D(Uk)2 = 4Qk, and therefore

D′ = (P ′)2 − 4Q′ = (Vk)2 − 4Qk = D(Uk)2.

Consequently D and D′ differ by the square factor U 2
k , and therefore, if p is relatively

prime to Uk, then D′ is a square modulo p if and only if D is a square modulo p.

Thus εW (p) =
(

D′

p

)
=

(
D
p

)
= εU (p) when (p, Uk) = 1, as desired. �

Lemma 2.3. Let U(P,Q) be the Lucas sequence of the first kind satisfying re-
cursion (2) and W (P,Q) any second-order recurrence sequence satisfying (2) with
W0 = 0. Then U and W have identical signature functions. Furthermore, if

(N,W1) = 1, then %U (N) = %W (N).
���������

. Since U and W satisfy recursion (2), both have discriminant D =
P 2 − 4Q, and hence both have signature ε(n) =

(
D
n

)
. The hypotheses imply that

the sequence W is simply a multiple of U by the integer W1, that is, for all n, we

have Wn = W1Un. If (W1, N) = 1, it follows that N | Wn if and only if N | Un.
Therefore %U (N) = %W (N), as desired. �
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The next theorem generalizes a theorem of H.C. Williams (Theorem 3 of [11]).

Theorem 2.4. Let ε be an admissible signature function, p an odd prime such
that ε(p) 6= 0, s 6= 1 a divisor of p− ε(p), and k any positive integer. Then for each
l 6 k − 1 there exists a Lucas sequence W (P,Q) with signature εW that satisfies

%W (pk) = pls and ε(p) = εW (p).
���������

. When l = k − 1, the theorem follows immediately from Williams’
theorem. In fact, by Williams’ theorem, we can find a Lucas sequence U(P,Q)
with discriminant D satisfying ε(p) =

(
D
p

)
such that %U (pk) = pk−1s. Define the

subsequence W of U by Wi = U(pk−l−1)i.

By Lemma 2.2, W is a second-order recurrence sequence with the property that

εW (q) = εU (q) for all primes q such that (q, Upk−l−1) = 1. However, if p | Upk−l−1 ,
then %(p) | pk−l−1. But %(p) | p − ε(p) and ε(p) = ±1, from which it follows that
%(p) | (ppk−l−1

, p− ε(p)) = 1, a contradiction. Therefore (p, Upk−l−1) = 1, and hence
εW (p) = εU (p).
Since it is clear that %W (pk) = pls, Lemma 2.3 completes the proof. �

We can generalize Williams’ theorem even more.

Theorem 2.5. Suppose that ε is an admissible signature, N is an integer that
is supported by ε and has prime decomposition (1), and s is any divisor of λ′(N, ε)
such that (s, pi − ε(pi)) 6= 1 for all prime divisors pi of N . Then there exists a

Lucas sequence U(P,Q) that satisfies %U (N) = s and εU (pi) = ε(pi) for each prime
divisor pi of N .

���������
. Let si = (s, pi − ε(pi)). By hypothesis, si > 1 and, since s | λ′(N, ε),

it is clear that s = lcm{si}. By Theorem 2.4, for each i we can find a sequence
Ui(Pi, Qi) such that %Ui(p

ki

i ) = si and εUi(pi) = ε(pi). Then, by the Chinese re-
mainder theorem, we can find integers P and Q such that P ≡ Pi (mod pki

i ) and
Q ≡ Qi (mod pki

i ) for each i. By setting D = (P )2−4Q and Di = (Pi)2−4Qi, we ob-

tain D ≡ Di (mod pki

i ) for each i. Let U = U(P,Q). Then %U (N) = lcm{%U (pki

i )} =
lcm{si} = s. Finally, εU (pi) =

(
D
pi

)
=

(
Di

pi

)
= εUi(pi) = ε(pi) for each i. �

Theorem 2.6. An integer N is a Lucas d-pseudoprime with signature ε if and
only if (9) and (10) are true.

���������
. Suppose that N is a Lucas d-pseudoprime with signature ε. Then, by

the argument preceding (9), we know that (9) and (10) are true.

