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MAHLER MEASURES IN A CUBIC FIELD

Artūras Dubickas, Vilnius

(Received May 10, 2004)

Abstract. We prove that every cyclic cubic extension E of the field of rational numbers
contains algebraic numbers which are Mahler measures but not the Mahler measures of
algebraic numbers lying in E. This extends the result of Schinzel who proved the same
statement for every real quadratic field E. A corresponding conjecture is made for an
arbitrary non-totally complex field E and some numerical examples are given. We also
show that every natural power of a Mahler measure is a Mahler measure.
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1. Introduction

Let α be an algebraic number of degree d over the field of rational numbers
�
with

minimal polynomial

adX
d + . . . + a1X + a0 = ad(X − α1) . . . (X − αd) ∈ � [X ].

Its Mahler measure is defined by M(α) = ad

d∏
j=1

max{1, |αj |}. The set of all Mahler

measures M = {M(α) : α ∈ � } was studied on many occasions. (See, for in-
stance, [1]–[8], [13].) Usually, the motivation for its study are the unsolved Lehmer’s
problem [10], its relations with ergodic theory and different applications of the lower

bounds for measures to other problems of algebraic number theory. Throughout, we
say that β is a Mahler measure if β ∈ M .
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In [5] we showed that for any given β one can determine whether it is the Mahler

measure of an integer polynomial or not. More precisely, we showed that it is suffi-
cient to consider those polynomials which have all their roots in the normal closure
of
�

(β) over
�
and whose degrees are bounded in a certain way. However, β ∈ M

means that β is the Mahler measure of an integer irreducible polynomial. The word
‘irreducible’ makes a big difference. Nevertheless, it is shown in [5] that if a unit β

belongs to M then β = M(α) with certain α in the normal closure of
�
(β) over

�
.

As above, this gives an effective procedure for determining whether a unit belongs

toM or not. The same is true if N(β) is not divisible by an sth power of an integer
greater than 1, where s = deg β and whereN(β) is the norm of β. We asked therefore
whether this is true without any condition on β.

Recently, Schinzel [13] considered some special quadratic numbers β and proved
that some condition on β for the statement as above is necessary. In particular,

he constructed certain quadratic numbers β which belong to M but which are not
expressible as β = M(α) with α ∈ � (β). So the overall situation with M is much

more difficult. It is not known, for instance, whether 1 +
√

17 belongs to M or not.

Summarizing, we see that despite considerable progress towards determining the

structure ofM the question remains open even for the setM ∩ �
(√

D
)
, where D > 2

is a square-free integer. Inspired by Schinzel’s results, we begin with the following

conjecture claiming that in any field the set of Mahler measures is quite complicated.

Conjecture. Let E be an arbitrary non-totally complex extension of
�
of degree

s > 2. Then E contains infinitely many Mahler measures β of degree s that are not

Mahler measures of any α ∈ F , where F is the normal closure of E over
�
.

Probably, the conjecture holds with F replaced by an arbitrary finite extension K

of
�
. However, this stronger version seems to be very difficult already for s = 2.
As in [8], we say that α > 1 is a generalized Pisot number if it is an algebraic

number whose other conjugates (if any) all lie strictly inside the unit circle. Such

numbers are a useful tool in the study of M (see [5], [7], [8]).

Theorem 1. Let E be an arbitrary non-totally complex extension of
�
of degree

s > 2. Then E contains infinitely many Mahler measures β of degree s such that

β is not the Mahler measure of any generalized Pisot number α.

Note that if E/
�
is normal then E = F . In particular, this is the case when E is

a real quadratic or a cyclic cubic extension of
�
. Also, if β is a Mahler measure in a

real quadratic field E and β = M(α) with α ∈ E, where α is greater than or equal

to its other conjugate α′ in absolute value, then α or −α must be a generalized Pisot
number. Similarly, if β is a Mahler measure in a cubic extension E and β = M(α)

950



with α ∈ E, where α is the unique conjugate lying either outside or inside the unit

circle, then ±α or ±α−1 is a generalized Pisot number. Using M(α) = M(−α),
M(α) = M(α−1) and applying the theorem we obtain the following corollary.

Corollary. In every real quadratic and in every cubic extension E of
�
there

are infinitely many β ∈ E ∩M such that β is not the Mahler measure of any α ∈ E.

