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NODAL SOLUTIONS FOR A SECOND-ORDER m-POINT

BOUNDARY VALUE PROBLEM

Ruyun Ma, Lanzhou

(Received October 12, 2004)

Abstract. We study the existence of nodal solutions of the m-point boundary value
problem

u′′ + f(u) = 0, 0 < t < 1,

u′(0) = 0, u(1) =
m−2∑

i=1

αiu(ηi)

where ηi ∈
�
(i = 1, 2, . . . , m − 2) with 0 < η1 < η2 < . . . < ηm−2 < 1, and αi ∈ �

(i = 1, 2, . . . , m − 2) with αi > 0 and 0 <
∑m−2

i=1 αi < 1. We give conditions on the
ratio f(s)/s at infinity and zero that guarantee the existence of nodal solutions. The proofs
of the main results are based on bifurcation techniques.

Keywords: multiplicity results, eigenvalues, bifurcation methods, nodal zeros, multi-point
boundary value problems

MSC 2000 : 34B10, 34G20

1. Introduction

Recently, the existence and multiplicity of positive solutions of them-point bound-

ary value problem

u′′ + h(t)f(u) = 0,

u′(0) = 0, u(1) =
m−2∑

i=1

αiu(ηi)
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have also been studied by several authors, see Ma [4] and Webb [11] for some ref-

erences. However research for existence of nodal solutions of multi-point boundary
value problems has proceeded very slowly. To the best of our knowledge, no results
on the existence of nodal solutions have been established for multi-point boundary

value problems. The likely reason is that the spectrum structure of the linear problem

u′′ + λu = 0, u ∈ D(L),(1.1)

u′(0) = 0, u(1) =
m−2∑

i=1

αiu(ηi)(1.2)

is not clear.
It is the purpose of this paper to study the spectrum structure of (1.1), (1.2), and

investigate the existence and multiplicity of nodal solutions of

u′′ + f(u) = 0, 0 < t < 1,(1.3)

u′(0) = 0, u(1) =
m−2∑

i=1

αiu(ηi).(1.4)

We make the following assumptions:
(C0) ηi = pi/qi ∈ � ∩ (0, 1) (i = 1, . . . , m− 2) with pi, qi ∈ � and (pi, qi) = 1;

(C1) αi ∈ (0,∞), (i = 1, 2, . . . , m− 2) with 0 <
m−2∑
i=1

αi < 1;

(C2) f ∈ C1( � , � ) with sf(s) > 0 for s 6= 0, and f0, f∞ ∈ (0,∞) exist, where

f0 = lim
s→0

f(s)
s

, f∞ = lim
s→∞

f(s)
s

.

Here � , � , � are the sets of rational, real, and natural numbers, respectively.
We give conditions on the ratio f(s)/s at infinity and zero that guarantee the

existence of nodal solutions. The main tool we use is the bifurcations theory of
Rabinowitz [7].

For the results on the existence and multiplicity of positive solutions and nodal
solutions of second-order and higher-order two-point boundary value problems, see

Ambrosetti and Hess [1], Erbe and Wang [3], Ma and Thompson [5], Naito and
Tanaka [6], Rabinowitz [7], Ruf and Srikanth [9], Rynne [10] and the references

therein. For the results on the existence of sign-changing solutions of elliptic problems
and m-point boundary value problems for ordinary differential equations, see Castro,

Drábek and Neuberger [2] and Xu [12], respectively.
For a set D ⊂ � , we denote by #D the number of elements in D.

The rest of the paper is organized as follows: In Section 2, we define an auxiliary
function Γ(s) and prove some elementary properties of Γ(s) which will be needed
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in the study of the spectrum of multi-point boundary value problems. Section 3

studies the linear eigenvalue problem (1.1), (1.2), and we will describe the distribu-
tion of {λn}. In Section 4, (1.1), (1.2) is reduced to an equivalent integral equation,
and there we prove a result on the algebraic multiplicity of the eigenvalue of the

corresponding integral operator. Finally in Section 5, we state and prove the main
results.

2. Elementary properties of Γ(s)

Set

(2.1) Γ(s) = cos(s)−
m−2∑

i=1

αi cos(ηis).

Lemma 2.1. Let (C0) hold. Then Γ(s) is a periodic function.
���	�
���

. Let

q̂ = q1 . . . qm−2.