To prove the converse, suppose thatN is an integer and ε is an admissible signature
such that (9) and (10) are true. Then, by Theorem 2.5 with s = (N−ε(N))/d, there
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exists a Lucas sequence U(P,Q) that satisfies εU (pi) = ε(pi) for all prime divisors pi

of N and %(N) = s = (N − ε(N))/d. Thus N is, indeed, a Lucas d-pseudoprime. �
We also require several basic lemmas on Lucas d-pseudoprimes, some of which are

stated in [3].

Lemma 2.7. If N is an odd composite integer with decomposition (1) and ε is
any signature that supports N , then

(12)
λ′(N, ε)
N

6 ψ(N, ε)
N

< 2
(2

3

)t

and
ψ(N, ε)
N − ε(N)

< 2
(2

3

)t

.

���������
. Since N is odd, pi is odd, and ε(pi) = ±1, it follows that pi − ε(pi) is

even. Therefore 2t−1 divides
t∏

i=1

(pi − ε(pi)), and ψ(N, ε) is an integer. For each i,

(13)
pi − ε(pi)

pki

i

6 pi + 1
pki

i

=
1 + 1/pi

pki−1
i

6 1 + 1/3
30

=
4
3
.

Furthermore, (13) is strict if either pi > 3 or ki > 1. Consequently

(14)
ψ(N, ε)
N

=
1

2t−1

t∏

i=1

pi − ε(pi)
pki

i

<
1

2t−1

(4
3

)t

= 2
(2

3

)t

.

Since λ′(N, ε) | ψ(N, ε), the first inequality of (12) follows from (14).
Note that the last inequality of (12) now follows if ε(N) = −1 and, in any case,

N/(N − ε(N)) < 4/3. If ε(pi) = 1 or ki > 1, then (pi − ε(pi))/pki

i < 1, and the last
inequality follows from (13). Thus we may assume that ε(pi) = −1 and ki = 1, for
each i, and that ε(N) = 1. It follows that t > 2 and

(15)
p2 − ε(p2)

pk2
2

N

N − ε(N)
6 6

5
3 · 5

3 · 5− 1
=

9
7
<

4
3
,

and the final inequality of (12) follows. �

Lemma 2.8. If N = nm is an odd integer with n > 3, m > 3, and (n,m) = 1,
and ε is any signature that supports N , then

(16)
λ′(N, ε)
N

=
λ′(nm, ε)
nm

6 2
3
λ′(n, ε)
n

.

���������
. The definition of λ′ implies that λ′(nm, ε) | 1

2λ
′(n, ε)λ′(m, ε). There-

fore, by Lemma 2.7,

(17)
λ′(nm, ε)
nm

6 1
2
λ′(n, ε)
n

λ′(m, ε)
m

6 2
3
λ′(n, ε)
n

.

�
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Lemma 2.9. If N is a d-pseudoprime with respect to signature ε, then

(18)
λ′(N, ε)
N

>
1

d+ 1
.

���������
. By (9), N −ε(N) | dλ′(N, ε). Therefore dλ′(N, ε) > N −ε(N) > N −1.

Since λ′(N, ε) > 2, it follows that (d + 1)λ′(N, ε) > dλ′(N, ε) + 1 > N . The lemma
follows immediately. �

Lemma 2.10 (Lemma 4.1 of [3]). If N is a Lucas d-pseudoprime, then (N, d) = 1
and there exist integers b and c such that

(19)
λ′(N, ε)
N − ε(N)

=
b

d
6 ψ(N, ε)
N − ε(N)

=
c

d
.

���������
. Since d | N − ε(N) and ε(N) = ±1, it is clear that (N, d) = 1. The

existence of the integer b follows immediately from (9). Similarly, since λ′(N, ε) |
ψ(N, ε), (9) implies that (N −ε(N))/d divides ψ(N, ε), which in turn guarantees the
existence of the integer c and verifies inequality (19). �

Lemma 2.11 (Lemma 4.3 of [3]). If N is a Lucas d-pseudoprime with prime
decomposition (1) and ki > 2, then

(20) pki−1
i < 2

(
2
3

)t(d+ 1).

