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Abstract. For a subalgebra B of a partial monounary algebra A we define the quotient
partial monounary algebra A /B. Let B, C be partial monounary algebras. In this paper
we give a construction of all partial monounary algebras A such that B is a subalgebra of
A and C ∼= A /B.
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0. Introduction

In the present paper we deal with subalgebra extensions of partial monounary

algebras.
The extension problem for groups is as follows: Given two groups H and K, con-

struct all groups G which have a normal subgroup N such that N is isomorphic to H

and the quotient G/N of G by N is isomorphic to K. G is the well known Schreier’s

extension of H by K. Following the extension of groups, the ideal extension of
semigroups has been considered by A.H.Clifford [1]. Related investigations dealing

with extensions by ideals were performed for lattice ordered groups (in connection
with the product of torsion classes, cf.Martinez [6]), for ordered and totally ordered

semigroups (Kehayopulu, Tsingelis [5], Hulin [2]) and for lattices (Kehayopulu, Kiri-
akuli [4]).

Let U be the class of all partial monounary algebras, A ∈ U . IfB is a subalgebra
of A , then the quotient partial algebra A /B is defined. Similarly, the notion of an

ideal of A is introduced and if X is an ideal of A , then A /X is defined.
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Let us consider the following two problems:

(α) Let B, C ∈ U . Find all A ∈ U such that B is a subalgebra of A and

A /B ∼= C .
(β) Let X , C ∈ U . Find all A ∈ U such that X is an ideal of A and A /X ∼=

C .

(In (α), A will be called a subalgebra extension of C by B, in (β), A will be

called an ideal extension of C by X .)

Let us remark that a subalgebra need not be an ideal and an ideal need not be
a subalgebra, thus the problems (α) and (β) are independent (cf. also Section 4).
The present paper is devoted to the problem (α); (β) will be dealt with elsewhere.

1. Preliminaries

Monounary and partial monounary algebras play a significant role in the study of

algebraic structures (cf. e.g., Jónsson [3], M. Novotný [7]).

A partial monounary algebra A is a pair (A, fA), where A is a nonempty set and
fA is a partial unary operation on A. If dom fA = A, then A is called complete; if

dom fA 6= A, then A is said to be incomplete.

Let A = (A, fA) ∈ U , x, y ∈ A. Put f0
A(x) = x and f−1

A (x) = {z ∈ dom fA :
fA(z) = x}. If n ∈ �

, fn−1
A (x) is defined and fn−1

A (x) ∈ dom fA, then we put

fn
A(x) = fA(fn−1

A (x)). Next we put x ∼ y if there are m, n ∈ � ∪ {0} such that
fn

A(x), fm
A (y) are defined and fn

A(x) = fm
A (y). Then ∼ is an equivalence on the set A

and the elements of A/∼ are called connected components of A . Further, A is said
to be connected if it has only one connected component. An element c ∈ A is called

cyclic if fk
A(c) = c for some k ∈ � . The set of all cyclic elements of some connected

component of A is called a cycle of A . An element c ∈ A is called a top of A if A

is connected and either c /∈ dom fA or {c} is a cycle.
Let A = (A, fA), B = (B, fB) ∈ U . Let B ⊆ A, dom fB ⊆ dom fA and if

x ∈ B ∩ dom fA then x ∈ dom fB , fB(x) = fA(x). Then B is called a subalgebra of

A .

Let A = (A, fA) ∈ U , ∅ 6= X ⊆ A. We will denote by fA � X the partial
operation on X defined as follows: dom(fA � X) = {x ∈ X ∩ dom fA : fA(x) ∈ X}
and if x ∈ dom(fA � X) then (fA � X)(x) = fA(x). The partial algebra (X, fA � X)
is called the relative subalgebra of A with carrier X .

Let A = (A, fA) ∈ U . An equivalence θ on A is said to be a congruence of A

if {x, y} ⊆ dom fA, (x, y) ∈ θ implies (fA(x), fA(y)) ∈ θ. For x ∈ A , the block
(equivalence class) of θ containing x is denoted by [x]θ or simply [x]. A quotient
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algebra A /θ = (A/θ, fA/θ) is such that dom fA/θ = {[x] ∈ A/θ : [x] ⊆ dom fA} and
if [x] ∈ dom fA/θ, then fA/θ([x]) = [fA(x)].