We show that Γ(s) is a 2q̂π-periodic function. Using the facts that cos(s+2π) = cos(s)
and cos ηi(s + 2πqi/pi) = cos(ηis) and ηiq̂ ∈ � , we conclude that

Γ(s + 2q̂π) = cos(s + 2q̂π)−
m−2∑

i=1

αi cos(ηi(s + 2q̂π))

= cos(s)−
m−2∑

i=1

αi cos(ηis + 2ηiq̂π))

= cos(s)−
m−2∑

i=1

αi cos(ηis) = Γ(s).

This completes the proof of the Lemma. �

Let

(2.2) q∗ = min{q̂ ∈ � : Γ(s + 2q̂π) = Γ(s), ∀ s ∈ � }.

Then

(2.3) q∗ 6 q1 . . . qm−2.
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Lemma 2.2. Let (C0) and (C1) hold. Then

(2.4) Γ(s) = 0

has a solution in (0, 
2 ).
���	�
���

. Since

Γ(0) = cos 0−
m−2∑

i=1

αi cos ηi0 > 0

and

Γ
(π

2

)
= 0−

m−2∑

i=1

αi cos
πηi

2
< 0

we see that
Γ(τ) = 0, for some τ ∈

(
0,

π
2

)
.

This completes the proof of the lemma. �

Set

(2.5) A :=
{

s : s > 0, cos s =
m−2∑

i=1

αi cos ηis

}
.

Lemma 2.3. Let (C0) and (C1) hold. Then the set A is infinite.
���	�
���

. This is an immediate consequence of Lemma 2.1 and 2.2. �

Lemma 2.4. Let (C0) and (C1) hold. Then there is no {sn} ∈ A with si 6= sj

(i 6= j), such that
lim

n→∞
sn = a, for some a ∈ � .

���	�
���
. Suppose on the contrary that there exists {sn} ⊆ A with si 6= sj

(i 6= j), such that
lim

n→∞
sn = a, for some a ∈ � .

We may assume that
s1 < s2 < . . . < sn < . . . < a.

By Rolle’s Theorem, there exist s
(1)
i ⊂ (si, si+1) such that

Γ′(s(1)
i ) = 0
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and consequently

Γ′(a) = lim
n→∞

Γ′(s(1)
i ) = 0.

Similarly we have that for each n ∈ �

Γ(n)(a) = 0.

Combining this with the Taylor Formula for Γ at s = a and using the fact that

|Γ(n)(s)| 6 2, s ∈ �

we conclude that
Γ(s) ≡ 0, s ∈ �

which contradicts (2.1). This completes the proof of the lemma. �

Now we can arrange the elements of the set A as follows:

(2.6) s1 < s2 < . . . < sn < . . . .

Lemma 2.5. Let (C0) and (C1) hold, and let

s1 < s2 < . . . < sn < . . .

be the sequence of the elements of A. Let

(2.7) l = #{t : Γ(t) = 0, t ∈ (0, 2q∗π]}.

Then for each n = kl + j with k ∈ � ∪ {0} and j ∈ {1, . . . , l}

(2.8) skl+j = 2kq∗π + sj .

���	�
���
. Lemma 2.4 yields that l is finite. (2.8) can be directly deduced from

Lemma 2.1. �

Lemma 2.6. Let (C0) and (C1) hold. Then

s1 <
π
2
.

���	�
���
. This is an immediate consequence of Lemma 2.2. �
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Lemma 2.7. Let (C0) and (C1) hold. Then

s2 >
π
2
.

���	�
���
. Suppose on the contrary that 0 < s2 6 1

2π. Then Γ(s1) = Γ(s2) = 0
implies that

(2.9) Γ′(τ) = 0, for some τ ∈ (s1, s2).

However

Γ′(s) = − sin s +
m−2∑

i=1

αiηi sin(ηis) < 0, s ∈
(
0,

π
2

)
.

This contradicts (2.9). �

3. Linear eigenvalue problems

Lemma 3.1. Let (C0) and (C1) hold. Let q∗ and l be as in (2.2) and (2.7),
respectively. Assume that the sequence of positive solutions of Γ(s) = 0 is

(3.1) s1 < s2 < . . . < sn < . . .