In particular, N is square free when t is sufficiently large.

���������
. Suppose that p2

i | N . By induction, Lemma 2.8, and Lemma 2.9,

1
d+ 1

<
λ′(N, ε)
N

=
λ′

( t∏
j=1

p
kj

j , ε
)

t∏
j=1

pki

j

6
(2

3

)t−1 λ′(pki

i , ε)
pki

i

6
(2

3

)t−1 pi + 1
pki

i

.

Thus

pki−1
i <

(2
3

)t−1 pi + 1
pi

(d+ 1) 6
(2

3

)t−1(4
3

)
(d+ 1) = 2

(2
3

)t

(d+ 1).

�
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Lemma 2.12 (Lemma 4.2 of [3]). If N is a Lucas d-pseudoprime with prime
decomposition (1), then t < log3/2(2d).
���������

. Lemma 2.7 and Lemma 2.10 imply that 1/(2d) 6 c/(2d) < (2/3)t, and
therefore 2d > (3/2)t. The lemma follows immediately. �

3. Basic properties of Carmichael-Lucas numbers

We define Carmichael-Lucas numbers and describe some of their fundamental
properties.

Definition 3.1. An odd composite integer N is a Carmichael-Lucas number
with respect to a fixed signature ε that supports N if UN−ε(N) ≡ 0 (mod N) for
every Lucas sequence U(P,Q) whose signature restricts to ε on δ(N) and satisfies
(N,Q) = 1.

Theorem 3.2. If N is a Carmichael-Lucas number with signature ε, then N is
square free and λ′(N, ε) | N − ε(N).
���������

. This is essentially Theorem 4 of [11]. �

Theorem 3.3. If N is square free and ε is a signature function that supports N
and for which λ′(N, ε) | N − ε(N), then N is a Carmichael-Lucas number.
���������

. Let U(P,Q) be a Lucas sequence with a signature that coincides with ε
on δ(N). Then %U (N) | λ(N, ε). Since N is square free, λ(N, ε) = λ′(N, ε), and
therefore %U (N) | λ′(N, ε). But then %U (N) | N − ε(N), and it follows that N is a
Carmichael-Lucas number. �

4. Square-free conditions

We now turn to the question of when Lucas d-pseudoprimes are square free.

Theorem 4.1. If M > 1 is an integer, then there are at most a finite number of
Lucas d-pseudoprimes N with the following properties:

(a) N has exactly t distinct prime divisors;

(b) M divides N with (N/M,M) = 1; and
(c) N/M is square free.

454



���������
. Fix the integer M > 1 and suppose that M has s distinct prime

factors. Let Ω be the set of all Lucas d-pseudoprimes that satisfy the conditions of
the theorem. Then each N ∈ Ω can be written in the form

(21) N = M ·
t∏

i=s+1

pi,

where s > 1, for each i, pi is a prime that does not divide M , and pi < pj when
i < j.

We proceed by induction on t− s.
Clearly, if t−s = 0, then t = s and N = M , and at most one Lucas d-pseudoprime

satisfies (b).
We may now assume that t > s > 1.

Claim. There are only finitely many possible values for the prime ps+1 in (21).

Before we prove the claim, we observe that the theorem follows immediately from

this claim and the induction hypothesis, as follows. Partition Ω according to the
value of ps+1, that is, into subsets Ωp such that N ∈ Ωp if and only if ps+1 = p. By

the claim, Ω is the union of a finite number of such subsets Ωp, and it suffices to
show that each of these is finite. However, if N ∈ Ωp, then N satisfies the conditions

of the theorem with M ′ = Mp in place of M . But then M ′ has s+ 1 distinct prime
factors and t− (s+ 1) < t− s. By the induction hypothesis, only a finite number of

Lucas d-pseudoprimes satisfy the hypotheses of the theorem with M ′ in place of M ,
and therefore Ωp is finite as desired.���������

of Claim. We begin with the simple observation that the function ξ(N, ε)
is multiplicative, that is, if (N1, N2) = 1, then ξ(N1N2, ε) = ξ(N1, ε)ξ(N2, ε). In
particular, if N ∈ Ω has signature ε, then ξ(N, ε) = ξ(M, ε)ξ(M/N, ε).
Let

(22) δ =
1
3

min
n>1

16i6d−1

∣∣∣ξ(M, ε)
n

− i

d

∣∣∣.

