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Czechoslovak Mathematical Journal, 57 (132) (2007), 115–125

ON THE DIVISIBILITY OF POWER LCM MATRICES BY

POWER GCD MATRICES

Jianrong Zhao, Shaofang Hong*, Qunying Liao, Chengdu, and K.

P. Shum†, Hong Kong

(Received November 20, 2004)

Abstract. Let S = {x1, . . . , xn} be a set of n distinct positive integers and e > 1 an inte-
ger. Denote the n × n power GCD (resp. power LCM) matrix on S having the e-th power
of the greatest common divisor (xi, xj) (resp. the e-th power of the least common multiple
[xi, xj ]) as the (i, j)-entry of the matrix by ((xi, xj)

e) (resp. ([xi, xj ]
e)). We call the set S

an odd gcd closed (resp. odd lcm closed) set if every element in S is an odd number and
(xi, xj) ∈ S (resp. [xi, xj ] ∈ S) for all 1 6 i, j 6 n. In studying the divisibility of the power
LCM and power GCD matrices, Hong conjectured in 2004 that for any integer e > 1, the
n × n power GCD matrix ((xi, xj)

e) defined on an odd-gcd-closed (resp. odd-lcm-closed)
set S divides the n × n power LCM matrix ([xi, xj ]

e) defined on S in the ring Mn(
�
) of

n×n matrices over integers. In this paper, we use Hong’s method developed in his previous
papers [J. Algebra 218 (1999) 216–228; 281 (2004) 1–14, Acta Arith. 111 (2004), 165–177
and J. Number Theory 113 (2005), 1–9] to investigate Hong’s conjectures. We show that
the conjectures of Hong are true for n 6 3 but they are both not true for n > 4.

Keywords: GCD-closed set, LCM-closed set, greatest-type divisor, divisibility

MSC 2000 : 11C20, 11A25, 15A36

1. Introduction

Let f be an arithmetical function. It was first stated by H. Smith in 1876 in
his famous paper [19] that if [f(i, j)] is an n × n matrix having f evaluated at

the greatest common divisor (i, j) of i and j as the (i, j)-entry of the matrix, then

*Research is partially supported by Program for New Century Excellent Talents in Univer-
sity, by SRF for ROCS, SEM, China and by the Lady Davis Fellowship at the Technion,
Israel.

†Research is partially supported by a UGC (HK) grant 2160210 (2003/05).
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det[f(i, j)] =
n∏

k=1

(f ∗µ)(k), where µ is the Möbius function and f ∗µ is the Dirichlet

convolution of f and µ. This result was generalized by Apostol [1] in 1972 and in 1988,

McCarthy [18] extended the results of both Smith and Apostol to the class of even
functions of m (mod r), where m and r are positive integers. Here we call a complex-
valued function β(m, r) an even function of m (mod r) if β(m, r) = β((m, r), r) for
all values ofm, and we notice that the functions considered by Smith and Apostol are
in fact even functions of m (mod r). The results of Smith, Apostol, and McCarthy
were subsequently extended further by Bourque and Ligh [5] in 1993. The results of
Smith, Apostol, McCarthy, Bourque and Ligh have been generalized by Hong [10] in

2002 to certain classes of arithmetical functions.

For the set S = {x1, . . . , xn} of n distinct positive integers, we denote the n × n

matrix on S having f evaluated at the greatest common divisor (xi, xj) of the entries
xi and xj by (f(xi, xj)) and we use (f [xi, xj ]) to denote the n × n matrix on the
set S having f evaluated at the least common multiple [xi, xj ] of the entries xi and

xj , respectively. Then some factorization theorems on the divisibility of the matrix
(f [xi, xj ]) by the matrix (f(xi, xj)) were obtained by Bourque and Ligh [6] and also
by Hong in [9] and [11]. Furthermore, Hong has also given some theorems on the
nonsingularity of the matrices (f(xi, xj)) and (f [xi, xj ]) in [13].