Then

(1) The sequence of positive eigenvalues of (1.1), (1.2) is exactly given by

(3.2) λn = s2
n, n = 1, 2, . . . ;

(2) For each n ∈ � , the eigenfunction corresponding to λn is

(3.3) ϕn(t) = cos
(√

λn t
)
;

(3) For each n = kl + j with k ∈ � and j ∈ {1, . . . , l},

(3.4)
√

λlk+j = 2kq∗π +
√

λj .

���	�
���
. It is easy to check that λ ∈ (0,∞) is an eigenvalue of (1.1), (1.2) if and

only if
Γ
(√

λ
)

= 0.

Hence the desired results follow from Lemmas 2.1–2.7. The proof is completed. �
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Let

(3.5) Zn = {t ∈ (0, 1) : cos
(√

λn t
)

= 0}

and let

(3.6) µn := #Zn

which is the number of elements in Zn.

Lemma 3.2. Let (C0) and (C1) hold. Then for each k ∈ � ,

(3.7) µkl+1 < µkl+2.

���	�
���
. By (3.4), we only need to show that

(3.8) µ1 < µ2.

Using Lemma 2.6 and 2.7, we conclude that µ1 = 0 and µ2 > 1.

Example 3.1. Let’s consider the linear three-point problem

u′′ + λu = 0, 0 < t < 1,(3.9)

u′(0) = 0, u(1) =
1
2
u
(1

4

)
.(3.10)

It is easy to check that

Γ(s) = cos s− 1
2

cos
(s

4

)

is a 8π-periodic function, and consequently,

q∗ = 4.

Moreover Γ has exactly eight zeros in (0, 8π]. They are

s1
.= 1.06752, s2

.= 4.88453,

s3
.= 8.07192, s4

.= 10.5429,

s5
.= 14.5898, s6

.= 17.0608,

s7
.= 20.2482, s8

.= 24.0652,
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and accordingly l = 8, and

µ1 = 0, µ2 = 2,

µ3 = 3, µ4 = 3,

µ5 = 5, µ6 = 5,

µ7 = 6, µ8 = 8.

Clearly

(3.11) µ1 < µ2 < µ3, µ6 < µ7 < µ8.

Γ has exactly eight zeros in (8π, 16π]. They are

s9
.= 26.2003, s10

.= 30.0173,

s11
.= 33.2047, s12

.= 35.6756,

s13
.= 39.7225, s14

.= 42.1935,

s15
.= 45.3809, s16

.= 49.1979.

Example 3.2. Let’s consider the linear three-point problem

u′′ + λu = 0, 0 < t < 1,(3.12)

u′(0) = 0, u(1) = u(η)(3.13)

where η ∈ (0, 1) is given. A simple computation yields that λ is a real eigenvalue

of (1.1), (1.2) if and only if

(3.14) λ ∈
{( 2kπ

1 + η

)2

: k = 0, 1, . . .
}
∪

{( 2kπ
1− η

)2

: k = 0, 1, . . .
}

and the eigenfunction corresponding to λn is

ϕn(t) = cos
(√

λn t
)
.

If we take η = 1
2 , then

λ1 = 02, ϕ1(t) = 1 has no zero in (0, 1);

λ2 =
(

4
3π

)2
, ϕ2(t) = cos 4

3πt has 1 zero 3
8 in (0, 1);

λ3 =
(

8
3π

)2
, ϕ3(t) = cos 8

3πt has 3 zeros 3
16 , 9

16 , 15
16 in (0, 1);
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λ4 = (4π)2, ϕ4(t) = cos 4πt has 4 zeros 1
8 , 8

3 , 5
8 , 7

8 in (0, 1);

λ5 =
(

16
3 π

)2
, ϕ5(t) = cos 163


 t has 5 zeros 3
32 , 9

32 , 15
32 , 21

32 , 27
32 in (0, 1);

λ6 =
(

20
3 π

)2
, ϕ6(t) = cos 20

3 πt has 7 zeros 3
40 , 9

40 , 15
40 , 21

40 , 27
40 , 33

40 , 39
40 in (0, 1);

λ7 = (8π)2, ϕ7(t) = cos(8πt) has 8 zeros 1
16 , 3

16 , 5
16 , 7

16 , 9
16 , 11

16 , 13
16 , 15

16 in (0, 1);

