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HONEST SUBMODULES

Pascual Jara, Granada
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Abstract. Lattices of submodules of modules and the operators we can define on these
lattices are useful tools in the study of rings and modules and their properties. Here we
shall consider some submodule operators defined by sets of left ideals. First we focus
our attention on the relationship between properties of a set of ideals and properties of a
submodule operator it defines. Our second goal will be to apply these results to the study
of the structure of certain classes of rings and modules. In particular some applications to
the study and the structure theory of torsion modules are provided.
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1. Introduction

The aim of this paper was originally to consider and extend the theory of hon-
est subgroups, as it was developed by Abian and Rinehart in [1], to modules over

noncommutative rings. In the mentioned paper the authors proved that if a nonzero
subgroup H ⊆ M is honest in a torsion Abelian group M , then: (1) M is p-primary

for some prime integer number p, (2) H is a direct sum of copies of the cyclic Abelian
group

�
p, and (3) H is a direct summand of M . In our approach to the theory first

we considered modules over a Dedekind domain, and showed that the same result
holds. After that, we extended the notion of honest subgroup to honest submodule

with respect to a set of ideals. In particular we considered the case of sets of ide-
als defined from sets of maximal ideals, and showed that the Abian-Rinehart result

holds, in this case, over any commutative ring.
In order to develop a similar theory over non commutative rings we shall con-

sider certain algebras over an algebraically closed field, for instance the field � of all
Research partially supported by DGES BMF2001-2823, MTM2004-08125 and FQM-266
(Junta de Andalucía Research Group).
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complex numbers; examples of these algebras are, for instance, the enveloping alge-

bra of a finite dimensional solvable Lie algebra or the coordinate algebra of certain
quantum groups Oq(SLn( � )), q not being a root of unity. These examples have the
particularity that they are Noetherian algebras in which cofinite prime ideals have

codimension one; hence, in particular, they are maximal as left and right ideals. In
this case a result similar to Abian-Rinehart’s result for Abelian groups holds.

To develop this theory in the mentioned examples we find that it is useful to realize

a general study of submodule operators, defined by sets of ideals, and show that the
properties of these submodule operators are directly induced by the properties of

the sets of ideals and vice versa. This shall be our first goal: the characterization
of properties of submodule operators in terms of properties of the sets of left ideals

that define them.

Our first examples of submodule operators consists in considering the notion of

closed submodule and define two submodule operators. The first one is more well
known and consists in defining it as the intersection of all the closed submodules

containing a given submodule. The second one is based in an elementarywise defi-
nition that shall allow us to study the relationship between properties of the set of

left ideals and properties of the submodule operator.

As an extension of these two submodule operators we define the honest operator

and study its properties. A rich behavior occurs when we consider sets of left ideals
satisfying certain properties: weak closed under intersections or inductive and, more

in general, topological or linear filters. When we consider these properties of the sets
of left ideals we shall establish the corresponding properties of the honest operator.

Finally, when we put together all these properties we shall obtain the announced
results on honest submodules.

Honest submodules also allow us to characterize certain classes of rings. Thus,
following the theory developed by Fay and Joubert in [3] we obtain the characteriza-

tion of rings of quotients in terms of the honest operator. In fact, a ring R is a ring
of quotients iff the honest operator with respect to the set of all regular elements is a

closure operator iff the honest operator is the identity operator. The relationship be-
tween the different submodule operators also characterizes when the set of elements

is a left Ore set.

The structure of this paper is as follows. The paper is divided into four sections.

The first section is introductory. The second one deals with closed submodules,
the closed operators and their relationship with sets of ideals. The third section is

devoted to honest submodules and the honest operator; also the relationship with
the sets of ideals used to define honest submodules is studied; with enough conditions

on the set of ideals we obtain that a honest submodule is either torsion or closed.
As a consequence, as the closed case is well understood, we shall focus our attention
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on the torsion case in the section devoted to examples. In the last section we study

the forerunner examples of the theory. First we see, following Fay and Joubert,
how the honest operator characterizes rings of quotients and extend the theory to
characterize, in general, left Ore subsets. After that we deal, in the commutative

case, with torsion modules having a nonzero honest submodule with respect to sets
of ideals generated by maximal ideals and apply the theory to honest submodules

over Dedekind domains. As a final example we show that the theory can be applied
to a noncommutative framework. In fact, if we consider the set of all cofinite left

ideals in the complex enveloping algebra of a finite dimensional solvable Lie algebra
or in the quantum coordinate algebra of SLn( � ), q not being a root of unity, then

the same result holds for torsion modules having a nonzero honest submodule.

2. Closed submodules

Let X be a non empty set of left ideals of a ring R such that 0 /∈ X (this
restriction is only to avoid the trivial case) and let N ⊆M be a submodule of a left

R-module M . We say N is a X -closed submodule, or N is X -closed in M , if for
any I ∈ X and any m ∈ M , if Im ⊆ N , then m ∈ N . We write N ⊆c

X
M .

