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ON HONG’S CONJECTURE FOR POWER LCM MATRICES

Wei Cao, Chengdu
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Abstract. A set S = {x1, . . . , xn} of n distinct positive integers is said to be gcd-closed
if (xi, xj) ∈ S for all 1 6 i, j 6 n. Shaofang Hong conjectured in 2002 that for a given
positive integer t there is a positive integer k(t) depending only on t, such that if n 6 k(t),
then the power LCM matrix ([xi, xj ]

t) defined on any gcd-closed set S = {x1, . . . , xn} is
nonsingular, but for n > k(t) + 1, there exists a gcd-closed set S = {x1, . . . , xn} such that
the power LCM matrix ([xi, xj ]

t) on S is singular. In 1996, Hong proved k(1) = 7 and
noted k(t) > 7 for all t > 2. This paper develops Hong’s method and provides a new idea to
calculate the determinant of the LCM matrix on a gcd-closed set and proves that k(t) > 8
for all t > 2. We further prove that k(t) > 9 iff a special Diophantine equation, which
we call the LCM equation, has no t-th power solution and conjecture that k(t) = 8 for all
t > 2, namely, the LCM equation has t-th power solution for all t > 2.

Keywords: gcd-closed set, greatest-type divisor(GTD), maximal gcd-fixed set(MGFS),
least common multiple matrix, power LCM matrix, nonsingularity

MSC 2000 : 11C20, 11A25

1. Introduction

Let S = {x1, . . . , xn} be a set of n distinct positive integers. For any xi, xj ∈ S, we
use (xi, xj) and [xi, xj ] to denote their greatest common divisor and least common
multiple respectively. If (xi, xj) ∈ S for all 1 6 i, j 6 n, the set S is said to be
gcd-closed. There is a special case for gcd-closed set S when it contains every divisor
of x for any x ∈ S, in which case we say it is factor-closed. The matrix ((xi, xj)),
whose i, j-entry is (xi, xj), is called the greatest common divisor (GCD) matrix and
denoted by (S)n. Similarly, the matrix ([xi, xj ]), whose i, j-entry is [xi, xj ], is called
the least common multiple (LCM) matrix and denoted by [S]n.
Smith [17] obtained the formulae for the determinants of those two matrices on

a factor-closed set S = {x1, . . . , xn}: det(S)n =
n∏

i=1

ϕ(xi) where ϕ is Euler’s totient
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function and det[S]n =
n∏

i=1

ϕ(xi)π(xi) where π is the multiplicative function which

is defined for the prime power pr by π(pr) = −p. Bourque and Ligh [4] generalized

Smith’s result to the LCM matrix [S]n on a gcd-closed set S = {x1, . . . , xn} by
showing that

(1) det[S]n =
n∏

k=1

x2
kαk where αk = αk(x1, . . . , xk) =

∑

d|xk
d
�
xt,xt<xk

g(d)

with the arithmetical function g defined by g(m) = 1
m

∑
d|m

d · µ(d) and the function

µ is the Möbius function.
What interests us is the nonsingularity of those matrices. From Beslin and Ligh’s

result [2], one knows that the GCD matrix (S)n on any set S = {x1, . . . , xn} of n

distinct integers is always nonsingular. However, this is not true for LCM matrices

in general [1]. From Smith’s result [17], one also knows that the LCM matrix on
any factor-closed set is nonsingular. Further, it has been conjectured by Bourque

and Ligh [4] that the LCM matrix [S]n on any gcd-closed set S = {x1, . . . , xn} is
nonsingular. In [8]–[11], Hong systematically investigated the Bourque-Ligh conjec-

ture. In fact, Hong [8] found a simple formula of the determinant of LCM matrix
on a gcd-closed set. Using this reduced formula, Hong [8] confirmed the Bourque-

Ligh conjecture when n 6 5 while Hong [10] showed that the Bourque-Ligh con-
jecture holds for a certain class of gcd-closed sets. In [9], [11], Hong introduced

the concept of greatest-type divisor to reduce greatly the formula of the determi-
nant of LCM matrices on a gcd-closed set. Based on this new reduced formula,

