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Abstract. Let G = (V, E) be a simple graph. A subset S ⊆ V is a dominating set of G,
if for any vertex u ∈ V − S, there exists a vertex v ∈ S such that uv ∈ E. The domination
number, denoted by γ(G), is the minimum cardinality of a dominating set. In this paper
we will prove that if G is a 5-regular graph, then γ(G) 6 5

14n.
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1. Introduction

Let G = (V, E) be a simple graph and v be a vertex in V . The open neighborhood
of v, denoted by N(v), is the set of vertices adjacent to v, i.e., N(v) = {u ∈ V : uv ∈
E}. Let S ⊆ V , G[S] denotes the subgraph of G induced by S. For any two
disjoint vertex subsets V1, V2 ⊆ V , E[V1, V2] denotes the set of edges between V1 and

V2. δ(G) denotes the minimum degree of the vertices of G. A subset S ⊆ V is a
dominating set of G, if for any vertex u ∈ V − S, there exists a vertex v ∈ S such
that uv ∈ E. The domination number, denoted by γ(G), is the minimum cardinality
of a dominating set. A dominating set of cardinality γ(G) is called a γ-set of G.

Theorem 1 ([1], [2]). For any graph G,

γ(G) 6 n

[
1− δ(G)

( 1
δ(G) + 1

)1+1/δ(G)
]
.

When δ(G) is small, the best upper bounds on γ(G) have been obtained.
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Theorem 2 ([6]). If G is a graph with δ(G) > 1, then γ(G) 6 n/2.

Theorem 3 ([5]). Let G be a connected graph of order n > δ. If δ(G) > 2 and
G /∈ A, then γ(G) 6 2

5n.

Figure 1. Graphs in family A.

Theorem 4 ([7]). If G is a graph with δ(G) > 3, then γ(G) 6 3
8n.

According to the above conclusions, Haynes et al. posed the following conjecture.

Conjecture 1 ([3]). For any graphG with δ(G) > k (k > 4), γ(G) 6 kn/(3k − 1).

By Theorem 1, Conjecture 1 is true for k > 7. So Conjecture 1 is open only for
the graphs G with minimum degree δ(G) ∈ {4, 5, 6}. In [4], Liu and Sun proved
that Conjecture 1 is true for 4-regular graphs. In this paper we will prove that
Conjecture 1 is true for 5-regular graphs.

2. Main results

Let G be a simple graph, and let S be a γ-set of G. For a vertex u ∈ V − S,
if |N(u) ∩ S| = k, then u is a k-neighbor of S. Define Nk(S) = {u ∈ V − S :
u is a k-neighbor of S}. If u ∈ N1(S) and v is the only vertex in N(u) ∩ S, then
u is a private neighbor of v (with respect to S). For any vertex v ∈ S, denote

Nk(v) = N(v) ∩Nk(S). For {v0, v1} ⊆ S, denote Nk(v0, v1) = Nk(v0) ∪Nk(v1). Let
J0 be the set of vertices in S with no private neighbors, let J1 be the set of vertices

in S with one private neighbor and let J2 be the set of vertices in S with at least two
private neighbors. Thus J0, J1 and J2 is a partition of S. For v ∈ J1, let P (v) denote
the only private neighbor of the vertex v. Let i(S) denote the number of isolates
in G[S].
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Theorem 5. If G is a 5-regular graph with n vertices, then γ(G) 6 5
14n.

���������
. Without loss of generality, amongst all γ-sets of G, let S be chosen so

that

(1) i(S) is maximized.

(2) Subject to (1), |N1(S)| is minimized.
(3) Subject to (2), |N2(S)| is minimized.

Before proceeding further, we prove the following claims.

Claim 1. Each vertex v ∈ J0 ∪ J1 is an isolate in G[S].

���������
. If v ∈ J0, then by the definition of J0, v is an isolate in G[S]. Suppose

that there is a vertex v ∈ J1 such that v is adjacent to a vertex of S. Let S ′ =
(S −{v})∪ {P (v)}. Then S ′ is a γ-set of G such that i(S ′) > i(S). This contradicts
our choice of S. �

Claim 2. For any vertex u ∈ V − S, if v1, v2 ∈ N(u) ∩ J0 (v1 6= v2), then
|N2(v1) ∩N2(v2)| > 2.