We claim that δ > 0. Otherwise, by (6),

(23) inM = d

s∏

i=1

(pi − ε(pi)).

Since, by Lemma 2.10, (M,d) = 1, (23) implies that the largest prime divisor ps

of M divides
s∏

i=1

(pi − ε(pi)), which is impossible since each Lucas d-pseudoprime

N ∈ Ω is supported by its signature ε.
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Let N ∈ Ω and choose b as in Lemma 2.10. Note that Lemma 2.7 implies that
b < d since t > 1. By the triangle inequality and the definition of δ,

3δ 6
∣∣∣ ξ(M, ε)
T (N, ε)

− b

d

∣∣∣(24)

6
∣∣∣ ξ(M, ε)
T (N, ε)

− λ′(N, ε)
N

∣∣∣ +
∣∣∣λ

′(N, ε)
N

− λ′(N, ε)
N − ε(N)

∣∣∣ +
∣∣∣ λ

′(N, ε)
N − ε(N)

− b

d

∣∣∣

=
∣∣∣ ξ(M, ε)
T (N, ε)

− λ′(N, ε)
N

∣∣∣ +
∣∣∣λ

′(N, ε)
N

− λ′(N, ε)
N − ε(N)

∣∣∣.

We now bound the two terms on the right-hand side of (24). Since (pi−ε(pi))/pki

i 6
4/3 for all pi and T (N, ε) > 1, we observe that

ξ(M, ε)
T (N, ε)

6
(4

3

)s

.

Furthermore, since N/M is square free and (1 − ε(pi)/pi) becomes arbitrarily close
to 1 when pi is sufficiently large, we can find an integer α1 such that |1−ξ(N/M, ε)| <
δ/(4/3)s when ps+1 > α1. Therefore, if ps+1 > α1, then

∣∣∣ ξ(M, ε)
T (N, ε)

− λ′(N, ε)
N

∣∣∣ =
∣∣∣ ξ(M, ε)
T (N, ε)

− ξ(N, ε)
T (N, ε)

∣∣∣(25)

=
∣∣∣ ξ(M, ε)
T (N, ε)

− ξ(M, ε)ξ(N/M, ε)
T (N, ε)

∣∣∣

=
( ξ(M, ε)
T (N, ε)

)
|1− ξ(N/M, ε)|

<
(4

3

)s δ

(4/3)s
= δ.

Now consider the second term on the right-hand side of (24). Since, t > 2 we
know that N > 15. Then Lemma 2.7 implies that λ′(N, ε) < (8/9)N < N − 1. Let
α2 = 1/δ. If ps+1 > α2, then certainly N > α2 and

(26)
∣∣∣λ

′(N, ε)
N

− λ′(N, ε)
N − ε(N)

∣∣∣ 6 (N − 1)
∣∣∣ 1
N
− 1
N − 1

∣∣∣ =
1
N

<
1
α2

= δ.

Let α = max{α1, α2}. Combining the bounds in (25) and (26) with (24), we
discover that if ps+1 > α, then

3δ 6
∣∣∣ ξ(M, ε)
T (N, ε)

− λ′(N, ε)
N

∣∣∣ +
∣∣∣λ

′(N, ε)
N

− λ′(N, ε)
N − ε(N)

∣∣∣ < 2δ,

which is a contradiction. It follows that 3 6 ps+1 6 α and there are only a finite
number of possible values for ps+1, as claimed.

The theorem now follows from the claim, as shown above. �
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Theorem 4.2. All but a finite number of Lucas d-pseudoprimes are square free.
���������

. It is a consequence of Lemma 2.11 that there are only a finite number
of integers M of the form

M =
s∏

i=1

pki

i ,

with ki > 1 for all i, that divide a Lucas d-pseudoprime N with t distinct prime
divisors. If we apply Theorem 4.1 to each of these integers, we see that only a finite

number of Lucas d-pseudoprimes with t distinct prime divisors can be divisible by a
square.