Hong [9], [11] showed that the Bourque-Ligh conjecture is true if n 6 7, but not
true if n > 8. Note that Haukkanen et al. [7] also found a counterexample to the
Bourque-Ligh conjecture when n = 9. We also remark that according to the method
found in [9], [11], Hong [16] confirmed Sun’s conjecture which claims that the LCM

matrix defined on any gcd-closed set such that each of this set has no more than
two distinct prime factors is nonsingular. In [13]–[15], Hong further developed his

method.
For any given integer t > 2 and any set S = {x1, . . . , xn} of n distinct positive

integers, it follows from Bourque and Ligh’s result [3] that the power GCD matrix
((xi, xj)t) on S is nonsingular. But it is not clear that the power LCM matrix
([xi, xj ]t) on S is also nonsingular. For the factor-closed case, one knows by [5] that
the answer to this question is affirmative. For the gcd-closed case, Hong [12] raised

the following conjecture which can be viewed as the generalization of Hong’s solution
[9], [11] to the Bourque-Ligh conjecture:
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Conjecture 1.1 [(Hong, [12]). Let t be a given positive integer and n any positive

integer. Then there is a positive integer k(t), depending only on t, such that if

n 6 k(t), then the power LCM matrix ([xi, xj ]t) defined on any gcd-closed set S =
{x1, . . . , xn} is nonsingular. But for n > k(t) + 1, there exists a gcd-closed set
S = {x1, . . . , xn} such that the power LCM matrix ([xi, xj ]t) is singular.

By [9], [11], we know k(1) = 7. In [12], Hong noted that k(t) > 7 for all t > 2. We
note that Chun [6] guessed that k(t) = ∞ for all t > 1. The current paper follows
and develops Hong’s method by providing a new idea to calculate the determinant

of LCM matrix on a gcd-closed set and proves that k(t) > 8, t > 2. We further prove
that k(t) > 9 iff a special Diophantine equation, which we call the LCM equation, has
no t-th power solution and conjecture that k(t) = 8 for all t > 2, namely, the LCM
equation has t-th power solution for all t > 2. The paper is organized as follows:
Section 2 introduces the notations, conceptions and lemmas used in this paper and
meanwhile discusses a few special cases. Some more complicated cases are discussed
in Section 3 and Section 4. The last section gives the main results of this paper.

2. Preparations and some special cases

Let S = {x1, . . . , xn} be a gcd-closed set and 1 6 x1 < . . . < xn. Since (xi, xj)t =
(xt

i , x
t
j) and [xi, xj ]t = [xt

i , x
t
j ], we can regard the t-th power LCMmatrix ([xi, xj ]t) on

S = {x1, . . . , xn} as the LCM matrix ([xt
i , x

t
j ]) on a gcd-closed set St := {xt

1, . . . , x
t
n}.

Since the case t = 1 of the nonsingularity problem of the power LCM matrices has
been solved by Hong [8]–[11], throughout this paper we always suppose t > 2 and
any x ∈ St is the t-th power of some positive integer. Let |A| denote the cardinality
of a finite set A.

Definition 2.1 (see [9], [11]). For a, b ∈ S, we say that a is a greatest-type divisor
(GTD) of b in S, if a|b, a < b and it can be deduced that c = a from a|c, c|b, c < b

and c ∈ S.

Note that the concept of greatest-type divisor played key roles in Hong’s solution
[9], [11] to the Bourque-Ligh conjecture [4] and in Hong’s solution [16] to Sun’s

conjecture. As in [9], [11], letRk = {y1, . . . , ym} be the set of GTDs of xk (1 6 k 6 n)
in St. Clearly, R1 = ∅ and Rk 6= ∅ for k > 2. Suppose (y1, . . . , ym) = G and

hence yi = Gy′i for 1 6 i 6 m where (y′1, . . . , y
′
m) = 1. Define M(m) :=

m⋃
r=2

M(m)
r

where M(m)
r = {(yi1 , . . . , yir ) : 1 6 i1 < . . . < ir 6 m} (2 6 r 6 m). Suppose

M(m) = {a0 = G, a1, . . . , as}. It is easy to see that G | a for any a ∈ M(m) and
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s 6 2m −m− 2 since

(2) |M(m)| 6
(

m

2

)
+

(
m

3

)
+ . . . +

(
m

m

)
= 2m −m− 1.

Lemma 2.2. If n = |St| > 2, we have
∑

x∈St\{1}

1
x

< 1.

In particular, for m = |Rk| > 2, we have

(3)
1
xk

+
m∑

i=1

1
yi

+
s∑

j=1

1
aj

<
1
G

.

���������
. Noting that any x ∈ St is the t-th power (t > 2) of some positive integer

and that
∞∑

n=1

1
n2 = 	 2

6 ≈ 1.645, we have

∑

x∈St\{1}

1
x

<
∞∑

n=1

1
n2
− 1 ≈ 0.645 < 1.

Multiplying both sides of (3) by G, we get

(3′)
1

xk/G
+

m∑

i=1

1
yi/G

+
s∑

j=1

1
aj/G

< 1.