Now, for any given integer e > 1, we let ξe be the arithmetical function defined
for any positive integer x by ξe(x) = xe. We then call (ξe(xi, xj)) (abbreviated
by ((xi, xj)e)) and (ξe[xi, xj ]) (abbreviated by ([xi, xj ]e)) the n × n power greatest

common divisor (GCD) matrix on S and the n × n power least common multiple

(LCM) matrix on S respectively. If e = 1, then we simply call them the greatest
common divisor (GCD) matrix and the least common multiple (LCM) matrix, re-

spectively. Naturally, we call the set S factor closed (FC) if it contains all divisors
of x for any x ∈ S. The set S is called gcd closed if (xi, xj) ∈ S for all 1 6 i, j 6 n.

Obviously, any FC set is gcd closed but the converse is not necessarily true. In this
aspect, Bourque and Ligh first generalized Smith’s result in [19] and also Beslin and

Ligh showed in [2] that the determinant of the power GCD matrix ((xi, xj)e) on a

gcd-closed set S = {x1, . . . , xn} is the product
n∏

k=1

αe,k, where

αe,k =
∑

d|xk

d � xt,xt<xk

Je(d).

In the above equality, we call Je := ξe ∗ µ the Jordan totient function. Hong
[10] proved that the determinant of the LCM matrix ([xi, xj ]e) on a gcd-closed set
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S = {x1, . . . , xn} is equal to
n∏

k=1

x2e
k · βe,k, where

βe,k =
∑

d|xk

d� xt,xt<xk

( 1
ξe

∗ µ
)
(d).

On the other hand, Hong has also obtained two important results in [12] on the
nonsingularity of the power LCM matrix (ξe[xi, xj ]). It was first noticed by Bourque
and Ligh in [4] that the power GCD matrix (ξe(xi, xj)) on any set S is positive
definite, and then Hong and Loewy [15] made some progress on the asymptotic

behavior of the eigenvalues of the power GCD matrix (ξe(xi, xj)) on the set S. The
eigenvalues of another kind of power GCD matrix were investigated by Wintner [20]

as well as Lindqvist and Seip [17].
In studying the GCD and LCM matrices, Bourque and Ligh [3] showed that if the

set S = {x1, . . . , xn} is FC then the GCD matrix ((xi, xj)) on S always divides the
LCM matrix ([xi, xj ]) on S in the ring Mn( � ) of n × n matrices over the integers.

It was noticed by Hong in [9] that the factorization theorem on LCM and GCD
matrices is in general not true. We now call the set S an odd gcd closed set if S is

gcd closed and every element in S is an odd number. Naturally, we call the set S

an even gcd closed set if S is not an odd gcd closed set. By [9] we know that there

exists an even-gcd-closed set S = {x1, . . . , xn} such that the GCD matrix ((xi, xj))
on S does not divide the LCM matrix ([xi, xj ]) on S in the ring Mn( � ). However,
it is not clear whether there exists an odd-gcd-closed set S = {x1, . . . , xn} such that
its GCD matrix ((xi, xj)) on S does not divide the LCM matrix ([xi, xj ]) on S in

the ring Mn( � )? Consequently, Hong [12] proposed the following conjecture.

Conjecture 1.1. Let e > 1 be a positive integer and S = {x1, . . . , xn} an odd-
gcd-closed set. Then the power GCD matrix ((xi, xj)e) on S divides the power LCM

matrix ([xi, xj ]e) on S in the ring Mn( � ).

For the above conjecture, He and Zhao [7] have recently given a counterexample
so that the above Conjecture 1.1 is not true for e = 1 and n = 4. In this paper,
by using the reduced formulas given in [12] and [13] and by using Hong’s method
developed in [8] for finding a solution of the Bourque-Ligh conjecture in [3], we are

able to show that for any given integer e > 1, Conjecture 1.1 is true for n 6 3, but
it is not true for n > 4. Thus Hong’s Conjecture 1.1 is completely solved.
On the other hand, we call the set S lcm closed if [xi, xj ] ∈ S for all 1 6 i, j 6 n.