The theorem now follows from Lemma 2.12, which implies that there are only a
finite number of possible values for t. �

Theorem 4.3. Let M be any integer. Then there are at most a finite number of
Lucas d-pseudoprimes N such that M | N .
���������

. By Theorem 4.2, all but a finite number of Lucas d-pseudoprimes are
square free, so it suffices to prove the theorem for square-free Lucas d-pseudoprimes.

Moreover, by Lemma 2.12 we only need to prove the theorem for Lucas d-pseudo-
primes that have exactly t distinct prime divisors. But then M and N satisfy the

conditions of Theorem 4.1. �

5. Carmichael-Lucas numbers

In this section we prove our claim that all but a finite number of d-pseudoprimes

are Carmichael-Lucas numbers. This result follows from Theorem 4.2 along with
Theorem 5.4 of [4], which is proven there using techniques developed in [3]. We
begin with a definition.

Definition 5.1. A Lucas d-pseudoprime N is called standard if

(27) bT (N, ε) = d

and exceptional otherwise, where, as usual, b is given by (19).

Observe that condition (27) is equivalent to

(28) 1 =
b

d
T (N, ε) =

λ′(N, ε)
N − ε(N)

t∏
i=1

(pi − ε(pi))

λ′(N, ε)
=

t∏
i=1

(pi − ε(pi))

N − ε(N)
.
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Theorem 5.2. All but a finite number of Lucas d-pseudoprimes are standard.
���������

. This is Theorem 5.4 of [4]. �

Theorem 5.3. Every square-free standard Lucas d-pseudoprime is a Carmichael-
Lucas number.
���������

. Suppose that N is a square-free standard Lucas d-pseudoprime. Then

N − ε(N) = λ′(N, ε)
N − ε(N)
λ′(N, ε)

= λ′(N, ε)
d

b
= λ′(N, ε)T (N, ε).

Since it is clear from the definition of T (N, ε) that T (N, ε) is an integer, we see that
λ′(N, ε) | N − ε(N). Then, by Theorem 3.3, N is a Carmichael-Lucas number. �

Theorem 5.4. All but a finite number of Lucas d-pseudoprimes are Carmichael-
Lucas numbers.
���������

. By Theorem 4.2 and Theorem 5.2, all but finitely many Lucas d-pseudo-
primes are square free and standard, so the result follows from Theorem 5.3. �

6. Square-free conditions: computations

In Section 4 we proved that all but a finite number of Lucas d-pseudoprimes are
square free. In this final section we examine this question from a computational

perspective and provide conditions on t, the number of distinct prime divisors of a
Lucas d-pseudoprime N , that force N to be square free. We begin by considering

what happens when t is large.
In Lemma 2.11 we observed that if t is sufficiently large (depending upon d, of

course), then all Lucas d-pseudoprimes are square free. The next theorem makes this
more precise.

Theorem 6.1. If N is a Lucas d-pseudoprime with prime factorization (1) and
t > log(d+ 1)/ log 3

2 − 1, then N is square free.
���������

. This follows from Lemma 2.11. Suppose that N is a Lucas d-

pseudoprime and p2 divides N for some prime p. By an easy computation, if t >
log (d+ 1)/ log 3

2−1, then 2
(

2
3

)t(d+1) 6 3 and, by Lemma 2.11, p < 2
(

2
3

)t(d+1) 6 3,
a contradiction. �

Example 6.2. The function log(d + 1)/ log 3
2 − 1 grows rather slowly. Thus, for

example, if d 6 984, then every Lucas d-pseudoprime with 16 or more distinct prime
factors must be square free. If d 6 20000000, then every Lucas d-pseudoprime with
41 or more distinct prime factors is square free.
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For standard Lucas d-pseudoprimes N , (28) suggests a computational method to

show that N is square free when t is sufficiently small. The method is motivated by
the following lemma.