It is easy to see that xk/G, y1/G, . . . , ym/G, a1/G, . . . , as/G are all (t > 2) t-th

powers of positive integers. So we only need to prove that they are distinct and
none of them is equal to 1. It is equivalent to prove that xk, y1, . . . , ym, a1, . . . , as are

distinct and none of them is equal to G. Obviously, xk > y for any y ∈ Rk , and hence
xk > a > G for any a ∈ M(m). We claim that Rk ∩M(m) = ∅ for m > 2. If not,
assuming y ∈ Rk ∩M(m), there exist yi1 , . . . , yir ∈ Rk such that (yi1 , . . . , yir ) = y

which contradicts the fact that y is a GTD in Rk. The proof is complete. �

Remark 2.3. It is well known that the Riemann zeta function ζ(t) =
∞∑

n=1

1
nt

converges rapidly as t grows: ζ(3) ≈ 1.202, ζ(4) ≈ 1.082, . . .. Similarly, we can show
that:

1
xk

+
m∑

i=1

1
yi

+
s∑

j=1

1
aj

<
1

4G
for t > 3 and

1
xk

+
m∑

i=1

1
yi

+
s∑

j=1

1
aj

<
1

12G
for t > 4 . . . .
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Lemma 2.4. For any distinct yi1 , . . . , yir ∈ Rk where r > 2, we have

1
yi1

+ . . . +
1

yir

<
1

(yi1 , . . . , yir )
.

In particular, for r = 2 and r = m, we have

1
yi

+
1
yj

<
1

(yi, yj)
and

m∑

i=1

1
yi

<
1
G

.

���������
. Let (yi1 , . . . , yir ) = a. Note that yi1/a, . . . , yir/a are distinct t-th

integer powers. For the same reason as in the above lemma, we have

1
yi1/a

+ . . . +
1

yir/a
< 1.

The desired result follows by letting a divide both sides of the inequality above. �

Definition 2.5. For any finite set T in 
 and r, a ∈ � , define
LT ,r(a) := {{z1, . . . , zr} : z1, . . . , zr ∈ T are distinct, and (z1, . . . , zr) = a},

GT ,r(a) := {z : ∃w ∈ LT ,r(a) such that z ∈ w}, GT (a) :=
|T |⋃

r=2

GT ,r(a),

gT ,r(a) := |GT ,r(a)|, lT ,r(a) := |LT ,r(a)|, lT (a) :=
|T |∑

r=2

(−1)rlT ,r(a).

If T = Rk, we omit the subscript “′′Rk
and simply denote LRk,r(a) by Lr(a),

lRk,r(a) by lr(a) and lRk
(a) by l(a), etc.

Proposition 2.6. For M(m) = {a0 = G, a1, . . . , as} and G < a ∈ M(m), we

have:

(a)
s∑

j=0

lr(aj) =
(
m
r

)
.

(b) a | y for any y ∈ G(a) .
(c) lr(a) 6

(
gr(a)

r

)
and gr(a) 6 |G(a)|.

(d) |G(a)| 6 m− 1.
���������

. (a), (b) and (c) are trivial by definitions. To prove (d), assuming
|G(a)| = m, then by (b) we have G < a | (y1, . . . , ym) which contradicts the fact that
(y1, . . . , ym) = G. �

Now we need Hong’s formula for αk:
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Lemma 2.7 ([14], Lemma 2.6). For 1 6 k 6 n, we have

αk =
1
xk

+
m∑

r=1

(−1)r
∑

16i1<...<ir6m

1
(yi1 , . . . , yir )

.

Using l(a), αk can be rewritten as follows:

Lemma 2.8.

(4) αk =
1
xk
−

m∑

i=1

1
yi

+
s∑

j=0

l(aj)
aj

, where
s∑

j=0

l(aj) = m− 1.

���������
. Using lr(a) and l(a), αk can be expressed as

αk =
1
xk
−

m∑

i=1

1
yi

+
m∑

r=2

(−1)r
s∑

j=0

lr(aj)
aj

=
1
xk
−

m∑

i=1

1
yi

+
s∑

j=0

l(aj)
aj

.

By Proposition 2.6 (a), we have

s∑

j=0

l(aj) =
s∑

j=0

m∑

r=2

(−1)rlr(aj)

=
m∑

r=2

(−1)r
s∑

j=0

lr(aj)

=
m∑

r=2

(−1)r

(
m

r

)
= m− 1.

The result follows. �

Lemma 2.9. If l(G) > 1 and l(aj) > 0 for all 1 6 j 6 s then αk > 0.
���������

. This follows immediately from (4) and Lemma 2.4. �

Corollary 2.10. If |M(m)| = 1, then αk > 0.
���������

. |M(m)| = 1 meansM(m) = {G}. By (4), l(G) = m− 1. Since m > 2,
we have l(G) > 1. The result follows by Lemma 2.9. �
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Lemma 2.11. If l(aj) > 0 for all 0 6 j 6 s and
∣∣∣

⋃
l(aj )>0

G(aj)
∣∣∣ = m, then αk > 0.