1.1 Notation. Let A = (A, fA) ∈ U , ∅ 6= B ⊆ A. We denote by θB the

smallest congruence relation of A such that if x, y ∈ B belong to the same connected
component ofA , then x, y belong to the same equivalence class of the congruence θB .

1.2 Lemma. Suppose that A = (A, fA) ∈ U , B = (B, fB) is a subalgebra
of A . Let x, y ∈ A. Then (x, y) ∈ θB if and only if either x, y belong to the same

connected component of A and {x, y} ⊆ B or x = y.

���������
. First let us show that if we put (x, y) ∈ δ whenever either x, y belong to

the same connected component ofA and {x, y} ⊆ B, or x = y, then δ is a congruence
of A . Obviously, δ is an equivalence. Assume that {x, y} ⊆ dom fA, (x, y) ∈ δ. If

x = y, then fA(x) = fA(y) and (x, y) ∈ δ. Suppose that x 6= y. Then x and y belong
to the same connected component of A and {x, y} ⊆ B. Since B is a subalgebra

of A , this implies that {fA(x), fA(y)} ⊆ B, fA(x) and fA(y) belong to the same
connected component of A . Therefore (fA(x), fA(y)) ∈ δ, thus δ is a congruence

of A .

From the definition of δ it is obvious that δ is the smallest equivalence relation
on A such that if x, y ∈ B belong to the same connected component of A then x, y

belong to the same equivalence class of δ.

We have proved that δ = θB . �

1.3 Corollary. Let A ∈ U be connected, and B = (B, fB) be a subalgebra of
A , |B| > 1. Then the unique nontrivial equivalence class of θB is equal to B.

1.4 Notation. Let A = (A, fA) ∈ U and let B = (B, fB) be a subalgebra of A .
By a quotient partial monounary algebra A /B = (A/B, fA/B) we understand the
partial algebra A /θB .

1.5.1 Corollary. Let A = (A, fA) ∈ U be connected and complete, and

B = (B, fB) be its subalgebra. Then

(i) fA/B({x}) = {fA(x)} if x ∈ A, fA(x) /∈ B,

(ii) fA/B({x}) = B if x ∈ A, fA(x) ∈ B,

(iii) fA/B(B) = B.
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1.5.2 Corollary. Let A = (A, fA) ∈ U be connected and incomplete, and

B = (B, fB) be its subalgebra. Then

(i) fA/B({x}) = {fA(x)} if x ∈ dom fA, fA(x) /∈ B,

(ii) fA/B({x}) = B if x ∈ dom fA, fA(x) ∈ B,

(iii) B /∈ dom fA/B .

Let A = (A, fA) ∈ U . If x, y ∈ A, then we set x 6 y if fk
A(x) = y for some

k ∈ � ∪ {0}. Notice that the relation 6 is a quasi-order on the set A. The notion
of an ideal of a lattice is well known. Let us modify the definition for lattices to

the following definition for quasi-ordered sets: Let (Q, 6) be a quasi-ordered set,
∅ 6= X ⊆ Q. Then (X, 6) is called an ideal in (Q, 6) if the following conditions are
satisfied:

(1) if a ∈ X , b 6 a, then b ∈ X ,
(2) if a, b ∈ X and c ∈ Q is a minimal upper bound of {a, b}, then c ∈ X .

1.6 Definition. Let A = (A, fA) ∈ U , ∅ 6= X ⊆ A. If (X, 6) is an ideal of
(A, 6), then the relative subalgebra X = (X, fA � X) of A with carrier X is called

an ideal of A .

1.7 Notation. Let A = (A, fA) ∈ U and suppose that X = (X, fX) is an ideal
of A . We put

A /X = (A/X, fA/X) = A /θX .

2. The connected case

In this section we will deal with the problem (α) in the case when the partial
algebras under consideration are connected.

First let us describe the following construction.
Let B = (B, fB), C = (C, fC) be connected partial monounary algebras such that

B ∩ C = ∅, |C| > 1 and that c ∈ C is a top of C . Next suppose that either

(a) B, C are complete or

(b) B, C are incomplete.