Lemma 6.3. If N is an odd integer with decomposition (1) with t 6 15, ε is a
signature function that supports N , and

(29)

t∏
i=1

(pi − ε(pi))

N − ε(N)
= 1,

then N is square free.
���������

. Suppose that ki > 1 for some i. Then the maximal value of the left-
hand side of equation (29) is attained when t is maximal and N is minimal, i.e., when
N = 32 · 5 · 7 · . . . · 53:

t∏
i=1

(pi − ε(pi))

N − ε(N)
=

t∏
i=1

(pi − ε(pi))

pk1
1 p

k2
2 p

k3
3 . . . pkt

t − ε(N)
6

t∏
i=1

(pi + 1)

p2
1p2p3 . . . pt − 1

6 (3 + 1)(5 + 1)(7 + 1) . . . (53 + 1)
32 · 5 · 7 · . . . · 53− 1

= 24349275917490585600/24441868857892533547< 1.

Therefore ki = 1 for all i and N is square free. �

Theorem 6.4. Every standard Lucas d-pseudoprime N with 15 or fewer distinct
prime factors is square free.
���������

. The theorem follows immediately from (5.2) and Lemma 6.3. �

Example 6.5. By Theorems 6.1 and 6.4, if d 6 984, then every standard Lucas
d-pseudoprime is square free.

Stronger results than Theorem 6.4 can be obtained by observing that the primes pi

in the factorization (1) of a Lucas d-pseudoprime are not arbitrary—they are subject

to constraints.

Definition 6.6. If L = p1, p2, . . . , pt is a list of distinct odd primes, and ε is a
signature function that supports L, then we say that L is special with respect to ε
if for all i 6= j,

(30) pi 	 pj − ε(pj).
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Lemma 6.7. Suppose that N is an odd integer with decomposition (1), ε is a
signature function that supports N , and

(31)

t∏
i=1

(pi − ε(pi))

N − ε(N)
= c

is an integer that is relatively prime to N . Then the list of primes p1, p2, . . . , pt is

special with respect to ε.
���������

. Let pi be a prime in the decomposition of N . It follows from (31) that

(32) cN −
t∏

i=1

(pi − ε(pi)) = cε(N) = ±c.

If pi divides pj − ε(pj) for some prime pj in the decomposition of N , then, by (32),
pi divides c, contrary to our hypotheses. It follows that pi 	 pj − ε(pj) for all i and
j, and hence the prime divisors of N form a special list with respect to ε. �

Theorem 6.8. For every standard Lucas d-pseudoprime N with decomposi-

tion (1) the list of prime factors p1, p2, . . . , pt of N is special with respect to the

signature ε of N .
���������

. The theorem follows immediately from (28) and Lemma 6.7. �

Suppose now that ε is a fixed signature function and p1, p2, . . . , pt is an increasing

list of primes, special with respect to ε, such that the expression

(33) N∗
t (ε) =

t∏
i=1

(pi − ε(pi))

N − ε(N)
=

N

N − ε(N)

t∏
i=1

(pi − ε(pi))

N

is maximal, where N = p2
1p2 . . . pt. If N∗

t (ε) < 1, then, as in Lemma 6.3, every
standard Lucas d-pseudoprime with t distinct prime factors is square free.
Unfortunately, identifying the primes p1, . . . , pt for which (33) is maximal, much

less determining the rate of growth of the expressions N ∗
t (ε) as a function of t,

depends upon the signature ε and is a difficult problem. In the remainder of this

section, we describe a heuristic for estimating the growth N ∗
t (ε), and offer some

computational results and conjectures.
We first observe that for any signature ε,

(34) N∗
t (ε) =

t∏
i=1

(pi − ε(pi))

N − ε(N)
6

t∏
i=1

(pi + 1)

N − 1
6

t∏
i=1

(pi + 1)

3
t∏

i=1

pi − 1
.
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It follows that the maximal value of the expression

(35)

t∏
i=1

(pi + 1)

3
t∏

i=1

pi − 1
,

taken over all special lists of primes with respect to ε, is an upper bound for N ∗
t (ε).