���������
.

∣∣∣
⋃

l(aj )>0

G(aj)
∣∣∣ = m implies that

⋃
l(aj)>0

G(aj) = Rk. Thus for any

y ∈ Rk there must exist 1 6 j 6 s, 2 6 r 6 m and yi1 , . . . , yir−1 ∈ Gr(a), such that
l(aj) > 0 and (yi1 , . . . , yir−1 , y) = aj . By Lemma 2.4, we have

1
yi1

+ . . . +
1

yir−1

+
1
y

<
1

(yi1 , . . . , yir−1 , y)
=

1
aj

.

Repeat the similar step for y′ ∈ Rk \ {yi1 , . . . , yir−1 , y}, . . . . Finally, we will get

m∑

i=1

1
yi

<
∑

l(aj)>0

1
aj

= αk −
1
xk

+
m∑

i=1

1
yi
− l(G).

This implies that αk > 0. This completes the proof. �

Lemma 2.12. If l(G) 6= 0 and |l(aj)| 6 G for all 1 6 j 6 s then αk 6= 0.
���������

. By Lemma 2.8, we have

|αk − l(G)| =
∣∣∣∣

1
xk
−

m∑

i=1

1
yi

+
s∑

j=1

l(aj)
aj

∣∣∣∣

6 1
xk

+
m∑

i=1

1
yi

+
s∑

j=1

G

aj

6 G

(
1
xk

+
m∑

i=1

1
yi

+
s∑

j=1

1
aj

)
< 1.

The last inequality follows from Lemma 2.2. So we have

l(G)− 1 < αk < l(G) + 1,

which implies αk > 0 if l(G) > 1 and αk < 0 if l(G) 6 −1. �

Remark 2.13. By Remark 2.3, we can relax the condition on |l(aj)| (1 6 j 6 s)
in the above lemma as t grows: |l(aj)| 6 4G for t > 3, and |l(aj)| 6 12G for t > 4,
etc. This will be very useful in the proof of αk 6= 0 for t > 3, because we can just
estimate the bound on l(a) instead of calculating its exact value. This method is
also effective for some special cases when t = 2 which we will see later on.
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Corollary 2.14. If |M(m)| = 2m −m− 1, then αk 6= 0.
���������

. By (2), |M(m)| = 2m−m− 1 means |l(aj)| = 1 for 1 6 j 6 2m−m− 2
and l(G) = (−1)m. By the proof of Lemma 2.12, we have αk > 0 if 2 | m and αk < 0
if 2 � m. �

3. MGFS and the case of |M(m)| 6 3

In this section, we first introduce the concept of the so-called “MGFS”, which will

play an important role in the proof of our main lemmas.

Definition 3.1. Let G < a ∈M(m). Suppose that a set F in G(a) satisfies:
(a) For any yi1 , . . . , yir ∈ F where r > 2, we have (yi1 , . . . , yir) = a.

(b) For any y ∈ G(a) \ F , ∃y′ ∈ F such that (y, y′) 6= a.

We call F a maximal gcd-fixed set (MGFS) of a in G(a), and denote it by F(a).

Proposition 3.2. For G < a, b ∈ M(m), we have:

(a) If F(a) 6= ∅, then 2 6 |F(a)| 6 m− 1.
(b) If a 6= b, then |F(a) ∪ F(b)| 6 m and |F(a) ∩ F(b)| 6 1.
(c) If F(a) = G(a), then l(a) = |F(a)| − 1.
���������

. (a) Suppose F(a) 6= ∅. It is easy to see that 2 6 |F(a)|. |F(a)| 6 m− 1
follows from F(a) ⊂ G(a) and |G(a)| 6 m− 1 by Proposition 2.6 (d).
(b) Clearly, (F(a) ∪ F(b)) ⊂ (G(a) ∪ G(b)) ⊂ Rk. It follows that |F(a) ∪ F(b)| 6

|Rk| 6 m. If |F(a) ∩ F(b)| > 2, there exist at least two distinct y, y′ ∈ F(a) ∩ F(b).
So we get a = (y, y′) = b. This is a contradiction.

(c) Let r > 2 and |F(a)| = n′. By the definition of MGFS, it is clear that
F(a) ⊂ Gr(a). On the other hand, for any yi1 , . . . , yir ∈ Gr(a), since Gr(a) ⊂ G(a),
it follows that {yi1 , . . . , yir} ⊂ G(a) = F(a). This means that Gr(a) ⊂ F(a). So we
get Gr(a) = F(a). Thus lr(a) =

(
gr(a)

r

)
=

(
n′

r

)
, and hence

l(a) =
m∑

r=2

(−1)rlr(a) =
m∑

r=2

(−1)r

(
n′

r

)
= n′ − 1.