The notion of X -closed submodule was used by many authors under different
names; let us recall some of them: X -pure submodule, by J. S.Golan in [5], X -

isolated submodule, by T.H. Fay and S.V. Joubert in [3], X -super-honest submodule,
by S.V. Joubert and M. J. Schoeman in [8] (the last two when X is a set of elements

of R); and, of course, we have the corresponding notion when R =
�
and X is the

set of all nonzero integer numbers, see [4].

In the literature there are different methods to study X -closed submodules. But

before we start this study we show, without proof, some of their elementary proper-
ties.

Lemma 2.1. Let H ⊆ N ⊆ M be submodules, then the following statements

hold.

(1) If H ⊆ N and N ⊆ M are X -closed, then H ⊆ M is X -closed, i.e.: H ⊆c
X

N ⊆c
X

M ⇒ H ⊆c
X

M .

(2) N ⊆ M is X -closed if and only if N/H ⊆M/H is X -closed, i.e.: N ⊆c
X

M ⇔
N/H ⊆c

X
M/H.

Lemma 2.2. Let {Nλ : λ ∈ Λ} be a family of X -closed submodules of M , then⋂
λ

Nλ is X -closed.
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Once we have established these results we may, using Lemma 2.2, define a sub-

module operator, CM
X

(−), in such a way that the image CM
X

(N) of any submodule
N ⊆M is the smallest X -closed submodule of M containing N , i.e.:

CM
X

(N) =
⋂
{H ⊆ M : N ⊆ H and H is X -closed in M}.

Thus we have:

Lemma 2.3. For any submodule N ⊆ M we have that CM
X

(N) is the smallest
X -closed submodule of M containing N .

In fact CM
X

(−) defines a closure operator, i.e., for any left R-module M we have
an operator CM

X
(−) on the lattice of all R-submodules ofM satisfying the expansive

and monotone properties, and in addition it is continuous.
(1) Expansive. N ⊆ CM

X
(N) for any N ⊆ M .

(2) Monotone. If N1 ⊆ N2, then CM
X

(N1) ⊆ CM
X

(N2) for any N1, N2 ⊆ M .
(3) Continuous. For any homomorphism f : M → M ′ and N ⊆ M we have

f(CM
X

(N)) ⊆ CM ′
X

(f(N)).�������	�
. We only need to show that if f(N) ⊆ L ⊆c

X
M ′, then N ⊆ f−1(L) ⊆c

X

M . �

In addition this closure operator satisfies the following property:
(4) Idempotent. CM

X
CM

X
= CM

X
.

For any submodule N ⊆ M we sayN is CM
X
-closed if N = CM

X
(N), and CM

X
-dense

if CM
X

(N) = M .

2.1. Torsion and closure. The closure operator CM
X

(−) has, in general, a wild
behavior. In order to control it we shall study properties of the set of left ideals X .
One of the traditional ways to study closed submodules was to use hereditary

torsion theories or, equivalently, linear filters. In this section we start from a very
general set of left ideals X , non necessarily a linear filter, and define for any sub-

module N ⊆ M a subset ClM
X

(N) ⊆M . We shall study properties of the “operator”
N 7→ ClM

X
(N) in terms of properties of the set X . In fact it will be possible to

characterize linear filters in terms of the operator ClM
X
.

Let M be a left R-module, we define the X -torsion of M as the subset

TX (M) = {m ∈ M : there is I ∈ X such that Im = 0}.

A left R-module is X -torsion if TX (M) = M and X -torsionfree if TX (M) = 0.
Let N ⊆ M be a submodule, we define the X -closure of N is M as

ClM
X

(N) = {m ∈ M : there is I ∈ X such that Im ⊆ N}.
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Of course TX (M) = ClM
X

(0) and TX (M/N) = ClM
X

(N)/N (as sets!). Thus we

obtain that a submodule N ⊆ M is X -closed (if ClM
X

(N) = N) if and only if it is
CM

X
-closed. A submodule N is named X -dense if ClM

X
(N) = M .

Remark 2.4. In general, for arbitrary sets X , the sets TX (M) and ClM
X

(N) are
not submodules of M , and the notation ClM

X
(N)/N refers only to sets.

Lemma 2.5.
(1) If X is weak closed under intersection (i.e., for any I1, I2 ∈ X there exists

J ∈ X such that J ⊆ I1 ∩ I2), then for any left R-moduleM and any submodule

N ⊆ M we have that ClM
X

(N) is a subgroup of M .
(2) X is weak closed closed under intersection if and only if ClM

X
(N1) ∩ ClM

X
(N2)

= ClM
X

(N1 ∩N2) for any submodules N1, N2 ⊆ M and any left R-module M .

(3) If X is weak closed under intersection, then X is left closed (i.e., for any r ∈ R

and any I ∈ X there is J ∈ X such that Jr ⊆ I), if and only if ClM
X

(N) is a
submodule of M for any submodule N ⊆ M and any left R-module M .