λ8 =
(

28
3 π

)2
, ϕ8(t) = cos 28

3 πt has 9 zeros 3
56 , 9

56 , 15
56 , 21

56 , 27
56 , 33

56 , 39
56 , 45

56 , 51
56 in (0, 1);

λ9 =
(

32
3 π

)2
, ϕ9(t) = cos 32

3 πt has 11 zeros 3
64 , 9

64 , 15
64 , 21

64 , 27
64 , 33

64 , 39
64 , 45

64 , 51
64 , 57

64 ,

63
64 in (0, 1);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly

(i) q∗ = 2, Γ(s) = cos s− cos 1
2s is a 4π-periodic function which has 3 zeros 0, 4

3π,
8
3π in [0, 4π), and consequently l = 3;

(ii) µ3k+1 < µ3k+2 < µ3k+3 for each k ∈ � ∪ {0};
(iii)

√
λ3k+j = 4kπ +

√
λj for j ∈ {1, 2, 3} and k ∈ � ∪ {0}.

Example 3.3. Let’s consider the linear two-point problem

u′′ + λu = 0, 0 < t < 1,(3.15)

u′(0) = 0, u(1) = 0.(3.16)

It is well-known that λn = ((n − 1
2 )π)2, n = 1, 2, . . ., and the corresponding eigen-

function ϕn(s) = cos(n− 1
2 )πt has exactly n− 1 simple zeros in (0,1). In this case,

(i) Γ(s) = cos s is a 2π-periodic function which has only 2 zeros in [0, 2π), and
consequently l = 2;

(ii) µ2k < µ2k+1 < µ2k+2 for each k ∈ � ∪ {0};
(iii)

√
λ2k+j = 2kπ +

√
λj for j ∈ {1, 2} and k ∈ � ∪ {0}.

4. The algebraic multiplicity of the eigenvalue

Let Y = C[0, 1] with the norm

‖u‖∞ = max
t∈[0,1]

|u(t)|.

Let E = C1[0, 1] with the norm

‖u‖ = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|u′(t)|.
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Let G(t, s) be the Green function for the second-order boundary value problem

−u′′(t) = 0, t ∈ (0, 1),(4.1)

u′(0) = u(1) = 0,(4.2)

which is explicitly given by

(4.3) G(t, s) =

{
1− t, 0 6 s 6 t 6 1,

1− s, 0 6 t 6 s 6 1.

Define K : E → E by

(4.4) (Ku)(t) =
∫ 1

0

G(t, s)u(s) ds +
1

1−∑m−2
i=1 ai

∑m−2

i=1
ai

∫ 1

0

G(ηi, s)u(s) ds.

Set

(4.5) H(t, s) = G(t, s) +
∑m−2

i=1 αiG(ηi, s)

1−∑m−2
i=1 αiηi

,

then (4.4) can be rewritten as

(4.6) (Ku)(t) =
∫ 1

0

H(t, s)u(s) ds.

Lemma 4.1. Let (C0) and (C1) hold. Then (1.1), (1.2) is equivalent to the

operator equation

(4.7) u = λKu.

Moreover K : E → E is completely continuous.

It follows from Lemma 4.1 that λ is a characteristic value of K if and only if λ is

a eigenvalue of (1.1), (1.2). This together with Lemma 3.1 implies that K has a
strictly increasing sequence of characteristic values λn = s2

n, n = 1, 2, . . ., each with

geometric multiplicity one (the geometric multiplicity of the characteristic values λn

is defined to be the dimension of the subspace ker(IE−λnK)). However to apply the
global bifurcation results of [7] it is necessary that the characteristic values of K have
odd algebraic multiplicity. (The algebraic multiplicity of the characteristic values λn

is defined to be the dimension of the subspace
∞⋃

r=1
(ker(IE −λnK))r. See [7, p. 490].)
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Lemma 4.2. Let (C0) and (C1) hold. Assume that the sequence of positive

solutions of Γ(s) = 0 is

(4.8) s1 < s2 < . . . < sn < . . . .

Then the sequence of positive characteristic values of the operator K is

(4.9) s2
1 < s2

2 < . . . < s2
n < . . . .

Moreover, the characteristic values s2
n have algebraic multiplicity one, and the cor-

responding eigenfunction is

(4.10) ϕn(t) = cos(snt).

���	�
���
. We only need to show that

ker(I − s2
nK) = ker(I − s2

nK)2.