The proof is complete. �

As seen from above, l(a) is easy to calculate if F(a) = G(a). Naturally, we want
to know when this condition is satisfied? The following proposition gives us an

equivalent statement.
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Proposition 3.3. Let a ∈M(m). F(a) = G(a) iff a is a GTD of xk inM(m).

���������
. “⇒” Assume a is not a GTD of xk inM(m). Then there exists b ∈M(m)

such that a < b and a | b. Since a, b ∈ M(m), we must have yi1 , . . . , yir ∈ Rk such
that (yi1 , . . . , yir ) = a and yj1 , . . . , yjr′ ∈ Rk such that (yj1 , . . . , yjr′ ) = b. It follows

that (yi1 , . . . , yir , yj1 , . . . , yjr′ ) = (a, b) = a. So we get yj1 , . . . , yjr′ ∈ G(a) = F(a)
which implies (yj1 , . . . , yjr′ ) = a. This is a contradiction.

“⇐” Assume F(a) 6= G(a). Since F(a) ⊂ G(a), there must exist yi1 , . . . , yir ∈ G(a)
such that (yi1 , . . . , yir) 6= a. By Proposition 2.6 (b) we have a | yi1 , . . . , a | yir . It

follows that a | (yi1 , . . . , yir ) which contradicts that a is a GTD of xk inM(m). �

For convenience, if a ∈ M(m) is a GTD of xk inM(m), we just say a is a GTD.

Corollary 3.4. LetM(m) = {a0 = G, a1, . . . , as} with G < a1 < . . . < as.

(a) If a1, . . . , as are all GTDs inM(m), suppose nj = |F(aj)|, then

(5) αk =
1
xk
−

m∑

i=1

1
yi

+
s∑

j=1

nj − 1
aj

+
m + s− 1−∑s

j=1 nj

G
.

(b) l(as) = |G(as)| − 1.

���������
. (a) This follows immediately from Proposition 3.3, 3.2 (c) and (4).

(b) Note that since as is the greatest inM(m) it must be a GTD inM(m).

The proof is complete. �

Remark 3.5. As seen from above, GTDs are “good” elements. Unfortunately as
|M(m)| grows, the number of non-GTDs inM(m) may also increase. This makes the

discussion of αk more complicated. However, it is enough for this paper to consider
the cases when s is very small.

Corollary 3.6. If |M(m)| = 2, then αk > 0.

���������
. Let M(m) = {G, a1}. Obviously M(m) has only one GTD, i.e. a1.

Suppose |F(a1)| = n1, by Proposition 3.2 (a) and (c) we have that 2 6 n1 6 m− 1
and l(a1) = n1 − 1. So by (4) and Lemma 2.9 it follows that αk > 0. �

There is a special case of the so-called divisor chain (see [10]), in which ai−1 | ai

for all 1 6 i 6 s. We can obtain the general formula for αk in this case and hence

show that αk > 0. To do this, we first need:
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Lemma 3.7. For G < a′ ∈M(m), define

M′ := {a ∈ M(m) : a′ | a}, G′ :=
⋃

a∈M′
G(a), m′ := |G′|,

L′r(a) := LG′,r(a), l′r(a) := lG′,r(a), l′(a) := lG′(a).

We have: (a) m′ < m. (b) l(a) = l′(a) for any a ∈M′.

���������
. (a) Obviously,m′ 6 m. We claim thatm′ = m is impossible. Otherwise

G′ = Rk. For any a ∈ M′, by Proposition 2.6 (b), we have a | y for all y ∈ G(a).
Therefore a′ | y for all y ∈ G(a) and hence a′ | y for all y ∈ ⋃

a∈M′
G(a) = G′ = Rk. It

follows that G < a′ | (y1, . . . , ym) which contradicts the fact that (y1, . . . , ym) = G.

(b) It is sufficient to show that Lr(a) = L′r(a) for a ∈ M′. Obviously, Lr(a) ⊃
L′r(a). We show that Lr(a) ⊂ L′r(a) is also true. Otherwise there exist yi1 , . . . , yir ∈
Rk where yij /∈ G′ (1 6 j 6 r) such that (yi1 , . . . , yir) = a. So we have yij ∈ G(a) ⊂
G′. This is a contradiction. �

Lemma 3.8. Suppose that M(m) is a divisor chain, that is, ai−1 | ai for all

1 6 i 6 s. If mi =
∣∣∣

s⋃
j=i

G(aj)
∣∣∣, then we have

αk =
1
xk
−

m∑

i=1

1
yi

+
ms − 1

as
+

s−1∑

j=0

mj −mj+1

aj
> 0.