���������
. If |N2(v1)∩N2(v2)| = 0, then S′ = (S−{v1, v2})∪{u} is a dominating

set of G such that |S′| < |S|, a contradiction. If |N2(v1) ∩ N2(v2)| = 1, let S′ =
(S − {v1, v2}) ∪ (N2(v1) ∩ N2(v2)). Then S′ is a dominating set of G such that

|S′| < |S|, a contradiction. Thus we have |N2(v1) ∩N2(v2)| > 2. �

Claim 3. For any vertex v ∈ J1, if N2(v) = ∅ and N4(v) ∪ N5(v) 6= ∅, then
N(P (v)) ∩ (N3(S) ∪N4(S)) 6= ∅.
���������

. First we prove that N(P (v)) ∩ N1(S) = ∅. Suppose, to the contrary,
that N2(v) = ∅ but |N(P (v)) ∩N1(S)| > 1. Let S′ = (S − {v}) ∪ {P (v)}. Then S ′

is a γ-set of G such that i(S ′) = i(S) and |N1(S′)| < |N1(S)|, a contradiction.
Now we prove that |N(P (v)) ∩ N2(S)| 6 3. Suppose, to the contrary, that

|N(P (v)) ∩ N2(S)| = 4. Let S′ = (S − {v}) ∪ {P (v)}. Then S ′ is a γ-set of G

and i(S′) = i(S). Since N2(v) = ∅, |N1(S′)| = |N1(S)|. Since N4(v) ∪ N5(v) 6= ∅,
|N2(S′)| < |N2(S)|, also a contradiction.
So, |N(P (v)) ∩ (N1(S) ∪N2(S))| 6 3. Then N(P (v)) ∩ (N3(S) ∪N4(S)) 6= ∅. �
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Claim 4. Assume v0 ∈ J0, u1 ∈ N(v0), v1 ∈ N(u1) ∩ J1, N2(v1) = ∅ and
N4(v1) ∪ N5(v1) 6= ∅. If for any v ∈ J0 and v 6= v0, N(v0) ∩ N(v) = ∅, then there
exists a vertex w ∈ N(P (v1))∩(N3(S)∪N4(S)) such that N(w)∩(S−{v0}) ⊆ J1∪J2.
���������

. Since N2(v1) = ∅ and N4(v1) ∪ N5(v1) 6= ∅, by Claim 3, N(P (v1)) ∩
(N3(S)∪N4(S)) 6= ∅. Assume w ∈ N(P (v1))∩ (N3(S)∪N4(S)). Then N(w)∩ (S −
{v0}) ⊆ J1 ∪ J2. Suppose that N(w) ∩ (J0 − {v0}) 6= ∅. Without loss of generality,
assume b ∈ N(w) ∩ (J0 − {v0}). We claim that N(v0) ∩N(b) 6= ∅. Suppose, to the
contrary, that N(v0) ∩N(b) = ∅. Let S′ = (S − {b, v0, v1}) ∪ {u1, w}. Then S′ is a

dominating set of G such that |S ′| < |S|, a contradiction. Then N(v0) ∩N(b) 6= ∅,
which is a contradiction with the assumption. �

In order to prove the theorem, we only need to prove that n−|S| > 9
5 |S|. To prove

that n−|S| > 9
5 |S|, we are going to work out a function g : E[V −S, S] → [0, 1] such

that
(a) n− |S| > ∑

e∈E[V −S,S]

g(e) and

(b) for each v ∈ S, γ(v) =
∑

u∈N(v)−S

g(uv) > 9
5 .

If such a function g exists, then n−|S| > ∑
e∈E[V −S,S]

g(e) =
∑
v∈S

( ∑
u∈N(v)−S

g(uv)
)

=
∑
v∈S

γ(v) > 9
5 |S|. Therefore, γ(G) = |S| 6 5

14n.

First we define two auxiliary functions.
For any edge e = uv ∈ E[V − S, S], let

f(uv) =

{
1, u ∈ N1(v),
1
5 , otherwise.