Obviously, it is sufficient to show that

ker(I − s2
nK)2 ⊆ ker(I − s2

nK).

For any y ∈ ker(I − s2
nK)2, (I − s2

nK)y is the characteristic function of the linear
operator K corresponding to the eigenvalue s2

n if (I −λnK)y 6= θ. Then there exists
a nonzero constant γ such that

(4.11) (I − s2
nK)y = γ cos snt, t ∈ [0, 1].

By direct computation, we have

y′′(t) + s2
ny = −s2

nγ cos snt, t ∈ [0, 1],(4.12)

y′(0) = 0, y(1) =
m−2∑

i=1

αiy(ηi).(4.13)

Since (C1) and the fact y(1) =
m−2∑
i=1

αiy(ηi) imply

m−2∑

i=1

αi min
16i6m−2

y(ηi) 6
m−2∑

i=1

αiy(ηi) 6
m−2∑

i=1

αi max
16i6m−2

y(ηi),
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we have from the fact that y ∈ C[0, 1] that there exists η ∈ [η1, ηm−2] such that

y(η) =
∑m−2

i=1 αiy(ηi)∑m−2
i=1 αi

.

Set

(4.14) α =
m−2∑

i=1

αi;

then by (4.13), we get

(4.15) y(1) = αy(η).

Now (4.12), (4.13) yield

y′′(t) + s2
ny = −s2

nγ cos snt, t ∈ [0, 1],(4.16)

y′(0) = 0, y(1) = αy(η).(4.17)

It is easy to verify that the general solution of (4.16) is of the form

y(t) = C1 cos snt + C2 sin snt(4.18)

+
(−γ

4
cos 2snt

)
cos snt +

(
−snγ

2
t− γ

4
sin 2snt

)
sin snt.

That is,

(4.19) y(t) = C1 cos snt + C2 sin snt− γ

4
cos snt− snγ

2
t sin snt.

Applying the condition y′(0) = 0 and

y′(t) = −snC1 sin snt + snC2 cos snt(4.20)

+
snγ

4
sin snt− snγ

2
sin snt− s2

nγ

2
t cos snt

we obtain that C2 = 0. This together with (4.19) implies that

(4.21) y(1) = C1 cos sn −
γ

4
cos sn −

snγ

2
sin sn

and

(4.22) αy(η) = αC1 cos snη − αγ

4
cos snη − snγ

2
αη sin snη.
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Since y(1) = αy(η) and

(4.23) cos sn = α cos ηsn,

we have

(4.24) sin sn = αη sin ηsn.

Combining this with (4.23), we conclude that

cos2 sn =
1− α2η2

1− η2
> 1,

a contradiction. Therefore (I − s2
nK)y = 0, and consequently

ker(I − s2
nK)2 ⊆ ker(I − s2

nK).

This completes the proof of the lemma. �

5. The main results

Assume that

(C3) λl < λl+1;
(C4) there exists r ∈ {2, . . . , l − 1} such that λr−1 < λr < λr+1.

Remark 5.1. Combining (C3) with (3.4) and using Lemma 3.2, we conclude that

(5.1) λkl < λkl+1 < λkl+2, k ∈ � .

Remark 5.2. From (3.11), we know that (C4) holds for either i0 = 2 or i0 = 7.

Theorem 5.1. Let (C0), (C1), (C2) and (C3) hold. Assume that either

f0 < λkl+1 < f∞

or

f∞ < λkl+1 < f0

for some k ∈ � . Then the problem (1.3), (1.4) has two solutions u+
kl+1 and u−kl+1,

u+
kl+1 has exactly µkl+1 zeros in (0, 1) and is positive near t = 0, and u−kl+1 has

exactly µkl+1 zeros in (0, 1) and is negative near t = 0.
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Theorem 5.2. Let (C0), (C1), (C2) and (C3) hold. Assume that either (i) or
(ii) holds for some k ∈ � and j ∈ {0} ∪ � :
(i) f0 < λkl+1 < . . . < λ(k+j)l+1 < f∞;

(ii) f∞ < λkl+1 < . . . < λ(k+j)l+1 < f0.