���������
. For ai ∈ M(m) define G(i) :=

s⋃
j=i

G(aj) and for a ∈ M(m) define

l(i)(a) := lG(i) (a).
If G(s) = G(as), we have l(as) = l(s)(as) = ms − 1 by Lemma 3.7.
If G(s−1) = G(as) ∪ G(as−1), we have l(s−1)(as) + l(s−1)(as−1) = ms−1 − 1 by (4)

and l(s−1)(as) = l(as) = ms − 1 by Lemma 3.7. Therefore l(as−1) = l(s−1)(as−1) =
ms−1 −ms and ms < ms−1 by Lemma 3.7 again.

Repeat the similar step in G(s−2), . . . ,G(0) = Rk . Finally we get l(as) = ms − 1,
and l(aj) = mj −mj+1, mj+1 < mj for s− 1 > j > 0. The result follows by (4) and
Lemma 2.9. �

Remark 3.9. Corollary 3.6 can also obtained as be a corollary of Lemma 3.8,
since if |M(m)| = 2 it is certainly a divisor chain. In fact, M(m) is a divisor chain

satisfying in addition that all aj (1 6 j 6 s) are GTDs iff s = 1, i.e. |M(m)| = 2.
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Corollary 3.10. If |M(m)| = 3, then αk > 0.
���������

. LetM(m) = {G, a1, a2} with G < a1 < a2. According as a1 divides a2,
there are two cases to deal with:

Case 1. a1 � a2. It is clear that a1, a2 are both GTDs inM(m). Suppose |F(ai)| =
ni for i = 1, 2, then by Proposition 3.2 (a) and (c) we have l(ai) = ni − 1 (i = 1, 2)
and l(G) = m + 1− (n1 + n2). By Proposition 3.2 (b) we have

n1 + n2 = |F(a1)|+ |F(a2)| = |F(a1) ∪ F(a2)|+ |F(a1) ∩ F(a2)| 6 m + 1.

It follows that l(G) > 0 and l(G) = 0 iff |F(a1)∪F(a2)| = m and |F(a1)∩F(a2)| = 1.
If l(G) > 1 then αk > 0 by Lemma 2.9; if l(G) = 0 then αk > 0 by Lemma 2.11.
Case 2. a1 | a2. Clearly,M(m) is a divisor chain, so by Lemma 3.8 we have αk > 0.
The proof is complete. �

To better understand the role of MGFS in Rk, we can imagine them as a family
of circles in a plane. In general, those circles may have different centers and meet

each other. Corollary 3.4 and Lemma 3.8 just deal with two extreme cases: isolated
circles and concentric circles.

We integrate Corollary 2.10, 3.6 and 3.10 into the following corollary:

Corollary 3.11. If |M(m)| 6 3, then αk > 0.

4. The case of |M(4)| = 4 and the LCM equation

For the case of |M(4)| = 4, there are two methods to examine whether αk = 0:
by estimating the bound on l(a), or by discussing the distribution of GTDs inM(4).
Here we use the former method, which will yield the same result as the latter. In

analysis, we naturally introduce a special Diophantine equation that we call the LCM
equation. The solvability of the LCM equation is vital to deciding whether k(t) > 9.

Lemma 4.1. Let G < a ∈ M(4). We have l(a) ∈ {−1, 0, 1, 2}, and if l(a) = 2
there cannot exist G < b ∈M(4) such that b 6= a and l(b) = 2.
���������

. Since l4(G) = 1 and l4(a) = 0 for G < a ∈ M(4), we have l(a) =
l2(a)−l3(a). First, it follows from Proposition 2.6 (c) that l2(a) 6

(
3
2

)
= 3 and l3(a) 6(

3
3

)
= 1. Second, if l2(a) > 2 there must be three (four is impossible, since g2(a) 6 3

by Proposition 2.6 (c)) distinct ya, yb, yc ∈ Rk such that (ya, yb) = (ya, yc) = a

which implies (ya, yb, yc) = a. Thus l(a) 6 3 − 1 = 2. Moreover, if l2(a) = 3 we
must have (yb, yc) = a. And we claim that there cannot exist another b ∈ M(4)
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such that l3(b) = 3. Otherwise, we must have (ya, yd) = (yb, yd) = (yc, yd) = b.

This contradicts the fact that g2(b) 6 3 by Proposition 2.6 (c). Hence we conclude
that the possible values of l(a) are −1, 0, 1 and 2, and there is at most one element
G < a ∈M(4) such that l(a) = 2. This is just what is desired. �

Lemma 4.2. ForM(4), if l(G) 6= 0 then αk 6= 0.
���������

. By Lemmas 2.8 and 4.1 and the similar analysis as in Lemma 2.2, we
have

G|αk − l(G)| 6 1
xk/G

+
4∑

i=1

1
yi/G

+
s∑

j=1

|l(aj)|
aj/G

6
∞∑

n=1

1
n2
− 1− 1

4
+

1
2

=
π2

6
− 3

4
≈ 0.895 < 1.