Note that the real quadratic case corresponds to Corollary 2 in Schinzel’s pa-

per [13]. The cubic case is new. It settles the conjecture for all cyclic cubic fields.
Theorem 1 of [13] can also be generalized to a cubic field. Recall that an algebraic in-
teger β is called primitive if β/k is not an algebraic integer for every rational integer

k > 2.

Theorem 2. A primitive real cubic integer β is in M if and only if there is

a rational integer k such that β > k > max{|β′|, |β′′|}, k | ββ′ + ββ′′ + β′β′′ and

k2 | N(β), where β′ and β′′ are the conjugates of β.

Since all definitive results for Mahler measures except for some special construc-

tions are stated either for primitive integers or for numbers with some restrictions
on their norm (see [5], [7], [13]), one may get an impression that there are no such

results (without any restrictions) for M . This is not the case. We conclude with a
result of this kind. (Its partial case for units was obtained in [7].)

Theorem 3. If β ∈ M then βm ∈ M for every positive integer m.

By Schinzel’s results, there are primitive quadratic β ∈ M such that pβ /∈ M for
certain primes p that do not split in

�
(β) (See, for instance, Corollary 1 in [13].)

Hence the additive version of Theorem 3 is false. It would be of interest to find out
whether this is always the case.

Question. Is there a real β different from a positive integer such that mβ ∈ M

for every m = 1, 2, 3, . . .?

Theorem 1 will be proved in Section 2. Afterwards we will prove Theorems 2
and 3. Some numerical examples can be found in Section 4.
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2. Generalized Pisot numbers: the proof of Theorem 1

We will choose a real algebraic integer γ ∈ E of degree s over
�
, an integer u and

an infinite set of positive integers S with the following properties. Firstly,

1 + max
26j6s

|γj | < u < γ,

where γ1 = γ, γ2, . . . , γs is the set of conjugates of γ over
�
. Secondly, gcd(u, N(γ)) =

1, where N(γ) = γ1γ2 . . . γs. Finally, S will be the set of positive integers t such that√
1− 4γut2 has degree 2s over

�
. We claim that the polynomial

P (X) =
s∏

j=1

(utX2 + X + γjt)

is irreducible in � [X ], and its zero ξ =
(
−1 +

√
1− 4γut2

)
/2ut lying in a quadratic

extension of E has the Mahler measure equal to tsus−1γ. Then we will show that

tsus−1γ is not the Mahler measure of a generalized Pisot number for every t suffi-
ciently large. (The theorem then follows by the infinity of the set S.)

We begin by choosing any Pisot number γ ∈ E of degree s. It is well known
that this is possible, because E is non-totally complex. (See, for instance, Salem’s

book [11] or the recent paper [9] for a stronger statement in a real field.) Then we
multiply γ by a large positive integer k. Clearly, the gap between 1 + k max

26j6s
|γj | <

1 + k and kγ will be of order ck, where c is an absolute positive constant, whereas
N(kγ) = ksN(γ) is of order c′ks. The product of all primes separating 1 + k and kγ

is therefore of order exp{ck}, so at least one such prime u does not divide ksN(γ).
On replacing γ by kγ (without changing notation), we see that 1+ max

26j6s
|γj | < u < γ

and gcd(u, N(γ)) = 1.
By Hilbert’s irreducibility theorem and Capelli’s lemma (see, e.g., p. 298 and p. 92

in [12]), the set S of positive integers t for which
√

1− 4γut2 has ‘generic’ degree 2s

over
�
is infinite. Let t be one of these. Then ξ =

(
−1 +

√
1− 4γut2

)
/2ut is of

degree 2s and P (ξ) = 0. The polynomial P is reducible in � [X] only if it has a
constant factor, say v > 1. Since the coefficients of P (X) are all divisible by t except

for the coefficient at Xs which is equal to 1 modulo t, we have that gcd(v, t) = 1.
Two extreme coefficients of P are usts and N(γ)ts, hence v | us and v | N(γ). This
is a contradiction with the fact that gcd(u, N(γ)) = 1. Therefore P (X) is irreducible
in � [X ]. Hence, by the multiplicative property of Mahler’s measure,

