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Abstract. A matrix whose entries consist of elements from the set {+,−, 0} is a sign pat-
tern matrix. Using a linear algebra theoretical approach we generalize of some recent results
due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
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1. Introduction

Several authors have studied properties of a matrix based on combinatorial and

qualitative information such as the signs of entries in the matrix. A matrix whose
entries are from the set {+,−, 0} is called a sign pattern matrix (or simply, sign
pattern). For each n × n sign pattern A there is a natural class of real matrices
whose entries have the signs indicated by A, i.e., the sign pattern class of a sign

pattern A is defined by
Q(A) = {B ; signB = A}.

We are interested in symmetric matrices and in the sign symmetric classes

QSYM(A) = {B ; sign B = A and B = BT }.

Define the inertia of an n × n real symmetric matrix H as the triple In(H) =
(π, ν, δ), where π is the number of positive eigenvalues, ν is the number of negative

eigenvalues and δ = n−π−ν is the number of zero eigenvalues. For a symmetric sign
pattern A, we define the inertia (set) of A to be In(A) = {In(B) ; B ∈ QSYM(A)}.

This work was supported by CMUC—Centro de Matemática da Universidade de
Coimbra.
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We say the sign pattern A requires unique inertia and is sign nonsingular if every

real matrix in Q(A) has the same inertia and is nonsingular, respectively. If two sign
patterns A1 and A2 are congruent, i.e., if for all B1 ∈ QSYM(A1) and B2 ∈ QSYM(A2)
there exists a nonsingular real matrix S such that B1 = SB2S

T , then we say that

A1 and A2 are sign congruent and write A1 ≈ A2.
By Sylvester’s law of inertia we may say that two sign congruent patterns have

the same inertia. For example, the symmetric sign pattern



0 + +
+ 0 +
+ + 0




is sign congruent to 


0 + 0
+ 0 0
0 0 −




and, therefore, requires the unique inertia (1, 2, 0) and, consequently, is sign nonsin-
gular. On the other hand, the tridiagonal sign pattern




+ + 0
+ + +
0 + +




is sign congruent to 


+ 0 0
0 ∗ 0
0 0 +


 ,

where ∗ is 0, + or −, and, therefore, requires the inertias (2, 0, 1), (3, 0, 0), and
(2, 1, 0).
A diagonal sign pattern each of whose entries is + or − is called a signature

pattern. The square of a signature pattern is a signature pattern with all nonzero

entries equal to +. A sign pattern such that there is exactly one entry in each
row and each column equal to + and all other entries are 0 is called a permutation
pattern. Two sign congruent patterns by the way of a signature pattern and of a
permutation pattern are called, respectively, signature congruent and permutation

congruent patterns.
In this paper we generalize recent results on some symmetric sign patterns due to

F.Hall, Z. Li and others (cf. [3], [4], [6], [7]). The results of these authors are based on
a graph theoretical approach. Here we use mainly tools from congruences between

matrices developed, e.g., by B.Cain and E.Marques de Sá (cf. [1], [2]).
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2. Symmetric tridiagonal sign patterns

Given a symmetric tridiagonal sign pattern, the inertia does not depend on the

sign of the off-diagonal elements, since two sign patterns under these conditions are
signature congruent. Let us denote these entries by ±.
The symmetric tridiagonal sign pattern

(1)




0 ±
± ∗ ±

± 0 ±
± ∗ ±

± 0 ±
. . .

. . .
. . .




n×n

is congruent to



0 ±
± ∗ 0

0 0 ±
± ∗ 0

0 0 ±
. . .

. . .
. . .




,

i.e., it is congruent to the direct sum

[
0 ±
± ∗

]
⊕ . . .⊕

[
0 ±
± ∗

]
⊕ [ 0 ]

if n is odd, and to
[

0 ±
± ∗

]
⊕ . . .⊕

[
0 ±
± ∗

]

if n is even. Since the inertia of each block

[
0 ±
± ∗

]

is (1, 1, 0), we can generalize now Proposition 3.1 in [6].
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Proposition 2.1. For the symmetric tridiagonal sign pattern defined in (1),
(a) if n is even, then A is sign nonsingular and In(A) = (n

2 , n
2 , 0),

(b) if n is odd, then A is sign singular and In(A) = (n−1
2 , n−1

2 , 1).

Note that the above proposition is still true for the n× n sign pattern



∗ ±
± 0 ±

± ∗ ±
± 0 ±

± ∗ ±
. . .

. . .
. . .




provided n is even.

Let us consider the n× n sign pattern



+ ±
± + ±

± +
. . .

. . .
. . .


 .

With the + in the (1, 1)-entry we can, by congruence operations, “eliminate” the
off-diagonals entries (1, 2) and (2, 1). If the new (2, 2)-entry is 0 and n > 2, then we
can decompose the sign pattern so that the first block is




+ 0
0 0 ±

± 0


 ,

which has inertia (2, 1, 0). In the case of n = 2, the block is simply
[

+ 0
0 0

]
,

which has inertia (1, 0, 1). If the new (2, 2)-entry is a −, then we can decompose the
sign pattern so that the first block is

[
+ 0
0 −

]
,

which has inertia (1, 1, 0). The new (3, 3)-entry is always a + and we restart the
procedure from here.

Otherwise, the (2, 2)-entry is a +, and the first block of the composition is simply
[+] and we restart the procedure from that entry.
By the above algorithm we can establish the maxima and minima for the number

of eigenvalues.
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Proposition 2.2. If

A+ =




+ ±
± + ±

± . . .
. . .