By the similar discussion as in Lemma 2.12, the result follows. �

From Lemma 4.2 above, we know that to examine whether αk = 0 for the case of
|M(4)| = 4, we only need to consider the case of l(G) = 0. LetM(4) = {G, a1, a2, a3}.
By (4) and Lemma 4.1, we need to solve a simple Diophantine equation: l(a1) +
l(a2) + l(a3) = 3 in {−1, 0, 1, 2} with the constraint that there is at most one l(aj)
(1 6 j 6 3) equal to 2. Without loss of generality, let l(a1) > l(a2) > l(a3). Easily,
we get two solutions: (l(a1), l(a2), l(a3)) =(2,1,0) or (1,1,1).
For the case of (l(a1), l(a2), l(a3)) =(2,1,0), we claim that |G(a1)∪G(a2)| = 4. Since

l(a1) = 2, there must exist ya, yb, yc ∈ Rk such that (ya, yb) = (ya, yc) = (yb, yc) = a1

by Proposition 2.6 (c). Since l(a2) = 1, we must have (ye, yd) = a2 where e ∈ {a, b, c}.
Thus the claim is true. By Lemma 2.11, we have αk > 0.
So there remains only one case to deal with, namely, l(a1) = l(a2) = l(a3) =

1. Without loss of generality, let (y1, y2) = a1. If (y3, y4) = a2, then we again

get |G(a1) ∪ G(a2)| = 4 and hence αk > 0 by Lemma 2.11. Thus without loss of
generality, suppose (y1, y3) = a2. Consider G2(a3). If y4 ∈ G2(a3), then again we get
|G(a1)∪G(a2)∪G(a3)| = 4 and hence αk > 0 by Lemma 2.11. So there remains only
one case deserving our consideration: (y1, y2) = a1, (y1, y3) = a2 and (y2, y3) = a3.

Note that since F(ai) = G(ai) for 1 6 i 6 3, by Proposition 3.3 they are all GTDs
inM(4), namely, they cannot be divided by each other. By (4) we have

(6) αk =
1
xk
−

4∑

i=1

1
yi

+
1
a1

+
1
a2

+
1
a3

.
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From (6), we see that y4 is a “free” element that has no relation with ai. By

Lemma 2.4 we have αk < 0 if ai � y4; and αk > 0 if ai � y4. Thus there may exist
a set {xk, y1, y2, y3, y4} such that αk = 0. In fact, if such a set exists we must have
xk = [y1, y2, y3, y4]. Suppose xk = [y1, y2, y3, y4]g with g > 1 and let xk multiply

both sides of (6), then we get that 1/g is an integer implying that g = 1. In detail,
we wonder whether the following Diophantine equation

0 =
1

[y1, y2, y3, y4]
−

4∑

i=1

1
yi

+
1

(y1, y2)
+

1
(y1, y3)

+
1

(y2, y3)

is solvable with the following constraints:
(a) yi � yj for 1 6 i 6= j 6 4.
(b) (y1, y4) = (y2, y4) = (y3, y4) = (y1, y2, y3) = (y1, y2, y3, y4).
(c) Let a1 = (y1, y2), a2 = (y1, y3), a3 = (y2, y3), then ai � aj for 1 6 i 6= j 6 3.
We call such a Diophantine equation with these constraints the LCM equation. If

the LCM equation has one solution in which every element is the t-th power of some

positive integer, we say it has a t-th power solution. In Section 5, we will explain the
relation between the solvability of the LCM equation and Conjecture 1.1.

To summarize, we have proved the following:

Lemma 4.3. IfM(4) = {G, a1, a2, a3}, then αk 6= 0 in any of the following cases:
(a)M(4) has 1 GTD.
(b)M(4) has 2 GTDs.

(c)M(4) has 3 GTDs and
∣∣∣

3⋃
i=1

G(ai)
∣∣∣ = 4.

5. Conclusions

Now we give the main results of this paper.

