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Abstract. Let H be an infinite-dimensional almost separable Hilbert space. We show
that every local automorphism of Z(H), the algebra of all bounded linear operators on a
Hilbert space H, is an automorphism.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

A linear mapping ¢ of an algebra < into itself is called a local automorphism if for
every a € </ there exists an automorphism ¢, of &7 such that ¢(a) = ¢, (a). This
notion was introduced by Larson and Sourour in [5]. They have proved that every
surjective local automorphism of %(X), the algebra of all bounded linear operators
on an infinite-dimensional Banach space X, is an automorphism [5, Theorem 2.1]
(for finite-dimensional spaces X, the result is somewhat different [5, Theorem 2.2].
In [1] Bresar and Semrl improved this result in the case when X is a separable Hilbert
space. They proved that every local automorphism ¢ of Z(H) (note that here we do
not assume surjectivity of ¢), where H is an infinite-dimensional separable Hilbert
space, is an automorphism [1, Theorem 2]. The aim of this paper is to give a shorter
and simpler proof of this result and also to extend it to the most important class
of nonseparable Hilbert spaces. Recall that a Hilbert space is separable if it has a
countable orthonormal basis. We shall say that a Hilbert space is almost separable
if it has an orthonormal basis of the power less or equal to continuum.

Theorem 1.1. Let H be an infinite-dimensional almost separable Hilbert space.
Then every local automorphism of (H) is an automorphism.
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2. PROOF OF THE MAIN RESULT

Throughout, H will be a complex infinite-dimensional Hilbert space and %Z(H)
the algebra of all bounded linear operators on H. By .%(H) we denote the ideal of
all operators in JB(H) of finite rank. For every T' € Z(H) we denote by ImT the
image of T and by Ker T the kernel of T'. Given nonzero z,y € H, by x®y we denote
a rank one operator defined by (z®y)z = (2,y)z, 2 € H. Note that the spectrum of
the operator x ® y is equal to the set {0, (z,y)}. Operators T, S € B(H) are said to
be similar if there exists an invertible operator A € Z(H) such that S = ATA™L.
Since every automorphism of #(H) is inner [2], a local automorphism ¢ of #(H) can
be equivalently defined as a linear mapping with the property that the operators T
and (T') are similar for every T' € %B(H). Note also that any local automorphism ¢
of an algebra 7 preserves idempotents, that is, for any idempotent p € o7, ¢(p) is
again an idempotent.

In order to prove Theorem 1.1, we establish three preliminary results. The first
lemma was already proved in [3, Lemma 3]. As its proof is rather short we have
included it for the sake of completeness. In the proof of the second lemma we shall
basically just follow the arguments from [1]. The core of the paper is the last lemma

which is new.

Lemma 2.1. If X and Y are complex normed linear spaces and A: X — Y
is a bijective linear operator such that A~! carries closed hyperplanes to closed
hyperplanes, then A is bounded.

Proof. Let g be a nonzero bounded linear functional on Y. By hypothesis
A~Y(Ker g) is a closed hyperplane, so we can choose a bounded linear functional f
on X and a vector u € X such that

Ker f = A~} (Kerg) and f(u)=1.
Then any « € X can be written in the form
x = f(zx)utwv
for some v € Ker f. Hence

9(Az) = g(A(f(x)u)) + g(Av) = f(z)g(Au).

It follows that g o A is bounded and thus A is bounded because g is arbitrary. [
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Lemma 2.2. Let H be an infinite-dimensional almost separable Hilbert space
and let ¢ be a local automorphism of %8(H). Then the restriction of ¢ to F(H) is

either a homomorphism, or an antihomomorphism.

Proof. Let P,Q € #(H) be orthogonal idempotents, that is, PQ = QP = 0.
Since P + @ is again an idempotent, it follows that (P + Q)% = (P + Q). Hence
o(P)e(Q) + ¢(Q)p(P) = 0, which (by a standard argument) gives ¢(P)¢(Q) =
©(Q)p(P) = 0. So, we have shown that ¢ maps any set of pairwise orthogonal
idempotents into a set of pairwise orthogonal idempotents.

Let S € #(H) be a self-adjoint operator. Then S = i A P;, where the P;’s are
mutually orthogonal idempotents and the \;’s are realzn:unbers. Hence ((S?) =
©(S)? (¢ maps orthogonal idempotents into orthogonal idempotents). Replacing
in this identity S by S + T, where S and T are both self-adjoint, we obtain that
O(STH+TS) = o(S)p(T)+¢(T)p(S). Since every operator F' € .% (H) can be written
in the form F = S +iT with S,7 € #(H) self-adjoint, we get p(F?) = p(F)%.
Thus the restriction of ¢ to .#(H) is a Jordan homomorphism. Since .7 (H) is a
locally matrix algebra, a result of Jacobson and Rickart [4, Theorem 8] tells us that
o|Z(H) = ¢ + 0, where p: F(H) — %(H) is a homomorphism and 6: #(H) —
P(H) is an antihomomorphism. Pick an idempotent P € #(H) of rank one. Then
©(P) is the sum of idempotents ¢(P) and 6(P). Therefore, as ¢(P) also has rank
one, it follows that either ¢(P) = 0 or §(P) = 0. Thus, at least one of ¢ and 6 has
a nonzero kernel. Since the kernels of homomorphisms and antihomomorphisms are
ideals, and since the only nonzero ideal of .7 (H) is .#(H) itself, we have ¢ = 0
or § = 0. Thus, the restriction of ¢ to #(H) is either a homomorphism or an
antihomomorphism. (I

Lemma 2.3. Let H be an infinite-dimensional almost separable Hilbert space
and let ¢ be a local automorphism of #(H). If the restriction of ¢ to #(H) is a

homomorphism, then ¢ is an automorphism.