. . .
. . . ±
± +




is an n× n symmetric tridiagonal sign pattern, then In(A±) has the form

(n− k, k, 0), 0 6 k 6
⌊n

2

⌋
, or (n− k, k − 1, 1), 1 6 k 6

⌊n

2

⌋
,

where bxc denotes the greater integer less than or equal to the real number x.

Given a sign pattern we say that the diagonal (i, i)-entry is in an odd (even)
position when i is odd (even). The diagonal (i, i) and (j, j)-entries are said to be in
ascending positions provided i < j (not necessarily consecutive).

We can rewrite some results from [6] and [7], generalize them and give a straight-
forward proof.

Theorem 2.3. For the symmetric tridiagonal sign pattern

A∗ =




∗ ±
± ∗ ±

± . . .
. . .

. . .
. . . ±
± ∗




,

where each diagonal entry is 0, + or −,
(a) if n is even, then A∗ is sign nonsingular if and only if neither two + nor two −
diagonal entries in A∗ are in odd-even ascending positions, respectively. In this

case In(A∗) = (n
2 , n

2 , 0);
(b) if n is odd, then A∗ is sign nonsingular if there is at least one + or − diagonal
entry in an odd position, but not both in odd positions, and neither three + nor
three − diagonal entries are in odd-even-odd ascending positions, respectively.
In this case In(A∗) = (n+1

2 , n−1
2 , 0) if there are + in odd positions, or In(A∗) =

(n−1
2 , n+1

2 , 0) if there are − in odd positions.
���������

. Suppose that n is even. Without loss of generality we may assume
that the first and the last diagonal entries are non-zero. In order for A∗ to require
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unique inertia, when we use congruence relations in order to eliminate the off-diagonal

elements, the signs of the diagonal should alternate between + and −.
By Proposition 2.1, if n is odd and neither + nor − diagonal entries are in odd

positions, then A∗ requires unique inertia (n−1
2 , n−1

2 , 1). Without loss of generality
we may assume that the first diagonal entry is non-zero. Assume that it is a +.
Then using the congruence elimination procedure, we can not have − in odd diagonal
positions and no three + diagonal entries in odd-even-odd ascending positions. �

The sign pattern 


+ +
+ − −

− 0 +
+ 0 +

+ + −
− 0




is congruent to

[+]⊕ [−]⊕
[

0 +
+ 0

]
⊕

[
0 −
− 0

]

and, therefore, requires unique inertia (3, 3, 0).
However, the sign pattern




+ +
+ − −

− 0 +
+ + +

+ + −
− 0




is congruent to

[+]⊕ [−]⊕ [+]⊕ [∗]⊕
[

0 −
− 0

]

and the inertia set is {(3, 2, 1), (4, 2, 0), (3, 3, 0)}.
Let us give another example. The sign pattern




+ +
+ − −

− + +
+ 0 +

+ 0 −
− − +

+ +



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is sign congruent to 


+
−

+
−

+
−

+




and hence requires unique inertia (4, 3, 0), but the sign pattern




+ +
+ − −

− + +
+ 0 +

+ − −
− − +

+ +




is congruent to

[+]⊕ [−]⊕ [+]⊕ [−]⊕ [∗]⊕ [−]⊕ [+]

and the inertia set is {(3, 3, 1), (4, 3, 0), (3, 4, 0)}.

3. Symmetric star sign patterns

We now consider a symmetric tree sign pattern matrix whose associated graph is

a star.

Theorem 3.1 [7]. Up to permutation congruence, signature congruence, and
negation, a symmetric star sign pattern

A =




∗ + + . . . +
+ ∗
+ ∗
...

. . .

+ ∗




n×n

,

where each diagonal entry is 0, + or −, requires unique inertia if and only if the
diagonal of A has the following forms:

(∗, . . . , ∗, 0), (0, +, . . . , +), (−, +, . . . , +).
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���������
. With the exception of the (1, 1)-entry, if one of the diagonal entries is

zero, then

A ≈
[

0 +
+ 0

]
⊕



∗
. . .

∗




n−2×n−2

,

and A requires unique inertia.
Suppose now that all the diagonal entries are nonzero, possibly with the exception

of the (1, 1)-entry. Then

A ≈ [∗]⊕



∗
. . .

∗




n−1×n−1

.

In this case, A requires unique inertia if and only if all the diagonal entries different

from the (1, 1)-entry have the same sign and the (1, 1)-entry has a sign different from
the other diagonal elements or is equal to 0. �

4. Sign patterns with all + off-diagonal entries

Finally, let Jn be the n × n symmetric sign pattern with all entries equal to +.
Then

Jn ≈ [+]⊕B,

where B is a symmetric sign pattern of order n− 1. Then the set of possible inertias
of Jn is

{(π, ν, n− π − ν) ; 1 6 π 6 n, π + ν 6 n}.

If one considers Ĵn, the n × n symmetric sign pattern with zero diagonal and +
off-diagonal entries, then

Ĵn ≈




0 + 0
+ 0 0
0 0 −


⊕B,

where B is a symmetric sign pattern of order n − 3. Therefore the set of possible
inertia of Ĵn is

{(π, ν, n− π − ν) ; 1 6 π 6 n, 2 6 ν 6 n, π + ν 6 n}.

This last result was obtained recently by Gao and Shao [5] via a different approach.
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