To bound the maximal value of (35), we computed (35) for lists of primes that

are special with respect to the signature ε that is identically −1 and obtained by
the greedy algorithm, that is, lists L = p1, p2, . . . , pt obtained by setting p1 = 3
and including successive primes pj if pi 	 pj + 1 for all i < j. It seems reasonable
to hypothesize that lists produced in this fashion yield upper bounds for (35) with

respect to the signature ε = −1. Moreover, since any prime p that satisfies ε(p) = 1
contributes a factor of (p− 1)/p < 1 to the rightmost term of (33), we suspect that
our computations yield upper bounds for (35) with respect to any signature.

Our computational results are summarized in Tab. 1 and Fig. 1 below. Values

of (35) were computed using a straightforward sieve program written in Java using
the BigInteger package and verified with a program written in C++ using the gnu

multiprecision package (gmp).

Sieve Size t (35) f(t)
1000000 19633 0.7931 0.7948
2000000 36715 0.8026 0.8033
3000000 53170 0.8079 0.8083
4000000 69164 0.8117 0.8119
5000000 84888 0.8145 0.8146
6000000 100332 0.8168 0.8169
7000000 115502 0.8187 0.8188
8000000 130605 0.8204 0.8205
9000000 145597 0.8218 0.8219

10000000 160487 0.8231 0.8232
11000000 175236 0.8243 0.8244
12000000 189789 0.8253 0.8255
13000000 204281 0.8263 0.8265
14000000 218688 0.8272 0.8274
15000000 233017 0.8280 0.8283

Sieve Size t (35) f(t)
16000000 247180 0.8288 0.8291
17000000 261467 0.8295 0.8298
18000000 275608 0.8301 0.8306
19000000 289672 0.8308 0.8312
20000000 303670 0.8314 0.8319
21000000 317707 0.8319 0.8325
22000000 331722 0.8325 0.8331
23000000 345567 0.8330 0.8336
24000000 359335 0.8335 0.8342
25000000 373337 0.8340 0.8347
26000000 387103 0.8344 0.8352
27000000 400901 0.8348 0.8356
28000000 414703 0.8353 0.8361
29000000 428348 0.8357 0.8365
30000000 441947 0.8360 0.8369

Table 1. Summary of Estimate (35) Computation.

In the graph, the values of (35) are plotted against t. Each value of (35) is

computed from the largest greedy list p1, p2, . . . , pt satisfying pt 6 n, for various
sizes n of sieves. The largest sieve tested had n = 30000000.
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Since
t∏

i=1

(pi + 1)

t∏
i=1

pi − 1
∼

t∏

i=1

pi + 1
pi

6
t∏

i=1

pi

pi − 1
=

t∏

i=1

1
1− 1/pi

∼ log(t),

when the product is taken over all primes, we expect (35) to be bounded by a
function of the form α log(t) + β. We used a linear regression algorithm to find a

function f(t) of this form to approximate and bound the computed data. For the
sake of comparison, we have included the resulting function, f(t) = 0.013528 log(t)+
0.6611 in Fig. 1.
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Figure 1. Graph of Estimate (35) and f(t).

Based on our computations, we offer the following result.

Proposition 6.9. If the greedy algorithm does produce special lists of primes for
which (35) is maximized, then all standard Lucas d-pseudoprimes with respect to

the signature ε = −1 having decomposition (1) with t 6 441947 are square free.

We note that Proposition 6.9 and Theorem 6.1 together imply that all standard

Lucas d-pseudoprimes with respect to ε = −1 for which d <
(

3
2

)441948 − 1 ∼ 1.5 ·
1077823 are square free, and conjecture that a similar bound applies to Lucas d-

pseudoprimes with respect to any signature.
Finally, since the function f(t) = 0.013528 log(t) + 0.6611 appears to provide an

upper bound for (35), and f(t) < 1 when t < 7.58 × 1010, we offer the following
conjecture.
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Conjecture 6.10. All standard Lucas d-pseudoprimes having decomposition (1)
with t 6 7.58× 1010 are square free.

If, indeed, Conjecture 6.10 is correct, Theorem 6.1 implies that all standard Lucas

d-pseudoprimes for which d < 201010
are square free, and hence, it is unlikely that

anyone will ever encounter a standard Lucas d-pseudoprime that is not square free.
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