The set S is called odd lcm closed if S is lcm closed and every element in S is an

odd number. Thus the set S is an even lcm closed set if it is not an odd lcm closed
set. For example, the set S = {1, 2, 3, 6, 8, 24} is an even lcm closed set. In fact, we
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can easily construct an even-lcm-closed set S such that the GCD matrix ((xi, xj))
on S does not divide the LCM matrix ([xi, xj ]) on S in the ring Mn( � ) (see [9]).
However, it is not clear whether there exists an odd-lcm-closed set S = {x1, . . . , xn}
such that the GCD matrix ((xi, xj)) on the set S does not divide the LCM matrix

([xi, xj ]) on the set S in the ringMn( � )? For the lcm-closed sets, Hong [12] has also
proposed the following conjecture.

Conjecture 1.2. Let e > 1 be a positive integer and S = {x1, . . . , xn} an odd-
lcm-closed set. Then the power GCD matrix ((xi, xj)e) on S divides the power LCM

matrix ([xi, xj ]e) on S in the ring Mn( � ).

For this conjecture, He and Zhao also gave a counterexample in [7] for e = 1 and
n = 4. In this paper, we will show that for any given integer e > 1, Conjecture 1.2
is true for n 6 3, but the conjecture is false for n > 4. Thus Conjecture 1.2 is also
completely solved.

2. Preliminaries

In this section, we recall the reduced formulas of Hong for αe,k and βe,k. First we

recall the concept of greatest-type divisor given by Hong.

Definition ([8]). Let T be a set of distinct positive integers. For any a, b ∈ T

and a < b, we call a a greatest-type divisor of b in T if a | b and the conditions a | c | b

and c ∈ T imply that c ∈ {a, b}.

Remark. The concept of greatest-type divisor played central roles in solving the
Bourque-Ligh conjecture [3] (see Hong [8]) and in solving Sun’s conjecture in [14].

Lemma 2.1 ([13]). Let S = {x1, . . . , xn} be a gcd-closed set and Rk =
{yk,1, . . . , yk,lk} the set of the greatest-type divisors of xk (1 6 k 6 n) in S,

where yk,1 < . . . < yk,lk , l1 = 0, l2 = l3 = 1, and 1 6 lk 6 k − 2 for k > 4. Then

αe,k = xe
k +

lk∑

t=1

(−1)t
∑

16i1<...<it6lk

(xk , yk,i1 , . . . , yk,it)
e.
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Lemma 2.2 ([12]). Let S = {x1, . . . , xn} be a gcd-closed set. Let Rk =
{yk,1, . . . , yk,lk} be the set of the greatest-type divisors of xk (1 6 k 6 n) in S, where

yk,1 < . . . < yk,lk , l1 = 0, l2 = l3 = 1, and 1 6 lk 6 k − 2 for k > 4. Then

βe,k =
1
xe

k

+
lk∑

t=1

(−1)t
∑

16i1<...<it6lk

1
(xk , yk,i1 , . . . , yk,it)e

.

Remark. Lemmas 1.1 and 1.2 can be extended to posets (see Hong and Sun
in [16]).

3. Solving conjecture 1.1

We first prove the following crucial lemma.

Lemma 3.1. Let e > 1, n > 4 be integers and S = {x1, . . . , xn}. Suppose that

(3.1) xk = ak−1, 1 6 k 6 n − 3, xn−2 = qb, xn−1 = pb, xn = p2qb,

where b = an−4, q and p are distinct primes, and a > 1 is an integer satisfying
(a, peqe + qe − 1) = 1. If the determinant of the n× n power LCM matrix ([xi, xj ]e)
defined on S is divisible by the n × n power GCD matrix ((xi, xj)e) defined on S,

then p | (qe − 1).
�������
	

. We first note that αe,1 = βe,1 = 1. For 2 6 k 6 n − 3, we have, by
Lemmas 2.1 and 2.2,

αe,k = ae(k−1) − ae(k−2) = ae(k−2))(ae − 1)

and
βe,k =

1
ae(k−1)

− 1
ae(k−2)

=
1 − ae

ae(k−1)
,

respectively. Consequently, for 2 6 k 6 n − 3, we can compute that

(3.2)
x2e

k βe,k

αe,k
=

ae(k−1))(1 − ae)
ae(k−2)(ae − 1)

= −ae.