�������	�
. (1). Let x1, x2 ∈ ClM

X
(N), then there exist I1, I2 ∈ X such that

Iixi ⊆ N , for i = 1, 2, then (I1 ∩ I2)(x1 + x2) ⊆ N , then x1 + x2 ∈ ClM
X

(N).
(2) (⇒). We always have ClM

X
(N1 ∩ N2) ⊆ ClM

X
(N1) ∩ ClM

X
(N2); otherwise if

x ∈ ClM
X

(N1) ∩ ClM
X

(N2) there exist I1, I2 ∈ X such that Iix ⊆ Ni, then there
exists J ∈ X such that J ⊆ I1 ∩ I2, hence Jx ⊆ N1 ∩N2, and x ∈ ClM

X
(N1 ∩N2).

(⇐). Let I1, I2 ∈ X , then 1 ∈ ClR
X

(Ii) and then 1 ∈ ClR
X

(I1 ∩ I2), hence there
exists J ∈ X such that J ⊆ I1 ∩ I2.

(3) (⇒). Let x ∈ ClM
X

(N) and r ∈ R, then there exists I ∈ X such that

Ix ⊆ N , since there exists J ∈ X such that Jr ⊆ I we have Jrx ⊆ Ix ⊆ N , hence
rx ∈ ClM

X
(N).

(⇐). Let I ∈ X and r ∈ R, then ClR
X

(I) = R, hence r ∈ ClR
X

(I) and there is
J ∈ X such that Jr ⊆ I . �

A sufficient condition for left closedness is the following: for any element r ∈ R

and any ideal I ∈ X we have (I : r) ∈ X .

We sayX is inductive if for any I ∈ X and any left ideal J ⊇ I , we have J ∈ X .

A set of left ideals is called a topological filter if it is closed under intersections,
inductive and left closed.

Lemma 2.6. Let X be an inductive set of left ideals, then the following state-

ments are equivalent:

(a) X is a topological filter.

(b) ClM
X

(N) is a submodule for any submodule N ⊆ M .
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�������	�
. We only need to show the implication (b) ⇒ (a). As a matter of fact,

X is weak closed under intersections and left closed as ClM
X

(N) is a submodule
for any submodule N ⊆ M . Then X is a topological filter because it is inductive,
therefore it is closed under intersections. �

A topological filter is a linear filter whenever it satisfies: if I ⊆ R and J ∈ T

satisfy (I : y) ∈ T for any y ∈ J , then I ∈ T .

In the following linear filters will be denoted by the letter L and topological filters

will be denoted by the letter T .

Proposition 2.7. Let T be a topological filter, the following statements are

equivalent:

(a) T is a linear filter.

(b) ClM
T

ClM
T

= ClM
T
for any left R-module M .

�������	�
. (a) ⇒ (b). Indeed, if N ⊆ M is a submodule and x ∈ ClM

T
ClM

T
(N),

there exists I ∈ T such that Ix ⊆ ClM
T

(N), then to any y ∈ I there exists Iy ∈ T

such that Iyyx ⊆ N , hence Iyy ⊆ (N : x), i.e., for any y ∈ I the ideal ((N : x) : y)
belongs to T , therefore (N : x) ∈ T as T is a linear filter.

(b)⇒ (a). Let J ∈ T and I ⊆ R be such that for any y ∈ J the ideal (I : y) ∈ T ;
then J ⊆ ClR

T
(I), hence R = ClR

T
(J) ⊆ ClR

T
ClR

T
(I) = ClR

T
(I), therefore ClR

T
(I) =

R and we have I ∈ T . �

Remark 2.8. When T is only a topological filter, in general we have that ClM
T

(N)
is a submodule that is not necessarily T -closed in M ; to be T -closed we need that

T is a linear filter.

Let us summarize the properties of ClM
X
in terms of properties of X . First we

observe that in general, without any assumption on X , we have the following prop-
erties:

(1) Expansive. N ⊆ ClM
X

(N) for any N ⊆ M .

(2) Monotone. If N1 ⊆ N2, then ClM
X

(N1) ⊆ ClM
X

(N2) for any N1, N2 ⊆M .

(3) Continuous. For any homomorphism f : M → M ′ and N ⊆ M we have

f(ClM
X

(N)) ⊆ ClM
′

X
(f(N)).

(4) Hereditary. ClN
X

(X) = N ∩ ClM
X

(X) for any X ⊆ N ⊆M .

As a consequence ClM
X
is a closure operator when X is weak closed under inter-

sections and left closed, i.e., when for any submodule N ⊆M we have that ClM
X

(N)
is a submodule; in particular when X is a topological filter.

Let us now assume that T is a topological filter.