Then the problem (1.3), (1.4) has 2(j +1) solutions u+
(k+i)l+1, u

−
(k+i)l+1, i = 0, . . . , j;

u+
(k+i)l+1 has exactly µ(k+i)l+1 zeros in (0, 1) and is positive near t = 0, and u−(k+i)l+1

has exactly µ(k+i)l+1 zeros in (0, 1) and is negative near t = 0.

Let ζ, ξ ∈ C( � ) be such that

f(u) = f0u + ζ(u), f(u) = f∞u + ξ(u),(5.2)

lim
|u|→0

ζ(u)
u

= 0, lim
|u|→∞

ξ(u)
u

= 0.(5.3)

Let

(5.4) ξ̃(u) = max
06|s|6u

|ξ(s)|;

then ξ̃ is nondecreasing and

(5.5) lim
u→∞

ξ̃(u)
u

= 0.

Let us consider

u′′ + λf0u + λζ(u) = 0,(5.6)

u′(0) = 0, u(1) =
m−2∑

i=1

αiu(ηi)

as a bifurcation problem from the trivial solution u ≡ 0.
In view of (4.6), Equation (5.6) can be converted to the equivalent equation

(5.7) u(t) =
∫ 1

0

H(t, s)[λf0u(s) + λζ(u(s))] ds.

Further we note that
‖K[ζ(u(·)]‖ = o(‖u‖)

for u near 0 in E, since

‖K[ζ(u(·))]‖ = max
t∈[0,1]

∣∣∣∣
∫ 1

0

H(t, s)ζ(u(s)) ds

∣∣∣∣ + max
t∈[0,1]

∣∣∣∣
∫ 1

0

Ht(t, s)ζ(u(s)) ds

∣∣∣∣
6 C‖ζ(u(·))‖∞.
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Let � = � ×E with the product topology. Let S+
k denote the set of functions in E

which have exactly k − 1 interior nodal (i.e. nondegenerate ) zeros in (0, 1) and are
positive near t = 0, and set S−k = −S+

k , and Sk = S+
k ∪ S−k . They are disjoint and

open in E. Finally, let Φ±k = � × S±k and Φk = � × Sk.

If (C3) holds, then we have from Remark 5.1 that for each k ∈ � ,

µlk < µlk+1 < µlk+2.

Thus the results of Rabinowitz [7] for (5.7) can be stated as follows: For each integer

k > 1 and each ν ∈ {+,−}, there exists a continuum of solutions Cν
kl+1 ⊂ � × E

satisfying

Cν
kl+1 \ {(λkl+1/f0, 0)} ⊆ Φν

kl+r

and joining (λkl+1/f0, 0) to infinity in Φν
kl+1.

Remark 5.3. It is worth remarking that if (C3) holds, then for p ∈ {2, . . . , l}
and k ∈ � , there exists a connected set Cν

kl+p of nontrivial solutions of (5.7) such
that Cν

kl+p ∪ (λkl+p/f0, 0) is closed and connected. However we give no information
on the interesting question of which of the following cases will occur:
(i) Cν

kl+p meets infinity in � ×E;

(ii) Cν
kl+p ∩ Cν′

kl+p′ 6= ∅ for some r′ ∈ {2, . . . , l} with p′ 6= p and ν′ ∈ {+,−}.
In fact, for the multi-point eigenvalue problem (1.1), (1.2), λkl+p < λkl+p′ does

not imply
µkl+p < µkl+p.

Let us recall Example 3.1. In this example, λ3 < λ4. But µ3 = µ4 = 3. So we don’t
know if C+

3 joins infinity or not.
���	�
���

of Theorem 5.1. It is clear that any solution of (5.6) of the form (1, u)
yields a solutions u of (1.3), (1.4). We will show that Cν

kl+1 crosses the hyperplane
{1}×E in � ×E. To do this, it is enough to show that Cν

kl+1 joins (λkl+1/f0, 0) to
(λkl+1/f∞,∞). Let (rn, yn) ∈ Cν

kl+1 satisfy

rn + ‖yn‖ → ∞.

We note that rn > 0 for all n ∈ � since (0, 0) is the only solution of (5.6) for λ = 0
and Cν

kl+1 ∩ ({0} ×E) = ∅.
Case 1. f0 < λkl+1 < f∞. In this case, we show that

(λkl+1

f∞
,
λkl+1

f0

)
⊆ {λ ∈ � : ∃(λ, u) ∈ Cν

kl+1}

We divide the proof into two steps.
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Step 1. We show that if there exists a constant number M > 0 such that

rn ⊂ (0, M ],

then Cν
kl+1 joins (λkl+1/f0, 0) to (λkl+1/f∞,∞).

