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Abstract. In this paper, we prove the following statements: (1) For every regular un-
countable cardinal κ, there exist a Tychonoff space X and Y a subspace of X such that
Y is both relatively absolute star-Lindelöf and relative property (a) in X and e(Y, X) > κ,
but Y is not strongly relative star-Lindelöf in X and X is not star-Lindelöf. (2) There exist
a Tychonoff space X and a subspace Y of X such that Y is strongly relative star-Lindelöf
in X (hence, relative star-Lindelöf), but Y is not absolutely relative star-Lindelöf in X.
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1. Introduction

By a space, we mean a topological space. Let X be a space and Y a subspace of X .

Recall from [1], [2], [8] that Y is Lindelöf in X if for every open cover U of X , there
exists a countable subfamily covering Y . A space X is star-Lindelöf (for different

names, see [5], [6], [10], [19]) if for every open cover U of X , there exists a countable
subset F of X such that St(F, U ) = X , where St(F, U ) =

⋃{U ∈ U : U ∩ F 6= ∅}.
A space X is absolutely star-Lindelöf (see [4], [10]) if for every open cover U of X
and every dense subspace D ⊆ X , there exists a countable subset F of D such

that St(F, U ) = X . A space X has property (a) (see [8], [10]) if for every open
cover U of X and every dense subspace D ⊆ X , there exists a closed (in X) and
discrete subset F of D such that St(F, U ) = X . Now, following the general idea

of relativization of topological properties [1], it is natural to introduce the following
definitions:
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Definition 1.1 ([18]). A subspace Y of a space X is called relative star-Lindelöf

(strongly relative star-Lindelöf ) in X if for every open cover U of X , there exists a
countable subset F ⊆ X (respectively, F ⊆ Y ) such that Y ⊆ St(F, U ).

Definition 1.2 ([13]). A subspace Y of a space X is called relatively absolute
star-Lindelöf in X if for every open cover U of X and every dense subspace D ⊆ X ,

there exists a countable subset F of D such that Y ⊆ St(F, U ).

Definition 1.3 ([13]). A subspace Y of a space X is called relative property (a)
in X if for every open cover U of X and every dense subspace D ⊆ X , there exists

a closed (in X) and discrete subset F ⊆ D such that Y ⊆ St(F, U ).

From the above definitions, it is not difficult to see that if a subspace Y of X

is strongly relative star-Lindelöf in X , then Y is relative star-Lindelöf in X and

if a subspace Y of X is relatively absolute star-Lindelöf in X , then Y is relative
star-Lindelöf in X . But the converses do not hold (see below Examples 2.3 and 2.4).

Recall that the extent e(X) of a space X is the smallest cardinal number κ such
that the cardinality of every discrete closed subset of X is not greater than κ; more-

over, Arhangel’skii [2] defined the extent e(Y, X) of Y in X as the smallest cardinal
number κ such that the cardinality of every closed in X discrete subspace of Y is

not greater than κ. It is well-known that the extent of a Lindelöf space is count-
able. Arhangel’skii [2] proved that if Y is Lindelöf in X , then e(Y, X) is countable.
Matveev [14] proved that the extent of a Tychonoff star-Lindelöf space can be ar-
bitrarily large. Matveev [11] asked if the extent of a star-Lindelöf space with the

property (a) is greater than c. Song [16] answered this question positively. It is
natural for us to consider the following question:

Question. Do there exist a Tychonoff space X and a subspace Y of X such

that Y is both relatively absolute star-Lindelöf and relative property (a) in X and
e(Y, X) is greater than c, but Y is not strongly relative star-Lindelöf in X and X is

not star-Lindelöf.

The purpose of this paper is to answer the questions positively and to clarify the
relations among these star-Lindelöf spaces by constructing two examples stated in
the abstract.

The cardinality of a set A is denoted by |A|. Let ω denote the first infinite cardinal
and c the cardinality of the continuum. As usual, a cardinal is an initial ordinal and

an ordinal is the set of smaller ordinals. When viewed as a space, every cardinal
has the usual order topology. For a pair of ordinals α, β with α < β, we write

(α, β) = {γ : α < γ < β} and (α, β] = {γ : α < γ 6 β}. Other terms and symbols
that we do not define will be used as in [7].
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2. Two examples on relative star-Lindelöf spaces

In this section, we first construct an example with properties of statement 1 stated

in the abstract. The example uses Matveev’s space. Recall that a space X is dis-
cretely star-Lindelöf (for different names, see [17], [18]) if for every open cover U

of X , there exists a countable discrete closed subset F of X such that St(F, U ) = X .
It is clear that every discretely star-Lindelöf space is star-Lindelöf. We now sketch

the construction of Matveev’s space M defined in [14], [15]. Let κ be an infinite
cardinal and D = {0, 1} be the discrete space. For every α < κ, let zα be the point

of Dκ defined by zα(α) = 1 and zα(β) = 0 for β 6= α. Put Z = {zα : α < κ}.
Matveev’s space M is defined to be the subspace

M = (Dκ × ω) ∪ (Z × {ω})

of the product space Dκ × (ω + 1). Then, M is a Tychonoff discretely star-Lindelöf
space and e(M) > κ, since Z × {ω} is a discrete closed set in M .