For any vertex u ∈ V − S, let

ϕ(u) =





3
5 , u ∈ N2(v),
2
5 , u ∈ N3(v),
1
5 , u ∈ N4(v),

0, u ∈ N1(v) ∪N5(v).

It is easy to verify that
∑

e∈E[V −S,S]

f(e) +
∑

u∈V −S

ϕ(u) = n− |S|.

Now we are going to construct the function g. In each step, we will guarantee that∑
e∈E[V−S,S]

g(e) 6
∑

e∈E[V−S,S]

f(e) +
∑

u∈V−S

ϕ(u) = n− |S| and for any vertex v0 ∈ S,

γ(v0) > 9
5 .
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If v0 ∈ J2, let

g(uv0) =

{
f(uv0), u ∈ N1(v0),

0, otherwise.

Since v0 has at least two private neighbors and f(uv0) = 1 for u ∈ N1(v0), γ(v0) =∑
u∈N(v0)−S

g(uv0) > 2 > 9
5 .

If v0 ∈ J1, by Claim 1, v0 is an isolate in G[S]. For u ∈ N(v0), let g(uv0) = f(uv0).
Then

f(uv0) =

{
1, u ∈ N1(v0),
1
5 , otherwise.

Hence we have γ(v0) = g(P (v0)v0) +
∑

u∈N(v0)−{P (v0)}
g(uv0) = 1 + 4× 1

5 = 9
5 .

In the following we assume v0 ∈ J0. By Claim 1, v0 is an isolate in G[S]. First we
prove the following claim.

Claim 5. Assume v0 ∈ J0, u1 ∈ N(v0), v1 ∈ N(u1) ∩ J1 and |N(u1) ∩ J0| = t

(t ∈ {1, 2}). If u2 ∈ N2(v1), then the edge u1v0 can gain at least 1
10t from u2 without

obstructing the other vertices v of S such that γ(v) > 9
5 . If there exists a vertex

w ∈ N(P (v1)) ∩ (N3(S) ∪N4(S)) such that N(w) ∩ (S − {v0}) ⊆ J1 ∪ J2, then the

edge u1v0 can gain at least 1
20t from w without obstructing other vertices v of S such

that γ(v) > 9
5 .

���������
. First assume u2 ∈ N2(v1). Then ϕ(u2) = 3

5 . Let N(v1)−{u1, u2, P (v1)}

= {u3, u4}. Since γ(v1) = g(P (v1)v1)+
4∑

i=1

g(uiv1) = 1+4× 1
5 = 9

5 , the vertex u2 has

no contribution to γ(v1). First we divide equally the amount ϕ(u2) between the two
edges joining u2 to S. Thus u2v1 can gain 1

2ϕ(u2) from u2. Then we divide equally
1
2ϕ(u2) obtained by u2v1 among the edges u1v1, u3v1 and u4v1. Thus u1v1 can

gain 1
6ϕ(u2). Finally we divide equally 1

6ϕ(u2) obtained by u1v1 among the edges
joining u1 to J0. Therefore the edge u1v0 can gain 1

6tϕ(u2) = 1
10t from u2.

Now assume w ∈ N(P (v1))∩(N3(S)∪N4(S)) such thatN(w)∩(S−{v0}) ⊆ J1∪J2.
Thus

ϕ(w) =

{
2
5 , if w ∈ N3(S),
1
5 , if w ∈ N4(S).

Let N(v1) − {u1, P (v1)} = {u2, u3, u4}. Let b ∈ N(w) ∩ (S − {v0}), since N(w) ∩
(S − {v0}) ⊆ J1 ∪ J2, γ(b) =

∑
u∈N(b)−S

g(ub) > 9
5 . Thus the vertex w has no

contribution to γ(b). If w ∈ N3(S), first we divide equally ϕ(w) between the two
edges joining w to V − S. Thus the edge P (v1)w can gain 1

2ϕ(w) from w. Then
we divide equally 1

2ϕ(w) obtained by the edge P (v1)w among the edges u1v1, u2v1,
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u3v1 and u4v1. Thus the edge u1v1 can gain 1
8ϕ(w). Finally we divide equally 1

8ϕ(w)
obtained by the edge u1v1 among the edges joining u1 to J0. Thus the edge u1v0

can gain 1
8tϕ(w) = 1

20t from w. If w ∈ N4(S), first we divide equally ϕ(w) among
the edges u1v1, u2v1, u3v1 and u4v1. Thus the edge u1v1 can gain 1

4ϕ(w) from w.