In this case it follows that ‖yn‖ → ∞. We divide the equation

(5.8) y′′n + rnf∞yn + rnξ(yn(t)) = 0

by ‖yn‖ and set yn = yn

‖yn‖ . Since yn is bounded in C2[0, 1], choosing a subsequence
and relabelling if necessary, we see that yn → y for some y ∈ E with ‖y‖ = 1.
Moreover, from (5.3) and the fact that ξ̃ is nondecreasing, we have

(5.9) lim
n→∞

|ξ(yn(t))|
‖yn‖

= 0

since |ξ(yn(t))|/‖yn‖ 6 ξ̃(|yn(t)|)/‖yn‖ 6 ξ̃(‖yn‖∞)/‖yn‖ 6 ξ̃(‖yn‖)/‖yn‖. Thus

y(t) =
∫ 1

0

H(t, s)r̄f∞y(s) ds

where r̄ := lim
n→∞

rn, again choosing a subsequence and relabelling if necessary. Thus

y′′ + r̄f∞y = 0,(5.10)

y′(0) = 0, y(1) =
m−2∑

i=1

αiy(ηi).

We claim that

(5.11) y ∈ Sν
kl+1.

Suppose on the contrary that y /∈ Sν
kl+1. Since y 6= 0 is a solution of (5.10), all

zeros of y in [0, 1] are non-degenerate. It follows that y ∈ Sι
h 6= Sν

kl+1 for some h ∈ �
and ι ∈ {+,−}. By the openness of Sι

h, we know that there exists a neighborhood
U(y, δ) such that

U(y, δ) ⊂ Sι
h

which contradicts the facts that yn → y in E and yn ∈ Cν
kl+1. Therefore y ∈ Sν

kl+1.
By Lemma 3.1 and 3.2, r̄f∞ = λkl+1, so that

r̄ =
λkl+1

f∞
.

Thus Cν
kl+1 joins (λkl+1/f0, 0) to (λkl+1/f∞,∞).
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Step 2. We show that there exists a constant M such that rn ∈ (0, M ], for all n.
Suppose there is no such M . Choosing a subsequence and relabelling if necessary,

it follows that

(5.12) lim
n→∞

rn = ∞.

Let

τ(1, n) < τ(2, n) < . . . < τ(µkl+1 − 1, n)

denote the zeros of yn in (0, 1), and set

τ(0, n) = 0, τ(µkl+1, n) = 1

for convenience. Then there exists a subsequence {τ(1, nm)} ⊆ {τ(1, n)} such that

lim
m→∞

τ(1, nm) := τ(1,∞).

Clearly
lim

m→∞
τ(0, nm) := τ(0,∞) = 0.

We claim that

(5.13) τ(1,∞)− τ(0,∞) = 0.

Suppose on the contrary that

(5.14) τ(0,∞) < τ(1,∞).

Define a function p : (0,∞)× � → � by

(5.15) p(r, u) :=





r
f(u)

u
, u 6= 0,

rf0, u = 0.

Then by (C2), there exist two positive numbers %1 and %2, such that

(5.16) r%1 6 r
f(u)

u
6 r%2, for all u > 0.

Using (5.14), (5.16), and the fact that lim
m→∞

rnm = ∞, we conclude that there exists
a closed interval I1 ⊂ (τ(0,∞), τ(1,∞)) such that

lim
m→∞

p(rnm , ynm(t)) = ∞, uniformly for t ∈ I1.
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It follows that the solution ynm of the equation

y′′nm
(t) = p(rnm , ynm(t))ynm(t)

must change sign on I1. However, this contradicts the fact that for all m sufficiently
large we have I1 ⊂ (τ(0, nm), τ(1, nm)) and

νynm(t) > 0, t ∈ (τ(0, nm), τ(1, nm)).

Therefore, (5.13) holds.

Next, we work with {(τ(1, nm), τ(2, nm))}. It is easy to see that there is a subse-
quence {τ(2, nmj )} ⊆ {τ(2, nm)}, such that

lim
j→∞

τ(2, nmj ) := τ(2,∞).