We need the following lemma:

Lemma 2.1 ([15], [16]). Assume that there exists a family {Vα : α < κ} of open
sets in Dκ such that zα ∈ Vα for each α < κ. Then, there exists a countable set

S ⊆ Dκ such that S ∩ Vα 6= ∅ for each α < κ and clDκ S ∩ Z = ∅.

For constructing the example, we use the Alexandroff duplicate A(X) of a spaceX .
The underlying set of A(X) is X × {0, 1}; each point of X × {1} is isolated and a
basic neighborhood of a point 〈x, 0〉 ∈ X ×{0} is a set of the form (U ×{0})∪ (U ×
{1} \ {〈x, 1〉}), where U is a neighborhood of x in X . It is well-known that A(X) is
countably compact iff X is countably compact. Recall that a space is absolutely
countably compact (see [9], [10]) if for every open cover U of X and every dense

subspace D of X , there exists a finite subset F of D such that St(F, U ) = X . In the
next example, we use the following lemma from [20].

Lemma 2.2. If X is countably compact, then A(X) is absolutely countably
compact.

For a Tychonoff space X , let βX denote the Čech-Stone compactification of X .

Example 2.3. For every regular uncountable cardinal κ, there exist a Tychonoff
space X and a subspace Y of X such that Y is both relatively absolute star-Lindelöf

and relative (a) in X and e(Y, X) > κ, but Y is not strongly relative star-Lindelöf
in X and X is not star-Lindelöf.

389



���������
. Let κ be a regular uncountable cardinal and let

S1 = M = (Dκ × ω) ∪ (Z × {ω})

be a subspace of the product space Dκ × (ω + 1). Then, S1 is a Tychonoff space.

Note that e(S1) > κ, since Z × {ω} is discrete closed in S1.

Let B be the discrete space of cardinality κ and let

S2 = (βB × (κ + 1)) \ ((βB \B)× {κ})

be a subspace of the product space βB × (κ + 1).
We assume that S1 ∩ S2 = ∅. Since |Z × {ω}| = κ and |B × {κ}| = κ, we

can enumerate Z × {ω} and B × {κ} as {〈zα, ω〉 : α < κ} and {〈bα, κ〉 : α < κ}
respectively. Let ϕ : Z × {ω} → B × {κ} be the bijection defined by

ϕ(〈zα, ω〉) = 〈bα, κ〉

for each α < κ. Let X ′ be the quotient space obtained from the discrete sum S1⊕S2

by identifying 〈zα, ω〉 with ϕ(〈zα, ω〉) for each α < κ. Let π : S1 ⊕ S2 → X ′ be the

quotient map.

Let

X = A(X ′) and Y = A(π(S2)) \ (π(B × {κ})× {1}).

Clearly, X is a Tychonoff space. Note that e(Y, X) > κ, since π(Z × {ω})× {0} is
a closed (in X) discrete subspace of Y . We show that Y is both relatively absolute
star-Lindelöf and relative property (a) in X . For this end, let U be an open cover

of X . Let

X ′
ω = π(Z × {ω})× {0}; X ′′

ω = π(Z × {ω})× {1};
Xn = A(π(Dκ × {n})) for each n ∈ ω

and

X ′′ = A(π(βB × κ)).

Then,

X = X ′′ ∪X ′
ω ∪X ′′

ω ∪
⋃

n<ω

Xn.

Let S be the set of all isolated points of κ and let D′ = B × S. If we put

D0 = (π(D′)× {0}) ∪ (π(X ′)× {1}),
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then D0 is dense in X and every dense subspace of X includes D0. Thus, it suffices

to show that there exists a countable F ⊆ D0 such that F is discrete and closed in X

and Y ⊆ St(F, U ). By refining U , we may assume that U is cover of the from

U = U0 ∪U ′
ω ∪Uω ∪

⋃

n∈ω

Un,

where U0, U ′
ω , Uω and Un, n ∈ ω are defined as follows:

U0 = {U ∩ A(π(βB × κ)) : U ∈ U }; U ′
ω = {π(〈zα, ω〉)× {1} : α < κ};

Uω = {Uα : α < κ}, where each Uα is of the form

Uα = A(π(Vα × (nα, ω)) ∪ {π(〈zα, ω〉)× {0}} ∪ {A(π〈zα, ω〉)× (βα, κ))}

for some open neighborhood Vα of zα in Dκ, nα < ω and βα < κ; and Un =
{Un,x : x ∈ Dκ} ∪ {π(〈x, n〉) × {1} : x ∈ Dκ}, where Un,x is of the from

Un,x = (π(Vn,x × {n})× {0, 1}) \ (π(〈x, n〉) × {1}),

for some open neighborhood Vn,x of x in Dκ.