(5) Relationship between ClM
T
and CM

T
.
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For any submodule N ⊆ M we have ClM
T

(N) ⊆ CM
T

(N), as if m ∈ ClM
T

(N), there
exists I ∈ T such that Im ⊆ N ⊆ CM

T
(N), hence m ∈ CM

T
(N). Otherwise we have

the equality ClM
T

(N) = CM
T

(N) if and only if T is a linear filter. Indeed we have
the following equivalences for any left R-module M and any submodule N ⊆ M :

ClM
T

(N) = CM
T

(N) if and only if

ClM
T

(N) is T -closed if and only if

ClM
T

(ClM
T

(N)) = ClM
T

(N) if and only if

T is linear.

3. Honest submodules

A parallel notion toX -closed submodule is the notion ofX -honest submodule; in

this case the zero submodule will be always an X -honest submodule and, as we will
see later, the existence of nonzero X -honest submodules induces some particular

properties on the structure of the module. In addition, every X -closed submodule
is X -honest.

If X is a nonempty set of ideals such that 0 /∈ X , a submodule N ⊆ M of a left
R-module M is said to be an X -honest submodule, or N is X -honest in M , if for

any I ∈ X and any m ∈ M , if 0 6= Im ⊆ N , then m ∈ N , and we write N ⊆h
X

M .
Of course, if N is X -closed in M , then N is X -honest in M .

Contrary to the notion of X -closed, the X -honest notion was used only by a
reduced number of authors; let us recall some of them: [1] where the authors define

honest subgroups using instead of X the set of all nonzero integer numbers, and [3]
where the authors define honest submodules using a set of elements of the ring.

As a matter of fact we collect the basic results on the behavior of honest submod-
ules.

Lemma 3.1. Let H ⊆ N ⊆ M be submodules, then the following statements

hold:

(1) If H ⊆ N and N ⊆ M are X -honest submodules, then H ⊆ M is X -honest,

i.e.: H ⊆h
X

N ⊆h
X

M ⇒ H ⊆h
X

M .

(2) If N ⊆ M is X -honest, then N/H ⊆ M/H is X -honest, i.e.: N ⊆h
X

M ⇒
N/H ⊆h

X
M/H.

(3) If H ⊆ M and N/H ⊆ M/H are X -honest, then N ⊆ M is X -honest, i.e.:

H ⊆h
X

M and N/H ⊆h
X

M/H ⇒ N ⊆h
X

M .
�������	�

. (1) Let m ∈ M , I ∈ X be such that 0 6= Im ⊆ H , then 0 6= Im ⊆ N ,
hence m ∈ N , and we see that m ∈ H .

231



(2) Let m ∈ M and I ∈ X be such that 0 6= I(m + H) ⊆ N/H, then 0 6= Im ⊆ N ,

hence m ∈ N and we obtain m + H ∈ N/H.
(3) Let m ∈ M and I ∈ X be such that 0 6= Im ⊆ N . If Im ⊆ H , then

m ∈ H ⊆ N . If Im 
 H , then 0 6= I(m + H) ⊆ N/H, hence m + H ∈ N/H, and we

obtain m ∈ N . �

Lemma 3.2. Let {Nλ : λ ∈ Λ} be a family of X -honest submodules of M , then⋂
λ

Nλ is X -honest.

�������	�
. Let m ∈ M and I ∈ X such that 0 6= Im ⊆ ⋂

λ

Nλ, then m ∈ ⋂
λ

Nλ. �

We saw thatX -closed submodules areX -honest submodules, but this is only part

of a more close relationship between the X -torsion submodule of M and X -honest
submodules.

Proposition 3.3. Let N ⊆ M be a submodule, then the following statements

are equivalent:

(a) N isX -honest inM . If, in addition, X is inductive, then the above statements

are also equivalent to:

(c) For any m ∈ ClM
X

(N) \N we have (N : m) = Ann m.

(d) For any m ∈ ClM
X

(N) \N we have Rm ∩N = 0.
�������	�

. (c) ⇒ (d) ⇒ (a) ⇔ (b). These are obvious.
(b) ⇒ (c). Let x ∈ ClM

X
(N) \ N , then there exists I ∈ X with Ix ⊆ N , then

Ix = 0. Hence I ⊆ Ann x ⊆ (N : x), therefore (N : x) ∈ X and (N : x) = Ann x.
Thus we deduce that Rx ∩N = 0. �

Lemma 3.4. Let N ⊆ M be an X -honest submodule, thus

ClM
X

(N) = N ∪ TX (M).

�������	�
. Let x ∈ ClM

X
(N) \N , there exists I ∈ X such that 0 = Ix ⊆ N , thus

x ∈ TX (M). �

Corollary 3.5. Let N ⊆M be a submodule such that TX (M) ⊆ N , then N ⊆ M

is an X -honest submodule if and only if it is X -closed.