Clearly

(5.17) lim
j→∞

τ(1, nmj ) = τ(1,∞).

We claim that

(5.18) τ(2,∞)− τ(1,∞) = 0.

Suppose on the contrary that τ(1,∞) < τ(2,∞). Then from (5.15) and (5.16) and
the fact that lim

j→∞
rnmj

= ∞, we know that there exists a closed interval I2 ⊂
(τ(0,∞), τ(1,∞)) such that

lim
j→∞

p(rnmj
, ynmj

) = ∞, uniformly for t ∈ I2.

This implies that the solution ynmj
of the equation

y′′nmj
(t) = p(rnmj

, ynmj
(t))ynmj

(t)

must change sign on I2. However, this contradicts the fact that for all j sufficiently
large we have I2 ⊂ (τ(1, nmj ), τ(2, nmj )) and

νynmj
(t) < 0, t ∈ (τ(1, nmj ), τ(2, nmj )).

This proves that (5.18) holds.
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By a similar argument to that used to obtain (5.13) and (5.18), we can show that

for each s ∈ {2, . . . , µlk+1 − 1}

(5.19) τ(s + 1,∞)− τ(s,∞) = 0.

Taking a subsequence and relabelling it as {(rn, yn)} if necessary, it follows that for
each s ∈ {0, . . . , µlk+1 − 1}

(5.20) lim
n→∞

(
τ(s + 1, n)− τ(s, n)

)
= 0.

But this is impossible since

1 = τ(µlk+1, n)− τ(0, n) =
µlk+1−1∑

s=0

(
τ(s + 1, n)− τ(s, n)

)

for all n.

Therefore

|rn| 6 M

for some constant number M > 0, independent of n ∈ � .
Case 2. f∞ < λkl+1 < f0.

In this case, we have
λkl+1

f0
< 1 <

λkl+1

f∞
.

If (rn, yn) ∈ Cν
kl+1 is such that

lim
n→∞

(rn + ‖yn‖) = ∞

and

lim
n→∞

rn = ∞,

then (λkl+1

f0
,
λkl+1

f∞

)
⊆ {λ ∈ (0,∞) : (λ, u) ∈ Cν

kl+1}

and consequently

({1} ×E) ∩ Cν
kl+1 6= ∅.

Assume that there exists M > 0, such that for all n ∈ � ,

rn ∈ (0, M ].
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Applying a similar argument to that used in Step 1 of Case 1, after taking a subse-

quence and relabelling, if necessary, it follows that

(rn, yn) →
(λkl+1

f∞
,∞

)
, n →∞.

Again Cν
kl+1 joins (λkl+1/f0, 0) to (λkl+1/f∞,∞) and the result follows. �

���	�
���
of Theorem 5.2. Repeating the arguments used in the proof of Theo-

rem 1, we see that for each ν ∈ {+,−} and each i ∈ {0, 1, . . . , j}

Cν
l(k+i)+1 ∩ ({1} ×E) 6= ∅.

The result follows. This completes the proof of Theorem 5.2. �

By using the similar method, we can establish the following results under the

condition (C4).

Theorem 5.3. Let (C0), (C1), (C2) and (C4) hold. Assume that either

f0 < λkl+r < f∞

or

f∞ < λkl+r < f0

for some k ∈ � . Then the problem (1.3), (1.4) has two solutions u+
kl+r and u−kl+r,

u+
kl+1 has exactly µkl+r zeros in (0, 1) and is positive near t = 0, and u−kl+r has

exactly µkl+1 zeros in (0, 1) and is negative near t = 0.

Theorem 5.4. Let (C0), (C1), (C2) and (C4) hold. Assume that either (i) or
(ii) holds for some k ∈ � and j ∈ {0} ∪ � :
(i) f0 < λkl+r < . . . < λ(k+j)l+r < f∞;

(ii) f∞ < λkl+r < . . . < λ(k+j)l+r < f0.

Then the problem (1.3), (1.4) has 2(j +1) solutions u+
(k+i)l+r, u−(k+i)l+r , i = 0, . . . , j,

u+
(k+i)l+r has exactly µ(k+i)l+r zeros in (0, 1) and is positive near t = 0, and

u−(k+i)l+r has exactly µ(k+i)l+r zeros in (0, 1) and is negative near t = 0.
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