Let µ be a mapping of the set f−1
C (c)−{c} into B; it will be called critical. Define

an algebra P = (P, fP ) = s(C , B, µ) where

P = (C − {c}) ∪ B,

P − dom fP = B − dom fB ,

fP (x) =





fC(x) if x ∈ C − {c}, fC(x) 6= c,

µ(x) if x ∈ C − {c}, fC(x) = c,

fB(x) if x ∈ dom fB.
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It is easy to see that B is a subalgebra of P and P is complete if (a) is valid

and incomplete if (b) holds. The construction described above will be expressed as
follows: The algebra P is constructed by replacing the top in C by B using the

critical mapping µ.

Let us remark that if |B| = 1 then P ∼= C .

2.1 Lemma. Let B, C , µ be as above, P = s(C , B, µ). Then P/B ∼= C .
���������

. Let us define a mapping ϕ : C → P/B by putting

ϕ(x) =

{
{x} if x ∈ C − {c},
B if x = c.

By 1.3, ϕ is a bijection of C onto P/B.

1) Suppose that (a) holds. We will use 1.5.1.
If x ∈ C − {c}, fC(x) 6= c, then ϕ(fC(x)) = {fC(x)} = fP/B({x}) = fP/B(ϕ(x)).
If x ∈ C −{c}, fC(x) = c, then ϕ(fC(x)) = ϕ(c) = B = fP/B({x}) = fP/B(ϕ(x)).
If x = c, then ϕ(fC(x)) = ϕ(c) = B = fP/B(B) = fP/B(ϕ(c)).
2) Now suppose that (b) is valid; we will apply 1.5.2.
If x ∈ C − {c}, then as above, ϕ(fC(x)) = fP/B(ϕ(x)).
If x = c, then x /∈ dom fC and ϕ(x) = B /∈ dom fP/B .
Thus, ϕ is a homomorphism and, therefore, an isomorphism of C ontoP/B. �

2.2 Lemma. Let A = (A, fA), B = (B, fB), C = (C, fC) be connected partial
monounary algebras such that C has a top c, |C| > 1, B ∩ C = ∅. Next suppose
that B is a subalgebra of A and that A /B ∼= C . Then (A−B, fA � (A−B)) and
(C − {c}, fC � (C − {c})) are isomorphic.
���������

. We have A/B = {B} ∪ {{x} : x ∈ C − B} by 1.3. Furthermore, there
exists an isomorphism i of C onto A /B. Clearly, i(c) = B, since B is the top of

A /B in view of 1.5.1 or 1.5.2.
If x ∈ C −{c}, then there exists exactly one y ∈ A−B such that i(x) = {y}. Put

j(x) = y. Obviously, j is a bijection of the set C − {c} onto A−B.
Let x ∈ C − {c}, y = j(x). If x /∈ dom fC � (C − {c}), then fC(x) /∈ C − {c}, i.e.,

fC(x) = c, thus

B = i(c) = i(fC(x)) = fA/B(i(x)) = fA/B(y) = fA(y),

i.e., y /∈ dom fA � (A − B). Suppose that x ∈ dom fC � (C − {c}). Then there is
z ∈ A−B with i(fC(x)) = {z}, which yields j(fC(x)) = z. Since i is an isomorphism,

we obtain
{z} = i(fC(x)) = fA/B(i(x)) = fA/B({y}) = {fA(y)}
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and, therefore, z = fA(y), which implies

j(fC(x)) = z = fA(y) = fA(j(x)).

Thus j is an isomorphism. �

2.3 Lemma. Let A = (A, fA), B = (B, fB), C = (C, fC) be connected partial
monounary algebras such that C has a top c, |C| > 1, B ∩ C = ∅. Next suppose
that B is a subalgebra of A and that A /B ∼= C . Then either (a) or (b) is valid

and A is isomorphic to an algebra constructed by replacing the top in C by B using

a critical mapping.
���������

. Since A /B ∼= C, 1.5.1 and 1.5.2 imply that either (a) or (b) is valid. By

2.2 there is an isomorphism ι of (A−B, fA � (A−B)) onto (C−{c}, fC � (C−{c})).
Consider x ∈ C−{c} such that fC(x) = c. Then ι(x) ∈ A−B and fA(ι(x)) /∈ A−B,

i.e., fA(ι(x)) ∈ B. Put µ(x) = fA(ι(x)).
Let P = s(C , B, µ). Then P = (C − {c}) ∪ B. We define a mapping ϕ : (C −

{c}) ∪B → A as follows:

ϕ(x) =

{
x if x ∈ B,

ι(x) if x ∈ C − {c}.