In particular, if M is X -torsionfree, then a submodule N ⊆ M is X -honest if

and only if it is X -closed.
�������	�

. Indeed, if N ⊆ M is X -honest then ClM
X

(N) = N ∪ TX (M) = N , and

N is X -closed. �
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Corollary 3.6. Let L be a linear filter, then for any R-module M the torsion

submodule TL (M) ⊆ M is L -honest.

�������	�
. Since L is a linear filter then TL (M) is a L -closed submodule, hence

L -honest. �

Remark 3.7. In the above Corollary we have in fact that L is a linear filter if and
only if TL (M) ⊆ M is L -closed for any left R-moduleM if and only if TL (M) ⊆ M

is L -honest for any left R-module M .

Corollary 3.8. Let X be a set of ideals weak closed under intersections, then

any X -honest submodule N ⊆M satisfies either N ⊆ TX (M) or TX (M) ⊆ N .

�������	�
. Since N is X -honest in M , ClM

X
(N) = N ∪ TX (M). Since X is weak

closed under intersections, ClM
X

(N) and TX (M) are subgroups. Hence either N is
included in TX (M) or TX (M) is included in N . �

If L is a linear filter and N ⊆ TL (M) is L -honest, then, by Lemma 3.1, we have
that N ⊆M is honest.

Corollary 3.9. Let X be a set of ideals weak closed under intersection. If

0 6= N ⊆ M is an X -torsionfree X -honest submodule, then M is X -torsionfree

and N ⊆ M is X -closed.

At this point, by Corollaries 3.5 and 3.8, we have a nice characterization of X -
honest submodules containing the subgroup TX (M): they are the X -closed sub-

modules. We deal now with the problem of studying the X -honest submodules
which are contained in the X -torsion submodule. Thus we may restrict ourselves to

the case in which M is X -torsion.

3.1. Torsion honest submodules. The following is an interesting result on the
annihilator of some torsion submodules.

Lemma 3.10. Let X be an inductive set of ideals. Let M be a left R-module

then for any X -honest submodule N � TX (M) and any m ∈ TX (M) \N we have

0 6= Ann m ⊆ Ann N ∈ X .

�������	�
. We take m ∈ TX (M) \N , then Ann m ∈ X . If Ann m 
 Ann n, for

some n ∈ N , we have Ann mn 6= 0. Thus we have 0 6= Ann mn = Ann m(m+n) ⊆ N ,
hence m + n ∈ N , as N is X -honest. Thus m ∈ N , which is a contradiction. �
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Corollary 3.11. Let X be an inductive set of ideals. Let N ⊆ M be an X -

honest submodule such that N � TX (M), then

⋃
{Ann m : m ∈ TX (M) \N} ⊆ Ann N 6= 0.

3.2. Honest submodules which are direct summands.

Theorem 3.12. Let X be an inductive set of ideals. Let N ⊆ M be an X -

honest submodule such that M/N is cyclic, nonzero and X -torsion, then N is a

direct summand of M .

�������	�
. We assume M/N = R(m + N), then m /∈ N and (N : m) ∈ X .

Since N is X -honest in M and m /∈ N , Rm ∩N = 0 (see Proposition 3.3(d)) and
M = Rm⊕N . �

This result can be extended as follows.

Theorem 3.13. Let X be an inductive set of ideals. Let N ⊆ M be an X -

honest submodule such that M/N is nonzero, X -torsion and a direct sum of cyclic

submodules, then N is a direct summand of M .

�������	�
. Let us assume that M/N = ⊕λ∈ΛR(mλ + N) is a direct sum with

mλ + N 6= 0 for any λ ∈ Λ, then we have that Rmλ ∩ N = 0 for any λ ∈ Λ.

Otherwise, if we take 0 6= m ∈
( ∑

λ∈Λ

Rmλ

)
∩N , we may assume m =

t∑
i=1

rimλi for

some ri ∈ R and rimλi 6= 0 for i = 1, . . . , t. Thus we have:

r1mλ1 + N = −
t∑

i=2

rimλi + N ∈ R(mλ1 + N) ∩
t∑

i=2

R(mλi + N) = 0.

Hence r1mλ1 ∈ N . Therefore r1mλ1 = 0, which is a contradiction. Thus we obtain∑
λ∈Λ

Rmλ ∩N = 0 and M = N ⊕
( ∑

λ∈Λ

Rmλ

)
. �

As a consequence if M is an Abelian group and X is the set of all nonzero ideals,

then any X -honest submodule N of M , such that M/N is finitely generated and
torsion, is a direct summand.

Problem 3.14. Is it true, in general, that if X is inductive and N ⊆ M is an

X -honest submodule such that M/N is nonzero finitely generated and X -torsion,
then N is a direct summand of M?
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3.3. Direct summands. Let us study the X -honest direct summands of a left

R-module M , mainly when X is an inductive set of ideals.
We deal now with the problem of determining which direct summands are X -

honest.