Theorem 5.1. Let t > 2. If n 6 8, then the power LCM matrix ([xi, xj ]t) defined
on any gcd-closed set S = {x1, . . . , xn} of n distinct positive integers is nonsingular.
���������

. For the same reason as in the first paragraph of Section 2, we can just

consider the gcd-closed set St = {x1, . . . , xn} in which every element is the t-th power
of some positive integer. Without loss of generality, we may let 1 6 x1 < x2 < . . . <

xn. For 1 6 k 6 n, let Rk andM(|Rk|) be defined as in Section 2. We have proved
in Lemma 2.2 that Rk ∩M(m) = ∅. Since St is gcd-closed, m + |M(m)| 6 k − 1.
Together with (2), for m > 2 we have

(7) 1 6 |M(m)| 6 min{k −m− 1, 2m −m− 1}.
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We claim that αk 6= 0 for 1 6 k 6 8. For k = 1, α1 = 1/x1 6= 0. In what follows
let 2 6 k 6 9. By (7) we have m 6 k − 2 6 6, namely, m = 6, 5, 4, 3, 2, 1.

If m = 6, then |M(6)| 6 1 by (7). By Corollary 3.11, we have αk 6= 0.

If m = 5, then |M(5)| 6 2 by (7). By Corollary 3.11, we have αk 6= 0.

If m = 4, then |M(4)| 6 3 by (7). By Corollary 3.11, we have αk 6= 0.

If m = 3, then |M(3)| 6 4 by (7). If |M(3)| = 4, by Corollary 2.14, we have
αk 6= 0; if |M(3)| 6 3, by Corollary 3.11, we have αk 6= 0.

If m = 2, then |M(2)| = 1 by (7). By Corollary 2.14, we have αk 6= 0.

If m = 1, then αk = (1/xk)− (1/y1) < 0.

Thus we have αk 6= 0 for 1 6 k 6 8. So if n 6 8, by (1) we have det[S t]n 6= 0.

The proof is complete. �

Similarly, to prove k(t) > 9 we need only to prove that αk 6= 0 in the cases of
|M(7)| 6 1, |M(6)| 6 2, |M(5)| 6 3, |M(4)| 6 4, |M(3)| 6 4, |M(2)| = 1 and m = 1.
From Section 2 and Section 3 we know that all these except the case of |M(4)| = 4
have been proved. Suppose M(4) = {G, a1, a2, a3}. Lemma 4.3 tells us that there
remains only one case of |M(4)| = 4 to discuss, i.e. a1, a2, a3 are all GTDs and∣∣∣

3⋃
i=1

G(ai)
∣∣∣ = 3. If there exists a set of {y1, y2, y3, y4} such that αk = 0, namely, the

LCM equation is solvable then k(t) = 8; if such a set does not exist, namely, the
LCM equation is unsolvable then k(t) > 9. In brief, we have

Theorem 5.2. k(t) > 9 iff the LCM equation has no t-th power solution.

Remark 5.3. As |M(m)| grows, the “free” elements in Rk, which have no rela-
tions with other elements in Rk, will be more and more numerous, and this makes it

more possible that αk = 0 when l(G) = 0. We can see this clearly by letting l(G) = 0
in (5).

It is easy to show that if t = t1t2 then k(t1), k(t2) 6 k(t). So we have:

Corollary 5.4. If the LCM equation has one t-th power solution then k(t′) = 8
for any t′ | t and 1 < t′.

In fact, we conjecture that for every t > 2 the LCM equation has at least one t-th

power solution. Assume that S ′ = {xk = x′, y1 = y′1, y2 = y′2, y3 = y′3, y4 = y′4, a1 =
a′1, a2 = a′2, a3 = a′3, (y1, y2, y3, y4) = G′} is a set of some t-th power solution to the
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LCM equation. As in [9, 11], for any integers n > 9 and a > 1, let

xi = G′a(i−1)t for 1 6 i 6 n− 8,

xn−7 = a′1a
(n−9)t, xn−6 = a′2a

(n−9)t, xn−5 = a′3a
(n−9)t,

xn−4 = y′1a
(n−9)t, xn−3 = y′2a

(n−9)t,

xn−2 = y′3a
(n−9)t, xn−1 = y′4a

(n−9)t, xn = x′a(n−9)t.

It is easy to check that S = {x1, . . . , xn} is a gcd-closed set and the set of GTDs
of xn is just S ′. So by (1) det[S]n = 0 since αn = 0. Thus we have proved that if for
some t > 2 the LCM equation has one t-th power solution, then for any n > 9 we can
find a gcd-closed set S = {x1, . . . , xn} such that the power LCM matrix ([xi, xj ]t)
on S is singular. Therefore we raise the following conjecture.

Conjecture 5.5. k(t) = 8 for all t > 2. This is equivalent to the LCM equation
having at least one t-th power solution.

This should not be surprising since the Riemann zeta function ζ(t) has the similar
character, that is, ζ(t) diverges for t = 1 and converges for all t > 2. From Lemma 2.2
we can also sense some relationship between k(t) and ζ(t). However, to prove that
the LCM equation has t-th power solution for every t > 2 will not be as easy as to
prove that ζ(t) converges for all t > 2.
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