Clearly, the greatest-type divisors of both xn−2 = qb in S and xn−1 = pb in S are
b, so by using Lemmas 2.1 and 2.2 again, we have

(3.3)
x2e

n−2βe,n−2

αe,n−2
=

(qb)2e(1/(qb)e − 1/be)
(qb)e − be

= −qe
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and

(3.4)
x2e

n−1βe,n−1

αe,n−1
= (pb)2e(1/(pb)e − 1/be)/(pb)e − be = −pe.

Since the greatest-type divisors of xn = p2qb in S are qb and pb, it follows from
Lemmas 2.1 and 2.2 that

(3.5)
x2e

n βe,n

αe,n
=

(p2qb)2e(1/(p2qb)e − 1/(qb)e − 1/(pb)e + 1/be)
(p2qb)e − (qb)e − (pb)e + be

= p2eqe · peqe − pe − 1
peqe + qe − 1

.

Therefore, by Equations (3.2)–(3.5), we infer that

det([xi, xj ]e)
det((xi, xj)e)

=
n∏

k=1

x2e
k βe,k

αe,k

= (−a)e(n−4) · (−qe) · (−pe) · p2eqe · peqe − pe − 1
peqe + qe − 1

= (−1)en · q2e · p3e · ae(n−4) · peqe − pe − 1
peqe + qe − 1

.

It is now easy to see that (q2e, peqe + qe −1) = (ae(n−4), peqe + qe −1) = 1. However,
by our assumption, we can easily see that

det([xi, xj ]e)
det((xi, xj)e)

∈ � .

So we have

p3e · peqe − pe − 1
peqe + qe − 1

∈ � .

Since peqe − pe − 1 < peqe + qe − 1, from the above equation, we can deduce that
p | (peqe + qe − 1). Hence it follows that p | (qe − 1), as desired. �

Now we give below an answer to Conjecture 1.1.

Theorem 3.2. Let e > 1 be an arbitrary given integer and n > 1. Then the
following statements hold:

(i) If n 6 3, then for any gcd-closed set S = {x1, . . . , xn}, the power GCD matrix
((xi, xj)e) on S divides the power LCMmatrix ([xi, xj ]e) on S in the ringMn( � ).

(ii) For n > 4, there exists an odd-gcd-closed set S = {x1, . . . , xn} such that the
power GCD matrix ((xi, xj)e) on the set S does not divide the power LCM

matrix ([xi, xj ]e) on the set S in the ring Mn( � ).

120



�������
	
. (i) Let S = {x1, . . . , xn} be a gcd-closed set. Without loss of generality,

we may assume that 1 6 x1 < . . . < xn. If n = 1, then it is clear that the statement
is true. If n = 2, then because the set S = {x1, x2} is gcd closed, we know that
x1 | x2. Now, we form the matrix

A =
(

0 1
(x2/x1)e 0

)
.

Since e ∈ � + and x2/x1 ∈ � , we deduce that (x2/x1)e ∈ � , and, consequently,
A ∈ M2( � ). We can also check that ([xi, xj ]e) = A · ((xi, xj)e). Therefore, our
result holds for the case of n = 2. Now, we consider the case of n = 3. Since the
set S = {x1, x2, x3} is gcd closed, we can easily check that x1 | xi (i = 2, 3), and
(x2, x3) = x1 or x2. If (x2, x3) = x2, then x1 | x2 | x3. Now, we form the matrix

B =




0 0 1
(x2/x1)e −1 1
(x3/x1)e 0 0


 .