Proposition 3.15. Let X be an inductive set of ideals. Let M = N ⊕ K be

a direct sum such that K is not X -torsionfree, then the following statements are

equivalent:

(a) N ⊆ M is X -honest.

(b)
⋃{Ann k : 0 6= k ∈ TX (K)} ⊆ Ann N 6= 0.

Moreover, in this case N is X -torsion.
�������	�

. (a) ⇒ (b). For any 0 6= k ∈ TX (K), if Ik = 0 for some I ∈ X , then
for any n ∈ N we have I(n + k) = In ⊆ N , thus In = 0 and we have I ⊆ Ann N .

(b) ⇒ (a). Let m ∈ M and I ∈ X be such that 0 6= Im ⊆ N . We may assume
m = n + k, hence Ik = 0, and k ∈ TX (M). If k 6= 0, then I ⊆ Ann k ⊆ Ann N and

we have Im = 0, which is a contradiction. Hence k = 0 and m = n ∈ N . �

The case in which K is X -torsionfree is well-known. In fact, it follows directly
from Corollary 3.5 that:

Proposition 3.16. LetM = N⊕K be a direct sum such thatK isX -torsionfree,

then the following statements are equivalent:

(a) N ⊆ M is X -honest.

(b) N = ClM
X

(N).

Proposition 3.17. Let M = N ⊕K be a direct sum such that N is nonzero and

X -torsionfree, then the following statements are equivalent:

(a) N ⊆ M is X -honest.

(b) K is X -torsionfree.

(c) N = ClM
X

(N).
(d) M is X -torsionfree.
�������	�

. (a)⇒ (b). Let I ∈ X . If Ik = 0, then IN = 0, which is a contradiction.
�

3.4. The honest operator. As in the case of the closure operator we may define
the honest operator using Lemma 3.2.

Let N ⊆ M be a submodule, we define a new submodule as follows:

HM
X

(N) =
⋂
{H ⊆M : N ⊆ H and H ⊆ M is X -honest}.
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Since the intersection of a family of X -honest submodules is X -honest, see Lem-

ma 3.2, we have:

Lemma 3.18. If N is a submodule of M then HM
X

(N) is the smallest X -honest

submodule of M containing N .

In fact HM
X
defines an operator in the lattice of all R-submodules of M ; the

properties of this operator are the following:

(1) Expansive. N ⊆ HM
X

(N) for any N ⊆M .

(2) Monotone. If N1 ⊆ N2, then HM
X

(N1) ⊆ HM
X

(N2) for any N1, N2 ⊆ M .

(3) Idempotent. HM
X

HM
X

= HM
X
.

Observe that we do not include the continuity property. The reason is the follow-

ing:

Lemma 3.19. The following statements are equivalent:
(a) HM

X
is a closure operator.

(b) Any submodule of any left R-module is X -honest.

(c) X = {R}.
�������	�

. (a) ⇒ (b). Let N ⊆ M be a submodule, we consider the canonical pro-

jection η : M → M/N . Since HM
X
is a closure operator, η(HM

X
(N)) ⊆ HM/N

X
(η(N)) =

HM/N
X

(0) = 0, hence HM (N) ⊆ Ker(η) = N .

(b) ⇒ (c). Let 0 6= I ∈ X , then 0 6= I1 ⊆ I , hence 1 ∈ I and I = R.

(c) ⇒ (a). It is clear that any submodule is X -honest, hence the honest operator
is the identity operator which is a closure operator. �

As a consequence HM
X
is a closure operator if and only if it is the identity operator.

(5) Relation with CM
X
.

Since CM
X

(N) is X -honest in M , CM
X

(N) ⊇ HM
X

(N).

4. Examples and applications

4.1. Left Ore rings. Let R be a ring and C be the set of all nonzero divisors of

R. We say R is a left Ore ring if

∀a ∈ R, ∀s ∈ C , ∃b ∈ R and t ∈ C such that bs = ta,

i.e., if the set C is a left Ore set of R. If R is a left Ore ring, then C−1 R is named

the classical left ring of quotients of R or the total left ring of quotients of R, and
we always have an injective ring map R ↪→ C−1 R = Ql

cl(R).
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A ring S is a ring of quotients if any element which is not a zero divisor is invertible.

If S is a ring of quotients and R ⊆ S is a subring such that S = Ql
cl(R), then we say

R is a left order in S.

Let C be a subset of R, such that 0 /∈ C , and consider the following set of left

ideals:

L C = {I ⊆ R : I ∩ C 6= � }.
It is easy to prove that L C is an inductive set of left ideals. Hence we may consider

the honest operator HL C . First we obtain:

Theorem 4.1. Let C be the set of not containing zero divisors of R, then the

following statements are equivalent:

(a) The C -honest operator HL C is a closure operator.

(b) R is a ring of quotients.

(c) Each submodule is L C -honest.

(d) The C -honest operator HL C is the identity operator.
�������	�

. We only need to prove the relationship between statements (a) and (b)
as we know the equivalence between (a), (c) and (d).