M(ξ) = M(P ) =
s∏

j=1

M(utX2 + X + γjt).
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From the inequality u < γ, we find that ξ is complex, soM(utX2+X +γt) = utξξ =
tγ. For each j > 2, we will show that M(utX2 + X + γjt) = ut. Indeed 1 + |γj | < u

implies that
|1− 4γjut2| < 1 + 4(u− 1)ut2 6 (2ut− 1)2,

hence the roots of utX2+X +γjt, namely,
(
−1±

√
1− 4γjut2

)
/2ut are both smaller

than 1 in absolute value. It follows that M(utX2 + X + γjt) = ut. Consequently,

M(ξ) = M(P ) = tγ(ut)s−1 = tsus−1γ, as claimed.
It remains to show that tsus−1γ is not the Mahler measure of a generalized Pisot

number α. Assume it is. Then qα = tsus−1γ, where q is the leading coefficient of the
minimal polynomial for α. Since γ is an algebraic integer, we can write its minimal

polynomial in the form Q(X) = Xs + bs−1X
s−1 + . . . + b0, where b0, . . . , bs−1 ∈ � .

But Q(qα/tsus−1) = 0, so the minimal polynomial of α in � [X] has the form

R(X) = qXs + bs−1t
sus−1Xs−1 + bs−2t

2su2(s−1)q−1Xs−2 + . . . + b0t
s2

us(s−1)q−s+1.

Now, since α = tsus−1γ/q is a generalized Pisot number, we obtain the inequalities
tsus−1 max

26j6s
|γj | < q < tsus−1γ, giving ts−1 < q < ts+1 for t sufficiently large. The

upper bound q < ts+1 implies that tks−1 > qk−1 for 1 6 k 6 s. It follows that all
coefficients of R except for q are divisible by t, so gcd(q, t) = 1, since R(X) ∈ � [X]
is irreducible. But then, by considering the constant coefficient of R, we see that
qs−1 divides b0u

s(s−1) which is impossible, because qs−1 > t(s−1)2 > b0u
s(s−1) This

completes the proof of Theorem 1. �

3. Primitive cubic integers and integer powers

of a measure

�������	�
of Theorem 2. Assume that β = M(α). As in Lemma 2 of [7] and in

Theorem 1 of [13] we may assume that α has m = d/3 conjugates α1, . . . , αm lying
strictly outside the unit circle and 2d/3 conjugates αj satisfying |αj | 6 1, where d is
the degree of α over

�
. (Indeed, Lemma 2 of [7] implies that m = d/3 or m = 2d/3.

However, in the second case, m = 2d/3, using the equality M(α) = M(α−1) we can
replace α by its reciprocal α−1 which will have m = d/3 conjugates lying strictly
outside the unit circle.) If k is the leading coefficient of the minimal polynomial
of α, then there is η ∈ {−1, 1} such that β = ηkα1 . . . αm, β′ = ηkαm+1 . . . α2m,

β′′ = ηkα2m+1 . . . α3m. Consequently, β > k, |β′| < k and |β′′| < k. Indeed,
the equality |β′| = k holds only if β′ is complex. But then β′′ = β′ giving β =
N(β)/β′β′′ = N(β)/k2 ∈ � , a contradiction. Also,

ββ′ + ββ′′ + β′β′′ = k2(α1 . . . α2m + α1 . . . αmα2m+1 . . . α3m + αm+1 . . . α3m)
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is a rational integer divisible by k, because kα1 . . . α2m, kα1 . . . αmα2m+1 . . . α3m and

kαm+1 . . . α3m are algebraic integers, so their sum is a rational integer (because it
is an algebraic integer and a rational number at the same time). Similarly, N(β) =
ββ′β′′ = η3k3N(α) = ±k3N(α). But kN(α) ∈ � , hence k2 | N(β) and the proof of
necessity is completed.

For the proof of sufficiency, assume that there is an integer k, as claimed. Consider
the polynomial

G(X) = kX3 − (β + β′ + β′′)X2 + (ββ′ + ββ′′ + β′β′′)X/k −N(β)/k2 ∈ � [X].

Since G(β/k) = 0, we have that M(β/k) = M(G) = β. It remains to show that
G(X) is irreducible. The degree of β/k over

�
is equal to 3, so the polynomial G can

be reducible only if there is a prime number p dividing its coefficients. In particular,
p | k. Hence p | β + β′ + β′′, p2 | ββ′ + ββ′′ + β′β′′ and p3 | N(β). It follows that
β/p is the root of the polynomial

k2p−3G(pX/k) = X3 − (β + β′ + β′′)X2/p + (ββ′ + ββ′′ + β′β′′)X/p2 −N(β)/p3

with integer coefficients, contrary to the primitivity of β. �
�������	�

of Theorem 3. Write β = M(α) and fix m > 2. Suppose that the degree
of α over

�
is d, and let dn denote the degree of αn over

�
, so that d1 = d. Recall

that the quantity h(γ) = log M(γ)/ deg γ is called the Weil height of γ ∈ � . We will
apply the formula h(γn) = nh(γ) (see, e.g., Property 3.3 in [14]) to the powers of α.
If dm = d, then h(αm) = mh(α) implies immediately that βm = M(α)m = M(αm),
so βm ∈ M .