Since (x2/x1)e ∈ � and (x3/x1)e ∈ � , we can see that B ∈ M3( � ). Also, we can
easily check that ([xi, xj ]e) = B · ((xi, xj)e). This shows that the statement in this
case is still true. Now, we consider the case: (x2, x3) = x1. For such case, we have

[x2, x3] = x2x3/x1. Let

C =



−1 1 1
0 0 (x2/x1)e

0 (x3/x1)e 0


 .

Then we have C ∈ M3( � ). Now, we can easily check that ([xi, xj ]e) = C · ((xi, xj)e).
Hence the statement (i) in this case holds.

(ii) Let n > 4 be an integer and consider the set S = {x1, . . . , xn} as in (3.1).
Since q and p are distinct odd primes such that p > qe − 1 (for any given integer
e > 1, such a pair (p, q) always exists since there are infinitely many primes), and
b = an−4 and a > 1 is an odd number satisfying the situation (a, peqe + qe − 1) = 1
(such element a always exists, for example, we can take a = 2, or q), S is clearly an

odd gcd closed set. We now claim that

(3.6)
det([xi, xj ]e)
det((xi, xj)e)

/∈ � .

For if otherwise, we will have det([xi, xj ]e) | det((xi, xj)e). Then by Lemma 3.1,
we know that p | (qe − 1), and thereby, p 6 qe − 1. This is of course absurd since
p > qe − 1. Thus, our claim is established. It now follows from (3.6) that in the
ring Mn( � ), we have ((xi, xj)e) � ([xi, xj ]e), as required. The proof of Theorem 3.2
is hence complete. �
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Remark. In Theorem 3.2, we see immediately that Conjecture 1.1 holds for n 6 3
and that Conjecture 1.1 does not hold for > 4.

4. Solving conjecture 1.2

In this section, we denote the least common multiple of all elements in S by

m = lcm(S). We first prove the following lemmas.

Lemma 4.1. Let e, n > 1 be integers and S = {x1, . . . , xn} a set of n distinct

positive integers. Then we have the following equalities:

((xi, xj)e) =
1

me
· diag(xe

1, . . . , x
e
n) ·

((m

xi
,
m

xj

)e)
· diag(xe

1, . . . , x
e
n)

and

([xi, xj ]e) =
1

me
· diag(xe

1, . . . , x
e
n) ·

([m

xi
,
m

xj

]e)
· diag(xe

1, . . . , x
e
n).

�������
	
. We first observe the following equalities:

(xi, xj) =
m

[ m
xi

, m
xj

]
=

m · ( m
xi

, m
xj

)
m
xi

· m
xj

=
xixj

m
·
(m

xi
,
m

xj

)
.

Since e > 1 is an integer, we have

(xi, xj)e =
xe

i x
e
j

me
·
(m

xi
,
m

xj

)e

.

Therefore the first equation follows immediately. The second equation has been

proved in [12]. �

Definition ([12]). Let S = {x1, . . . , xn} be a set of n distinct positive integers.
Then the reciprocal set of S, denoted by mS−1, is defined by mS−1 = {m

x1
, . . . , m

xn
}.

Lemma 4.2. Let S = {x1, . . . , xn} be a set of distinct positive integers. Then S

is an lcm-closed set if and only if the reciprocal set mS−1 is a gcd-closed set.
�������
	

. One side of the equivalence has been proved by Hong in [12]. The
converse implication can be proved similarly and hence we omit the details. �

We now give an answer to Conjecture 1.2.
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Theorem 4.3. Let e > 1 be an arbitrary given integer and n > 1 an integer.
(i) If n 6 3, then for any lcm-closed set S = {x1, . . . , xn}, the power GCD matrix

((xi, xj)e) on S divides the power LCMmatrix ([xi, xj ]e) on S in the ringMn( � ).
(ii) For n > 4, there exists an odd-lcm-closed set S = {x1, . . . , xn} such that the
power GCD matrix ((xi, xj)e) on S does not divide the power LCM matrix