By applying Lemma 2.1 to the family {Vα : α < κ}, we can find a countable set
S = {si : i ∈ ω} ⊆ Dκ such that S ∩Vα 6= ∅ for all α < κ and clDκ S ∩Z = ∅. Define

E =
⋃

i<ω

{π(〈si, j〉)× {1} : i < j < ω}.

Since clDκ S ∩ Z = ∅ and |E ∩ Xn| < ω for each n ∈ ω, E is discrete closed in X .

Moreover, since S ∩ Vα 6= ∅ for all α < κ,

X ′′
ω ⊆ St(E, Uω) ⊆ St(E, U ).

Since κ is locally compact and countably compact, it follows from [7, Theo-
rem 3.10.13] that βB × κ is countably compact, hence π(βB × κ) is countably
compact. By applying Lemma 2.2, there exists a finite subset E ′ ⊆ (π(D′)× {0}) ∪
(π(βB × κ)× {1}) such that

A(π(βB × κ)) ⊆ St(E′, U ).

If we put E0 = E ∪ E′, then
Y ⊆ St(E0, U ),
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which shows that Y is both relatively absolute star-Lindelöf and relative property (a)

in X .

Next, we show that Y is not strongly star-Lindelöf in X . For each α < κ, let Vα be

an open neighborhood of zα in Dκ. Let

Uα = A(π({zα} × (α, κ]) ∪ Vα × (0, ω)) for each α < κ

and

Wn = A(π(Dκ × {n})) for each n ∈ ω.

Let us consider the open cover

U = {A(π(βB × κ)} ∪ {Uα : α < κ} ∪ {Wn : n ∈ ω} ∪ {〈〈zα, ω〉, 1〉 : α < κ}

of X and let F be any countable subset of Y . It suffices to show that Y � St(F, U ).
Since F is countable, there exist α1, α2 < κ such that

F ∩A(π(βB × (α, κ)) = ∅

and

F ∩ {π(〈zα, κ〉)× {0} : α > α2} = ∅.

If we pick α0 > max{α1, α2}, then

〈〈zα0 , κ〉, 0〉 /∈ St(F, U ),

since Uα0 is the only element of U containing 〈〈zα0 , κ〉, 0〉 and Uα0 ∩ F = ∅, since
F is countable, which shows that Y is not strongly relative star-Lindelöf in X .

Finally, we show that X is not star-Lindelöf. Since π(Z ×{ω})×{1} is a discrete
closed and open subset of X with cardinality κ and star-Lindelöfness is preserved by
closed and open subsets, X is not star-Lindelöf, which completes the proof. �

Remark 1. In Example 2.3, it is not difficult to see that Y is absolutely relative
star-Lindelöf in X . Example 2.3 shows that there exist a Tychonoff space X and a

subspace Y of X such that Y is relative star-Lindelöf in X , but Y is not strongly
relative star-Lindelöf in X .

Example 2.4. There exist a Tychonoff space X and a subspace Y of X such that

Y is strongly relative star-Lindelöf in X , but Y is not relatively absolute star-Lindelöf
in X .
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. LetX = ω1×(ω1+1) be the product of ω1 and ω1+1 and Y = ω1×{ω1}.

Then, Y is strongly relative star-Lindelöf in X , since Y is homeomorphic with ω1.
Next, we show that Y is not absolutely relative star-Lindelöf in X . Let D =

ω1 × ω1. Then, D is dense in X .

Let
Uα = {〈β, γ〉 : γ > α, β < α} for each α < ω1.

Let us consider the open cover

U = {Uα : α < ω1} ∪ {D}

of X and a dense subset D of X . Let F be any countable subset of D.

Let
α0 = sup{β : ∃α < ω1 such that 〈α, β〉 ∈ F}.

Then, α0 < ω1, since F is countable. Choose α′ > α0. Then, 〈α′, ω1〉 /∈ St(F, U ),
since for every U ∈ U , if 〈α′, ω1〉 ∈ U , then U ∩ F = ∅. This shows that Y is not
strongly relative star-Lindelöf in X , which completes the proof. �

Remark 2. If a subspace Y of X is strongly relative star-Lindelöf in X , then Y is

relative star-Lindelöf in X . Thus, Example 2.3 shows that there exist a Tychonoff
space X and a subspace Y of X such that Y is relative star-Lindelöf in X , but Y is

not absolutely relative star-Lindelöf in X .
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