Then we divide equally 1
4ϕ(w) obtained by u1v1 among the edges joining u1 to J0.

So the edge u1v0 can also gain 1
4tϕ(w) = 1

20t from w. �

For uv0 ∈ E[V −S, S], if the edge uv0 can gain the amount α without obstructing

the other vertices v of S such that γ(v) > 9
5 , we say that v0 can gain the amount α.

Let N(v0) = {u1, u2, u3, u4, u5}.

Case 1.
∣∣∣

5⋃
i=1

N(ui) ∩ J0

∣∣∣ > 3.

Assume there are three different vertices v0, v1, v2 ∈
5⋃

i=1

N(ui) ∩ J0. By Claim 2,

N(v0) ∩ N(vi) 6= ∅, (i = 1, 2). By Claim 2, |N2(v0) ∩ N2(vi)| > 2 (i = 1, 2). Thus
|N2(v0)| > 4, |N2(v1)| > 2 and |N2(v2)| > 2. Since for u ∈ N2(S), ϕ(u) = 3

5 . Let
α =

∑
u∈N(v0)

(f(uv0) + 1
2ϕ(u)) +

∑
u∈N(v1)

(f(uv1) + 1
2ϕ(u)) +

∑
u∈N(v2)

(f(uv2) + 1
2ϕ(u)).

Then α > 15× 1
5 +8× 1

2× 3
5 = 27

5 = 3× 9
5 . So for i ∈ {0, 1, 2}, we can define g(uvi) such

that
∑

u∈N(vi)

g(uvi) = 1
3α. Then γ(v0) = γ(v1) = γ(v2) =

∑
u∈N(vi)

g(uvi) = 1
3α > 9

5 .

Case 2.
∣∣∣

5⋃
i=1

N(ui) ∩ J0

∣∣∣ = 2.

Assume
5⋃

i=1

N(ui) ∩ J0 = {v0, v1}. By Claim 2, |N2(v0) ∩ N2(v1)| > 2. Without

loss of generality, we assume u1, u2 ∈ N2(v0) ∩ N2(v1). Then ϕ(u1) = ϕ(u2) = 3
5 .

Let N(v1)− {u1, u2} = {u6, u7, u8}.
Case 2.1 |(N(v0) ∪N(v1)) ∩N3(S)| > 1.
With loss of generality, assume u3 ∈ N3(S). Then ϕ(u3) = 2

5 . Let

g(uiv0) =

{
f(uiv0) + 1

2ϕ(ui), i = 1, 2, 3,

f(uiv0), i = 4, 5,

and

g(uiv1) =





f(uiv1) + 1
2ϕ(ui), i = 1, 2,

f(uiv1) + 1
2ϕ(u3), i = 6,

f(uiv1), i = 7, 8.

Then γ(v0) = γ(v1) =
5∑

i=1

g(uiv0) = 5× 1
5 + 2× 1

2 × 3
5 + 1

2 × 2
5 = 9

5 .
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Case 2.2. |(N(v0) ∪N(v1)) ∩N3(S)| = 0.
Case 2.2.1. |(N2(v0, v1) ∪N4(v0, v1))− {u1, u2}| > 2.
Without loss of generality, assume u3, u4 ∈ N2(S) ∪N4(S). For i ∈ {3, 4},

ϕ(ui) =

{
3
5 , if ui ∈ N2(S),
1
5 , if ui ∈ N4(S).

If ui ∈ N2(S), then the vertices v0 and v1 can gain 1
2ϕ(ui) = 3

10 from ui. If
ui ∈ N4(S), then v0 and v1 can gain ϕ(ui) = 1

5 from ui. Thus v0 and v1 can gain at

least 2× 1
5 from u3 and u4. So we let

g(uiv0) =





f(uiv0) + 1
2ϕ(ui), i = 1, 2,

f(uiv0) + 1
5 , i = 3,

f(uiv0), i = 4, 5,

and

g(uiv1) =





f(uiv1) + 1
2ϕ(ui), i = 1, 2,

f(uiv1) + 1
5 , i = 6,

f(uiv1), i = 7, 8.