(a) ⇒ (b). From Lemma 3.19 we have that L C = {R}, hence for any c ∈ C the

left ideal Rc satisfies Rc = R, so there exists d ∈ R such that dc = 1, hence cdc = c

and, since c is not a zero divisor, we obtain that c is invertible.

(b) ⇒ (a). This is trivial as each element of C is invertible. �

This is an extension of the results given by Fay and Joubert in [3].

Now the following natural question arises: Could rings of quotients be character-
ized by the operators CM

L C
and ClM

L C
?

When we deal with the operator ClM
L C

we arrive at left Ore sets in the following
way.

Proposition 4.2. Let C be a multiplicative subset of a ring R, then the following

statements are equivalent:

(a) C is a left Ore set.

(b) ClM
L C
is an idempotent closure operator.

(c) L C is a linear filter.

(d) L C is a topological filter.

(e) ClM
L C

(N) is a submodule of M for any submodule N ⊆ M .
�������	�

. (a) ⇒ (b). Let m1, m2 ∈ ClM
L C

(N), there exist s1, s2 ∈ C such

that Rsimi ⊆ N . Since C is a left Ore set, there exist b ∈ R and t ∈ C such that
bs1 = ts2, thus Rts2(m1 + m2) ⊆ N . On the other hand, if m ∈ ClM

L C
(N) and
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r ∈ R, there exists s ∈ C such that Rsm ⊆ N , and there exist b ∈ R and t ∈ C such

that bs = tr, thus Rtrm = Rbsm ⊆ N . Finally, if m ∈ ClM
L C

ClM
L C

(N), then there
exists s ∈ C such that sm ∈ ClM

L C
(N), and there exists t ∈ C such that tsm ∈ N ,

thus m ∈ ClM
L C

(N).
(b) ⇔ (c) is a consequence of Proposition 2.7. (d) ⇔ (e) is a consequence of

Lemma 2.6. And (c) ⇒ (d) is obvious.
(e) ⇒ (a). Let a ∈ R and s ∈ C , then TL C (R/Rs) ⊆ R/Rs; since 1 + Rs ∈

TL C (R/Rs), then TL C (R/Rs) = R/Rs as it is a submodule, hence there exists

t ∈ C such that t(a + Rs) = 0, therefore there exists b ∈ R such that ta = bs and C

is a left Ore set. �

As a consequence ClM
L C

defines a submodule operator if and only if C is a left
Ore set. In particular, if C is the set of all elements of R which are not zero divisors

of R, then R is a ring of quotients if and only if ClM
L C
is the identity operator.

Thus if C is the set of all elements of R which are not zero divisors, we have that
the following statements are equivalent:

(a) R is a ring of quotients.

(b) HM
L C
is a closure operator.

(c) HM
L C

= ClM
L C
.

(d) ClM
L C
is the identity operator.

(e) HM
L C
is the identity operator.

And in the case in which we take a multiplicative subset C we also have that the

following statements are equivalent:

(a) CM
L C

= ClM
L C
.

(b) ClM
L C

(N) is a submodule of M for any submodule N ⊆ M .

(c) C is a left Ore set.

4.2. Some concrete examples.

Example 4.3. Let us present an example of an honest submodule when we take

C =
� \ {0}. If we consider H =

�
(1, 1) ⊆ � × �

= M , then H is C -honest

in M . As a matter of fact, if 0 6= z(m1, m2) ∈ H , there exists a ∈ �
such that

z(m1, m2) = a(1, 1), hence zm1 = a 6= 0 and zm2 = a 6= 0. Thus m1 = m2 and

m ∈ H .

Example 4.4. H =
�

p(1, 1) ⊆ �
p×

�
p = M . In this case H ⊆ M is honest and

is not closed.

Example 4.5. p
�

p2 ⊆ �
p2 is not honest.
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4.3. Semiartinian modules. We shall study as a particular example honest
submodules in semiartinian modules over a commutative ring A. Remember that
an A-module M is semiartinian if the union of the socle series {Socα(M)}α is equal
to M , or equivalently, any nonzero homomorphic image of M contains a simple

submodule.
Let P be a nonempty set of maximal ideals and define L = {I ⊆ A : there

exists P1, . . . , Pt ∈ P such that P1 . . . Pt ⊆ I}, then L is a linear filter and each

L -torsion A-module is semiartinian. If, in particular, P is the set of all maximal

ideals, then an A-module M is semiartinian if and only if it is L -torsion.