Proof. Fix u € H such that ||ul]] = 1. As ¢(u ® u) is an idempotent of rank

one, we have

olu®u)=v®w,

where (v,w) = 1. Define A, B: H — H by

Az = o(z @ u)v, Bz = p(u® x)*w.
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Clearly, A and B are linear operators. Since ¢|.% (H) is a homomorphism, for all
z,y € H we have

plz@y) = o((r@u)(u@u)(uey))
= ¢z ®@u)(v@w)pu®y)

(p(z @ u)v) ® (p(u @ y)*w) = (Ar) @ (By).

Moreover,
<:E7 y> = <A:I:7 By>7

because the spectrum of the operator x ® y is equal to the spectrum of the operator
oz ®y) = (Az) ® (By). This implies that A and B are injective operators.

Let P € #(H) be a nontrivial idempotent and = € Ker P. Pick an element y € H
such that (x,y) = 1 and (Pz,y) = 0 for every z € H. Since z®y and P are orthogonal
idempotents and since ¢ maps orthogonal idempotents into orthogonal idempotents
it follows that ¢(P) and (Az) ® (By) are orthogonal idempotents. In particular,
Az € Ker p(P). Now, let © € Im P. Then z € Ker(I — P), which yields (see above)
that Az € Kero(I — P) = Ker(I — ¢(P)). We use Ker(I — ¢(P)) = Imp(P) to
conclude that Az € Im ¢(P).

Let x € H. Then z = y + 2, where y € Ker P and z € Im P. Thus ¢(P)Az =
o(P)Ay + ¢(P)Az = ¢(P)Az = Az. Therefore, Im A is invariant under every
idempotent ¢(P), P € B(H). Moreover, the restriction of p(P) to Im A considered
as a map from Im A into itself is equal to CPC~! (here C' denotes the bijection
C: H — ImA defined by Cx = Az, x € H). Using the result of Pearcy and
Topping [6] which states that every operator in #(H) is a sum of idempotents we
conclude that Im A is invariant under every ¢(T), T € %(H), and

(1) o(T)|ImA=CTC™', T ¢ B(H).

We will prove that C' and C~! are bounded operators. Let K C H be a closed
hyperplane. Then K = Ker P for some idempotent P € #(H) and C(K) =
C(Ker P) = Ker(p(P)|Im A) (see above). Thus C'(K) is a closed hyperplane in Im A.
Applying Lemma 2.1 we then conclude that C ! is bounded. Now, suppose that the
operator C' is not bounded. Let {y,: n € N} C H be a set of orthonormal vec-
tors. For every n € N we can find z,, € Im A such that C~'z,, = y,. Moreover,
we can find orthonormal vectors {z,: n € N} such that ||Cz,| > nl||z,| for ev-
ery n € N. Pick an operator T' € #(H) such that Ty, = z,, n € N. Then
|ICTCx,|| = ||Czn|l > n|lza||, a contradiction (CT'C~! is a bounded operator
on Im A). So we have proved that C' is a bounded operator. Since this is also true
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for the operator C~! it follows that Im A is isomorphic to H. In particular, Im A is
closed.

Suppose that H is an infinite-dimensional Hilbert space with an orthonormal basis
of the power of the continuum and let {ex: A € [0,1]} be an orthonormal basis in H.
Define a linear operator S: H — H by Sey = ey, A € [0,1]. Of course, S € #(H).
Let K be the orthogonal complement of Imn A, H = Im A @ K. According to this
decomposition ¢(S) has the following matrix representation (see (1))

csc! Sl}

@) R R

for some operators S1: K — Im A and S3: K — K. Since H is equal to the closure
of the direct sum of one-dimensional subspaces @ x¢[o,1] Ker(S — AI) and since S and
©(S) are similar we have

(3) H = @©xepo,11 Ker(p(S) — AI),

where Ker(p(S) — M) are again one-dimensional subspaces. Applying (2) and (3)

Ce
H = EB)\G[O,I] Span{ |: 0>\:| },

C C
where span{ { gk] } denotes the linear span of the vector [ gk} . Therefore H C

we get

Im A and consequently H = ImA. Thus, A: H — H is an invertible bounded
linear operator and (1) = ATA™! for every T € %(H). The case when H is
an infinite-dimensional Hilbert space with a countable orthonormal basis can be
treated similarly, by considering a bounded linear operator S: H — H defined by
Se, = %en, n € N, where {e,,: n € N} is an orthonormal basis in H. O

Proof of Theorem 1.1. By Lemma 2.2 the restriction of ¢ to .#(H) is either
a homomorphism or an antihomomorphism. In view of Lemma 2.3 it suffices to
consider the situation when ¢|.%#(H) = 6 is an antihomomorphism. But then, as
¢ maps .7 (H) into itself, ¢*|.Z(H) = 62 is a homomorphism. Observe that (? is
also a local automorphism. Applying Lemma, 2.3 we then conclude that (2 is an au-

2 is onto, which implies that so is ¢. Thus, ¢ satisfies

tomorphism. In particular, ¢
the requirements of the result of Larson and Sourour [5]. Hence ¢ is an automor-

phism. (]
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