([xi, xj ]e) on S in the ring Mn( � ).
�������
	

. (i) Let S = {x1, . . . , xn} be an lcm-closed set. Without loss of generality,
we may assume that 1 6 x1 < . . . < xn. Let n = 1. Then it is clear that the
statement (i) is true. Let n = 2. Since the set S = {x1, x2} is lcm closed, we know
that x1 | x2. Because the set S is also gcd closed, the result in this case follows

immediately from Theorem 3.2 (i). Now let n = 3. Since S = {x1, x2, x3} is lcm
closed, we know that xi | x3 (i = 1, 2), and [x1, x2] = x2 or x3. If [x1, x2] = x2,

then x1 | x2 | x3 and so the set S is gcd closed. Consequently, the result in this case
follows from Theorem 3.2 (i). Now consider the case: [x1, x2] = x3. For this case,
we see that (x1, x2) = x1x2/x3. Thus we have




xe
1 (x1x2

x3
)e xe

1

(x1x2
x3

)e xe
2 xe

2

xe
1 xe

2 xe
3




−1

=




xe
3

xe
1(x

e
3−xe

1)
0 1

xe
1−xe

3

0 xe
3

xe
2(x

e
3−xe

2)
1

xe
2−xe

3

1
xe
1−xe

3

1
xe
2−xe

3

(x1x2)
e−x2e

3
xe
3(x

e
3−xe

2)(x
e
1−xe

3)


 .

Since (x3/x1)e ∈ � and (x3/x2)e ∈ � , we deduce that

([xi, xj ]e)((xi, xj)e)−1 =




xe
1 xe

3 xe
3

xe
3 xe

2 xe
3

xe
3 xe

3 xe
3


 ·




xe
1 (x1x2

x3
)e xe

1

(x1x2
x3

)e xe
2 xe

2

xe
1 xe

2 xe
3




−1

=




0 (x3
x2

)e 0
(x3

x1
)e 0 0

(x3
x1

)e (x3
x2

)e −1


 ∈ M3( � ).

This shows that the statement (i) in this case holds and our proof of part (i) is

complete.
(ii) Let n > 4 be an integer. Suppose that

x1 = 1, x2 = pq, x3 = p2, x4 = p2qai, where 0 6 i 6 n − 4,

where q and p are distinct odd primes such that p > qe−1 and a > 1 is an odd number
satisfying (a, peqe +qe−1) = 1. Now, we can easily see that the set S = {x1, . . . , xn}
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is odd lcm closed. By Lemma 4.2, the reciprocal set mS−1 is an odd gcd closed set,

where m = p2qan−4. It now follows from Lemma 4.1 that

det([xi, xj ]e)
det((xi, xj)e)

=
det([ m

xi
, m

xj
]e)

det(( m
xi

, m
xj

)e)
.

If we let

yk = ak−1, 1 6 k 6 n − 3, yn−2 = qb, yn−1 = pb, yn = p2qb,

where b = an−4, then T = {y1, . . . , yn} is just a permutation of the set mS−1 and

so we deduce that det([ m
xi

, m
xj

]e) = det([yi, yj ]e) and det(( m
xi

, m
xj

)e) = det((yi, yj)e).
Therefore we have

det([xi, xj ]e)
det((xi, xj)e)

=
det([yi, yj ]e)
det((yi, yj)e)

.

But by the proof of Theorem 3.2 (ii), we know that

det([yi, yj ]e)
det((yi, yj)e)

/∈ �

and thereby, we infer that
det([xi, xj ]e)
det((xi, xj)e)

/∈ � .

This shows immediately that in the ring Mn( � ), we have ((xi, xj)e) � ([xi, xj ]e), as
expected. Thus the proof of Theorem 4.3 is complete. �

By Theorem 4.3 we see immediately that Conjecture 1.2 holds for n 6 3 but does
not hold for n > 4.
In closing this paper, we remark that although Conjectures 1.1 and 1.2 are in

general not true, Hong has proved in [11] that for any given integer e > 1, if S =
{x1, . . . , xn} is a divisor chain (that is, x1 | . . . | xn), then the power GCD matrix

((xi, xj)e) on S always divides the power LCM matrix ([xi, xj ]e) on S in the ring
Mn( � ). Note that a divisor chain is both gcd-closed and lcm-closed. However, the
problem how to determine all gcd-closed (resp. lcm-closed) sets S such that the power
GCD matrix ((xi, xj)e) on S divides the power LCM matrix ([xi, xj ]e) on S in the

ring Mn( � ) remains open, where e > 1 is any given integer.