Proposition 4.6. Let A be a commutative ring, let L be defined as before by

a set P of maximal ideals and let H � T be a nonzero L -honest submodule of an

L -torsion A-module T . Then there exists an ideal P ∈ P such that Ann H = P

and for any 0 6= x ∈ T there exists a positive integer e such that P e ⊆ Ann x ⊆ P .
�������	�

. Let x ∈ T \H with Ann x ⊇ P e1
1 . . . P et

t , for some positive integers ei,

i = 1, . . . , t , then P e1
1 . . . P et

t ⊆ Ann x ⊆ Ann H . There is a multiple yi of x such that
Ann yi ⊇ Pi for any index i = 1, . . . , t; since 0 6= yi /∈ H we have Pi ⊆ Ann H for any

index i = 1, . . . , t, which is a contradiction if t > 2. As a consequence Ann x ⊇ P e1
1 .

The other inclusion is a consequence of Ann H = P1. �

Proposition 4.7. Let A be a commutative ring, let L be defined as before by

a set P of maximal ideals and let H � T be a nonzero L -honest submodule of an

L -torsion A-module T . Then there exists an ideal P ∈ P such that H is a direct

sum of copies of A/P .
�������	�

. We assume Ann H = P ∈ P , then for any nonzero element h ∈ H we
have Ann h = P . Thus H is a (direct) sum of copies of A/P . �

Proposition 4.8. Let A be a commutative ring, let L be defined as before by

a set P of maximal ideals and let H ⊆ T be a nonzero L -honest submodule of an

L -torsion A-module T . Then H is a direct summand of T .
�������	�

. We assume Ann H = P . First we point out that H ∩ PT = 0. Indeed,
PH = 0 and if for some t ∈ T \H we have 0 6= Pt ∩H ⊆ At ∩H , then (H : t)t 6= 0,
hence t ∈ H , which is a contradiction. Let L ⊆ T be maximal satisfying L ∩H = 0
and PT ⊆ L. For any x ∈ T \(L⊕H) we have Px ⊆ PT ⊆ L. On the other hand, by

the maximality of L, we have: (L+Ax)∩H 6= 0, hence there are l ∈ L and a ∈ A such
that 0 6= l + ax ∈ (L+Ax)∩H , therefore ax ∈ L + H; in particular a /∈ P , if a ∈ P ,

then 0 6= l + ax ∈ L ∩H = 0. Thus we have ax ∈ L + H and Px ⊆ L ⊆ L + H ,
hence x ∈ Ax = (Aa + P )x ⊆ L + H , which is a contradiction. �
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4.4. Dedekind domains. We shall study as a particular example honest sub-
modules in torsion modules on a Dedekind domain D; in particular since torsion
D-modules are semiartinian modules then we may apply the previous results. Thus
we have:

Proposition 4.9. Let D be a Dedekind domain and C = D \ {0}. Let H ⊆ T

be a nonzero C -honest proper submodule of a C -torsion D-module T . Then there

exists a prime ideal P such that T is P -primary.

Proposition 4.10. Let D be a Dedekind domain and C = D \ {0}. Let H ⊆ T

be a nonzero C -honest proper submodule of a C -torsion D-module T . Then there

exists a prime ideal P such that H is a direct sum of copies of D/P .

Proposition 4.11. Let D be a Dedekind domain and C = D \ {0}. Let H ⊆ T

be a nonzero C -honest proper submodule of a C -torsion D-module T . Then H is a

direct summand of T .

4.5. The enveloping algebra of a finite dimensional solvable Lie algebra.
Let R be the enveloping algebra of a finite dimensional solvable Lie algebra over the
field of complex numbers, then each cofinite prime ideal has codimension one, hence

it is maximal as a left and a right ideal. The same result holds when we consider
R = Oq(SLn( � )), the quantum coordinate algebra of SLn( � ), q not being a root of

unity, see [7, Corollary 3.3].

Let us consider the linear filter L generated by the set of all cofinite prime ideals,

then each ideal in L contains a product P1 . . . Pt, where each Pi is a cofinite prime
ideal. Let T be an L -torsion left R-module, and assume H � T is a nonzero L -

honest submodule, then we have:

Proposition 4.12. With the above notation there exists a cofinite prime ideal
P1 such that Ann H = P1, and for any x ∈ T \H there exist cofinite prime ideals

Q2, . . . , Qs such that P1Q2 . . .Qs ⊆ Ann x.

�������	�
. Let x ∈ T \H with Ann x ⊇ P1 . . . Pt, then P1 . . . Pt = Ann x ⊆ Ann H .

There is a multiple y of x such that Ann y ⊇ P1; since 0 6= y /∈ H we have P1 ⊆
Ann H . Now, as P1 is maximal, we have Ann H = P1. As a consequence, for any

x ∈ T \H there exist cofinite prime ideals Q2, . . . , Qs such that P1Q2 . . .Qs ⊆ Ann x.
�
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Proposition 4.13. With the above notation there exists a prime ideal P ∈ P

such that H is a direct sum of copies of simple R/P -modules.
�������	�

. We have that R/P is a semisimple Artinian algebra, as it is finite

dimensional and prime, and H is a left R/P -module. �

Proposition 4.14. With the above notation H is a direct summand of T .
�������	�

. The same proof as in Proposition 4.8 works. �
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