Then γ(v0) = γ(v1) =
5∑

i=1

g(uiv0) = 5× 1
5 + 2× 1

2 × 3
5 + 1

5 = 9
5 .

Case 2.2.2. |(N2(v0, v1) ∪N4(v0, v1))− {u1, u2}| 6 1.
Assume u4, u5 ∈ N5(S). Then u3 ∈ N2(S) ∪N4(S) ∪N5(S).
Firstly, we look at u4, we will prove that v0 and v1 can gain at least 1

10 . Denote

N(u4) = {v0, v1, v2, v3, v4}. Since
8⋃

i=1

N(ui)∩ J0 = {v0, v1}, {v2, v3, v4} ⊆ J1 ∪ J2. If

{v2, v3, v4} ∩ J2 6= ∅, without loss of generality, assume v2 ∈ J2 and u′, u′′ are two
private neighbors of v2. Then f(u4v2) = 1

5 . Since γ(v2) > g(u′v2)+ g(u′′v2) = 2, the
edge u4v2 has no contribution to γ(v2). Thus v0 and v1 can gain 1

5 from u4v2.

If {v2, v3, v4} ⊆ J1, then we consider the following two subcases.

Case 2.2.2.1. |E[{v2, v3, v4}, N2(S)]| > 1.
Without loss of generality, assume v2u

′ ∈ E[{v2}, N2(S)]. By Claim 5, v0 and v1

can gain 1
10 from u′.

Case 2.2.2.2. |E[{v2, v3, v4}, N2(S)]| = 0.
For i ∈ {2, 3, 4}, since N5(vi) 6= ∅, by Claim 3, N(P (vi)) ∩ (N3(S) ∪N4(S)) 6= ∅.

Let wi ∈ N(P (vi)) ∩ (N3(S) ∪N4(S)). By the definition of ϕ(wi),

ϕ(wi) =

{
2
5 , if wi ∈ N3(S),
1
5 , if wi ∈ N4(S).
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If
4⋃

i=2

N(wi) ∩ S ⊆ J1 ∪ J2, then, by Claim 5, v0 and v1 can gain 3× 1
20 from w2,

w3 and w4.

If
4⋃

i=2

N(wi)∩J0 6= ∅, without loss of generality, assume b ∈ N(w2)∩J0. If b 6= v0,

we claim that N(v0)∩N(b) 6= ∅. Suppose, to the contrary, thatN(v0)∩N(b) = ∅. Let
S′ = (S−{b, v0, v2})∪{u4, w2}. Then S′ is a dominating set of G such that |S ′| < |S|,
a contradiction. Thus b = v1. Since |N4(v0, v1)| 6 1, we have |N4(v0, v1)| = 1.
Without loss of generality, we can assume w2 = u3. If b = v0, then w2 = u3 also.
Since |N4(v0, v1)| = 1, (N(w3) ∪N(w4)) ∩ S ⊆ J1 ∪ J2. By Claim 5, v0 and v1 can

gain 2× 1
20 = 1

10 from w3 and w4.
Therefore, we have proved that if |N4(v0, v1)| = 1, v0 and v1 can gain at least 1

10

from w2, w3, w4, and if |N4(v0, v1)| = 0, v0 and v1 can gain at least 3
20 from w2, w3

and w4.

Secondly, we look at u5. Similar to u4, we can prove that if |N4(v0, v1)| = 1, v0

and v1 can gain at least 1
10 and if |N4(v0, v1)| = 0, v0 and v1 can gain at least 3

20 .

Finally, we look at u3. If u3 ∈ N2(S), then ϕ(u3) = 3
5 . We divide equally ϕ(u3)

between the two edges of E[V − S, S] incident with u3. Thus v0 and v1 can gain at

least 1
2ϕ(u3) = 3

10 from u3. If u3 ∈ N4(S), then ϕ(u3) = 1
5 . Thus v0 and v1 can gain

ϕ(u3) = 1
5 from u3. Therefore, v0 and v1 can gain at least ϕ(u3) = 1

5 from u3. If

u3 ∈ N5(S), then |N5(v0)| = 3. Similar to u4 and u5, v0 and v1 can gain 3
20 .