We now turn to the case dm < d. Set t1 = d/dm, t2 = dm/dmt1 , t3 = dmt1/dmt1t2 ,

etc. Since t1t2 . . . tk = d/dmt1...tk−1 6 d, sooner or later in the sequence of positive
integers t1, t2, t3, . . . we will get an element equal to 1. Let k > 2 be the small-
est positive integer for which tk = 1. Using h(αmt1...tk−1) = mt1 . . . tk−1h(α) and
d/dmt1...tk−1 = t1 . . . tk = t1 . . . tk−1, we obtain that

βm = M(α)m = M(αmt1...tk−1) ∈ M .

�
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4. Explicit examples

Some explicit quadratic examples were given already in [13]. For instance, 21 +
14
√

2 is the Mahler measure of the quartic irreducible polynomial 7X4 + 2X3 +
41X2 + 22X + 7, but 21 + 14

√
2 6= M(α) for any α ∈ � (√

2
)
.

Similarly, taking u = 4, t = 1, γ = 3 +
√

7 in the definition of P (X) in Section 2,
we get

M(16X4 + 8X3 + 25X2 + 6X + 2) = 4
(
3 +

√
7
)
.

Here, 16X4+8X3+25X2+6X+2 is irreducible, although gcd(u, N(γ)) = gcd(4, 2) =
2 6= 1. Suppose that 4

(
3 +

√
7
)
(which is not of the form pβ with β primitive and

p prime as in [13]) is the Mahler measure of a number α ∈ � (√
7
)
. Write α = s+t

√
7

with non-zero rational numbers s, t. Its conjugate α′ = s − t
√

7 must be smaller
than 1 in absolute value. Suppose that q is the leading coefficient of the minimal
polynomial of α. Write this polynomial as G(X) = qX2 − 2sqX + q(s2 − 7t2). The
equality 4

(
3 +

√
7
)

= q
(
s + t

√
7
)
implies that s = 12/q and t = 4/q. Also, from

12−4
√

7 < q < 12+4
√

7 we obtain that 2 6 q 6 22. But G(X) = qX2−24X +32/q

is irreducible in � [X] only if q = 1 or q = 32, a contradiction.
In order to get an example in a cyclic cubic field generated by θ, where θ3−3θ−1 =

0, we consider γ = 2 + θ. Then γ is a root of X3 − 6X2 + 9X − 3 = 0. Setting u = 3
and t = 1 we get

P (X) = 27X6 + 27X5 + 63X4 + 37X3 + 33X2 + 9X + 3

which is irreducible in � [X] and has Mahler’s measure 9γ. A potential α = 9γ/q

satisfyingM(α) = 9γ has minimal polynomial qX3− 54X2 +36X/q− 37/q2 ∈ � [X].
This polynomial is irreducible only if q = 1. However, on the other hand, q must

belong to the interval 9 max{|γ ′|, |γ′′|} < q < 9γ giving the bounds 15 6 q 6 34, a
contradiction. Hence, there is no α ∈ � (θ) =

�
(γ) for which 9γ = M(α), although

9γ ∈ M .
Finally, in connection with our question from Section 1, we remark that for each

positive integer m the number 1
2m2

(
1 +

√
5
)
belongs to M . Indeed, setting in

our construction u = 1 and t = m, we see that M(mX2 + X + mβ) = mβ and

M(mX2 + X + mβ′) = m, where β = 1
2

(
1 +

√
5
)
and β′ = 1

2

(
1−

√
5
)
. Hence,

M(m2X4 + 2mX3 + (m2 + 1)X2 + mX −m2) = m2β.

It is easy to see that the polynomial m2X4 + 2mX3 + (m2 + 1)X2 + mX − m2 is
irreducible for every positive integerm since it has coprime coefficients and the degree

of
√

1− 4m2β over
�
is equal to 4. (If it were equal to 2, then its conjugate would

have be η
√

1− 4m2β′ with η = 1 or η = −1. But their product η
√

1− 4m2 − 16m4

is irrational for every m > 1, which is impossible.)
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