124



References

[1] T.M.Apostol: Arithmetical properties of generalized Ramanujan sums. Pacific J. Math.
41 (1972), 281–293.

[2] S.Beslin and S. Ligh: Another generalization of Smith’s determinant. Bull. Austral.
Math. Soc. 40 (1989), 413–415.

[3] K.Bourque and S.Ligh: On GCD and LCM matrices. Linear Algebra Appl. 174 (1992),
65–74.

[4] K.Bourque and S. Ligh: Matrices associated with arithmetical functions. Linear and
Multilinear Algebra 34 (1993), 261–267.

[5] K.Bourque and S. Ligh: Matrices associated with classes of arithmetical functions.
J. Number Theory 45 (1993), 367–376.

[6] K.Bourque and S. Ligh: Matrices associated with classes of multiplicative functions.
Linear Algebra Appl. 216 (1995), 267–275.

[7] C.He and J. Zhao: More on divisibility of determinants of LCM Matrices on GCD-closed
sets. Southeast Asian Bull. Math. 29 (2005), 887–893.

[8] S.Hong: On the Bourque-Ligh conjecture of least common multiple matrices. J. Algebra
218 (1999), 216–228.

[9] S.Hong: On the factorization of LCM matrices on gcd-closed sets. Linear Algebra Appl.
345 (2002), 225–233.

[10] S.Hong: Gcd-closed sets and determinants of matrices associated with arithmetical func-
tions. Acta Arith. 101 (2002), 321–332.

[11] S.Hong: Factorization of matrices associated with classes of arithmetical functions. Col-
loq. Math. 98 (2003), 113–123.

[12] S.Hong: Notes on power LCM matrices. Acta Arith. 111 (2004), 165–177.
[13] S.Hong: Nonsingularity of matrices associated with classes of arithmetical functions.

J. Algebra 281 (2004), 1–14.
[14] S.Hong: Nonsingularity of least common multiple matrices on gcd-closed sets. J. Number

Theory 113 (2005), 1–9.
[15] S.Hong and R. Loewy: Asymptotic behavior of eigenvalues of greatest common divisor

matrices. Glasgow Math. J. 46 (2004), 551–569.
[16] S.Hong and Q. Sun: Determinants of matrices associated with incidence functions on

posets. Czechoslovak Math. J. 54 (2004), 431–443.
[17] P.Lindqvist and K. Seip: Note on some greatest common divisor matrices. Acta Arith.

84 (1998), 149–154.
[18] P. J.McCarthy: A generalization of Smith’s determinant. Canad. Math. Bull. 29 (1986),

109–113.
[19] H.J. S. Smith: On the value of a certain arithmetical determinant. Proc. London Math.

Soc. 7 (1875–1876), 208–212.
[20] A.Wintner: Diophantine approximations and Hilbert’s space. Amer. J. Math. 66 (1944),

564–578.

Authors’ addresses: Jianrong Zhao, Mathematical College, Sichuan University,
Chengdu 610064, P.R.China, e-mail: jr-zhao@tom.com; Shaofang Hong, Mathemati-
cal College, Sichuan University, Chengdu 610064, P.R.China, e-mails: s-f.hong@tom.com,
hongsf02@yahoo.com; Qunying Liao, The College of Mathematics and Soft-Ware Science,
Sichuan Normal University, Chengdu 610066, P. R.China, e-mail: qunyingliao@tom.com;
K.P. Shum, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong
Kong (SAR), P.R.China, e-mail: kpshum@math.cuhk.edu.hk.

125


		webmaster@dml.cz
	2020-07-03T16:32:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