Now we give a brief summary. If |N2(v0, v1) ∪N4(v0, v1)| = 1, v0 and v1 can gain
at least 1

5 + 2× 1
10 = 2

5 . If |N2(v0, v1) ∪N4(v0, v1)| = 0, v0 and v1 can gain at least

3× 3
20 = 9

20 > 2
5 . Therefore, v0 and v1 can gain at least 2

5 . So let

g(uiv0) =





f(uiv0) + 1
2ϕ(ui), i = 1, 2,

f(uiv0) + 1
5 , i = 3,

f(uiv0), i = 4, 5,

and

g(uiv1) =





f(uiv1) + 1
2ϕ(ui), i = 1, 2,

f(uiv1) + 1
5 , i = 6,

f(uiv1), i = 7, 8.

Then γ(v0) = γ(v1) =
5∑

i=1

g(uiv0) = 5× 1
5 + 2× 1

2 × 3
5 + 1

5 = 9
5 .

Case 3.
∣∣∣

5⋃
i=1

N(ui) ∩ J0

∣∣∣ = 1.

In this case, we have
5⋃

i=1

N(ui) ∩ J0 = {v0}. Thus
5⋃

i=1

N(ui)− {v0} ⊆ J1 ∪ J2.
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Case 3.1. |N2(v0)| > 3.
Without loss of generality, assume u1, u2, u3 ∈ N2(v0). Then ϕ(u1) = ϕ(u2) =

ϕ(u3) = 3
5 . For each ui (i ∈ {1, 2, 3}), we divide equally ϕ(ui) between the two edges

of E[V − S, S] incident with ui. Then the edge uiv0 gains 1
2ϕ(ui) = 3

10 from ui. So

let

g(uiv0) =

{
f(uiv0) + 1

2ϕ(ui), i = 1, 2, 3,

f(uv0), i = 4, 5.

Then γ(v0) =
5∑

i=1

g(uiv0) = 5× 1
5 + 3× 1

2 × 3
5 = 19

10 > 9
5 .

Case 3.2. |N2(v0)| = 2.
Assume N2(v0) = {u1, u2}. Then ϕ(u1) = ϕ(u2) = 3

5 .

Case 3.2.1. |N3(v0) ∪N4(v0)| > 1.
Assume u3 ∈ N3(v0) ∪N4(v0). Then

ϕ(u3) =

{
2
5 , if u3 ∈ N3(S),
1
5 , if u3 ∈ N4(S).

Thus the edge u3v0 can gain at least 1
5 from u3. So let

g(uiv0) =





f(uiv0) + 1
2ϕ(ui), i = 1, 2,

f(uiv0) + 1
5 , i = 3,

f(uiv0), i = 4, 5.

Then γ(v0) =
5∑

i=1

g(uiv0) = 5× 1
5 + 2× 1

2 × 3
5 + 1

5 = 9
5 .

Case 3.2.2. |N5(v0)| = 3.
Then u3 ∈ N5(v0). Denote N(u3) = {v0, v1, v2, v3, v4}. Then for i ∈ {1, 2, 3, 4},

vi ∈ J1 ∪ J2. If vi ∈ J2, then the edge uiv0 can gain f(u3v0) = 1
5 from u3vi.

Otherwise, vi ∈ J1. IfN2(vi) 6= ∅, assume u′ ∈ N2(vi). By Claim 5, the edge u3v0 can

gain 1
10 from u′. If N2(v3) = ∅, by Claim 3, there exists a vertex wi ∈ N3(S)∪N4(S)

such that N(wi) ∩ (S − {v0}) ⊆ J1 ∪ J2. By Claim 5, the edge u3v0 can gain 1
20

from wi. Hence, the edge u3v0 can gain at least 4× 1
20 = 1

5 altogether. So let

g(uiv0) =





f(uiv0) + 1
2ϕ(ui), i = 1, 2,

f(uiv0) + 1
5 , i = 3,

f(uiv0), i = 4, 5.

Then γ(v0) =
5∑

i=1

g(uiv0) = 5× 1
5 + 2× 1

2 × 3
5 + 1

5 = 9
5 .
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Case 3.3. |N2(v0)| 6 1.

Case 3.3.1. |N3(v0)| > 2.
Assume u1, u2 ∈ N3(v0). Then ϕ(u1) = ϕ(u2) = 2

5 . Let

g(uiv0) =

{
f(uiv0) + ϕ(ui), i = 1, 2,

f(uiv0), i = 3, 4, 5.

Then γ(v0) =
5∑

i=1

g(uiv0) = 5× 1
5 + 2× 2

5 = 9
5 .

Case 3.3.2. |N3(v0)| = 1.

Case 3.3.2.1. |N2(v0) ∪N4(v0)| > 2.
Since

ϕ(u) =





3
5 , u ∈ N2(v0),
2
5 , u ∈ N3(v0),
1
5 , u ∈ N4(v0),

for i ∈ {1, 2, 3, 4, 5}, let

g(uiv0) =





f(uiv0) + 1
2ϕ(ui), if ui ∈ N2(v0),

f(uiv0) + ϕ(ui), if ui ∈ N3(v0) ∪N4(v0),

f(uiv0), if ui ∈ N2(v0).

Then γ(v0) =
5∑

i=1

g(uiv0) > 5× 1
5 + 2

5 + 2× 1
5 = 9

5 .

Case 3.3.2.2. |N2(v0) ∪N4(v0)| 6 1.
Assume N3(v0) = {u2} and u3, u4, u5 ∈ N5(v0). Then ϕ(u2) = 2

5 and u1 ∈
N2(S) ∪ N4(S) ∪ N5(S). Denote N(u2) ∩ S = {v0, v21, v22} and N(uk) ∩ S =

{v0, vk1, vk2, vk3, vk4} (k ∈ {3, 4, 5}). Then
5⋃

k=2

N(uk) ∩ (S − {v0}) ⊆ J1 ∪ J2.

For any vij ∈
5⋃

k=2

N(uk) ∩ (S − {v0}) (i ∈ {2, 3, 4, 5}), if vij ∈ J2, then the

edge uiv0 can gain f(uivij) = 1
5 from uivij . Otherwise, vij ∈ J1. If N2(vij) 6= ∅, by

Claim 5, the edge uiv0 can gain 1
10 . If N2(vij) = ∅, by Claim 4, there exists a vertex

wij ∈ N3(S) ∪ N4(S) such that N(wij) ∩ (S − {v0}) ⊆ J1 ∪ J2. By Claim 5, the

edge uiv0 can gain 1
20 from wij . Since

∣∣∣
5⋃

k=2

N(uk)∩ (S−{v0})
∣∣∣ = 14, the edges u2v0,

u3v0, u4v0 and u5v0 can gain at least 14× 1
20 altogether.

Next we look at u1. If u1 ∈ N2(S), then ϕ(u1) = 3
5 . We divide equally ϕ(u1)

between the two edges of E[V − S, S] incident with u1. Thus the edge u1v0 can
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gain 1
2ϕ(u1) = 3

10 from u1. If u1 ∈ N4(S), then ϕ(u1) = 1
5 . Denote N(u1) ∩

S = {v0, v11, v12, v13}. Then {v11, v12, v13} ⊆ J1 ∪ J2. Similarly to u3v0, u4v0 and
u5v0, the edge u1v0 can gain at least 3 × 1

20 . If u1 ∈ N5(S), denote N(u1) ∩ S =
{v0, v11, v12, v13, v14}. Then {v11, v12, v13, v14} ⊆ J1∪J2. Similarly to u3v0, u4v0 and

u5v0, the edge u1v0 can gain at least 4× 1
20 .

Hence, for u1 ∈ N2(S) ∪N4(S) ∪N5(S), the edge u1v0 can gain at least 3
20 . Let

g(uiv0) =





f(uiv0) + 3
20 , i = 1,

f(uiv0) + 2× 1
20 , i = 2,

f(uiv0) + 4× 1
20 , i = 3, 4, 5.

Then γ(v0) =
5∑

i=1

g(uiv0) = 5× 1
5 + 17× 1

20 > 9
5 .

Case 3.3.3. |N3(v0)| = 0.

Case 3.3.3.1. |N2(v0) ∪N4(v0)| > 4.

For i ∈ {1, 2, 3, 4, 5}, let

g(uiv0) =





f(uiv0) + 1
2ϕ(ui), if ui ∈ N2(v0),

f(uiv0) + ϕ(ui), if ui ∈ N3(v0) ∪N4(v0),

f(uiv0), if ui ∈ N5(v0).

Then γ(v0) =
5∑

i=1

g(uiv0) = 5× 1
5 + 4× 1

5 = 9
5 .

Case 3.3.3.2. |N2(v0)| = 1 and |N4(v0)| 6 2.

LetN2(v0) = {u1} and letN4(v0)∪N5(v0) = {u2, u3, u4, u5}. Then ϕ(u1) = 3
5 . Let

|N4(v0)| = t. Then |N5(v0)| = 4− t and t ∈ {0, 1, 2}. Thus
5⋃

k=2

N(uk)∩ (S−{v0}) ⊆

J1 ∪ J2 and
∣∣∣

5⋃
k=2

N(uk) ∩ (S − {v0})
∣∣∣ = 3t + 4(4 − t) = 16 − t > 14. For any

vij ∈
5⋃

k=2

N(uk) ∩ (S − {v0}) (i ∈ {2, 3, 4, 5}), if vij ∈ J2, then the edge uiv0 can

gain f(uivij) = 1
5 from uivij . Otherwise, vij ∈ J1. If N2(vij) 6= ∅, by Claim 5,

the edge uiv0 can gain 1
10 . If N2(vij) = ∅, by Claim 4, there exists a vertex wij ∈

N3(S) ∪N4(S) such that N(wij) ∩ (S −{v0}) ⊆ J1 ∪ J2. By Claim 5, the edge u3v0

can gain 1
20 from wij . Since there are 16− t vertices in

5⋃
k=2

N(uk) ∩ (S − {v0}), the
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edges u2v0, u3v0, u4v0 and u5v0 can gain at least (16− t)× 1
20 altogether. Let

g(uiv0) =

{
f(uiv0) + 1

2ϕ(ui), i = 1,

f(uiv0) + 1
4 (16− t)× 1

20 , i = 2, 3, 4, 5.

Then γ(v0) =
5∑

i=1

g(uiv0) = 5× 1
5 + 1

2 × 3
5 + (16− t)× 1

20 > 9
5 .

Case 3.3.3.3. |N2(v0)| = 0 and |N4(v0)| 6 3.

Let |N4(v0)| = t. Then |N5(v0)| = 5 − t and t ∈ {0, 1, 2, 3}. Thus
5⋃

k=1

N(uk) ∩

(S − {v0}) ⊆ J1 ∪ J2 and
∣∣∣

5⋃
k=1

N(uk) ∩ (S − {v0})
∣∣∣ = 3t + 4(5 − t) = 20 − t > 17.

For any vij ∈
5⋃

k=1

N(uk) ∩ (S − {v0}) (i ∈ {1, 2, 3, 4, 5}), if vij ∈ J2, then the

edge uiv0 can gain f(uivij) = 1
5 from uivij . Otherwise, vij ∈ J1. If N2(vij) 6= ∅, by

Claim 5, the edge uiv0 can gain 1
10 . If N2(vij) = ∅, by Claim 4, there exists a vertex

wij ∈ N3(S)∪N4(S) such that N(wij)∩ (S−{v0}) ⊆ J1 ∪ J2. By Claim 5, the edge

uiv0 can gain 1
20 from wij . Since there are 20−t vertices in

5⋃
k=1

N(uk)∩(S−{v0}), the

edges u1v0, u2v0, u3v0, u4v0 and u5v0 can gain at least (20− t)× 1
20 altogether. For

i ∈ {1, 2, 3, 4, 5}, let g(uiv0) = f(uiv0) + 1
5 (20− t)× 1

20 . Then γ(v0) =
5∑

i=1

g(uiv0) =

5× 1
5 + (20− t)× 1

20 > 9
5 .

We have finished the definition of the function g, which satisfies conditions (a) and

(b). Therefore the proof of the theorem is completed. �

By a similar method, we can prove that Conjecture 1 is true for 6-regular graphs [8].

Therefore Conjecture 1 is true for all k-regular graphs, where k > 3.
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