Clearly, ϕ is a bijection of (C − {c}) ∪B onto A.

Let x ∈ C − {c}, fC(x) ∈ C − {c}. The definition of ϕ yields fP (x) = fC(x)
and ϕ(fP (x)) = ι(fP (x)) = ι(fC(x)) = fA(ι(x)) = fA(ϕ(x)), because ι is an isomor-

phism.
Let x ∈ C − {c}, fC(x) = c. Then fP (x) = µ(x) = fA(ι(x)) ∈ B which implies

ϕ(fP (x)) = fA(ι(x)) = fA(ϕ(x)).
Let x ∈ dom fB. Then fP (x) = fB(x) ∈ B and ϕ(fP (x)) = fP (x) = fB(x) =

fA(x) = fA(ϕ(x)).
Finally, let x ∈ B − dom fB . By the definition of P we see that x ∈ P − dom fP .
Therefore ϕ is an isomorphism of P onto A . �

2.4 Theorem. Let B = (B, fB), C = (C, fC) be connected partial monounary
algebras, |C| > 1, B ∩C = ∅. Suppose that C has a top c and that either (a) or (b)

is valid. The following conditions are equivalent:

(i) A is isomorphic to an algebra constructed by replacing the top of C by B

using a critical mapping;

(ii) A is a subalgebra extension of C by B.

���������
. This is a corollary of 2.1 and 2.3. �
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2.5 Theorem. Let B = (B, fB), C = (C, fC) be connected partial monounary
algebras, |C| > 1, B ∩C = ∅. A subalgebra extension of C by B exists if and only if

there is c ∈ C such that c is a top of C and either (a) B, C are complete or (b) B,

C are incomplete.
���������

. Let A be a subalgebra extension of C by B, i.e., B be a subalgebra of

A and A /B ∼= C . By 1.5.1, 1.5.2, B is the top of A /B, thus there exists a top in
C . Further, C is complete iff B is complete.

The converse implication follows from 2.4. �

2.6 Theorem. Let B = (B, fB), C = (C, fC) be connected partial monounary
algebras, |C| = 1, B ∩ C = ∅. A subalgebra extension A of C by B exists if and

only if either (a) or (b) is valid; in this case A = B.
���������

. If A is a subalgebra extension of C by B and |C| = 1, then A = B

by 1.5.1, 1.5.2. Obviously, then either (a) or (b) is valid.
Conversely, if (a) or (b) is valid, then A is the unique subalgebra extension of C

by B. �

3. Subalgebra extension—the nonconnected case

The aim of the present section is to investigate the problem (α) if the partial
algebras under consideration are not assumed to be connected.

3.1 Notation. Let A = (A, fA) ∈ U and let {Aj}j∈J be the system of connected
components of A . Then Aj = (Aj , fA � Aj) for j ∈ J is a subalgebra of A . We will
write

A =
∑

j∈J

Aj , A =
∑

j∈J

Aj .

3.2 Lemma. Let A =
∑
j∈J

Aj , B be a subalgebra of A and let C = A /B.

Then C =
∑
j∈J

Cj , B =
∑
l∈L

Bl, L ⊆ J . Further,

(1) if j ∈ J − L, then Cj
∼= Aj ,

(2) if j ∈ L, then Aj is a subalgebra extension of Cj by Bj .
���������

. For j ∈ J we denote Bj = B ∩ Aj . Let L = {j ∈ J : Bj 6= ∅}. Then
Bl = (Bl, fA � Bl) for l ∈ L is a subalgebra of Al and B =

∑
l∈L

Bl. From the

definition of θB it follows that if (x, y) ∈ θB , x 6= y, then x, y belong to the same
connected component of A . Therefore C =

∑
j∈J

Cj . The assertions (1) and (2) then

hold in view of the definition. �
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3.3 Theorem. Let B =
∑
l∈L

Bl, C =
∑
j∈J

Cj , A ∈ U . The following conditions

are equivalent:

(i) A is a subalgebra extension of C by B;

(ii) A =
∑
j∈J

Aj and there is an injection τ : L → J such that for j ∈ J ,

(1) if j 6= τ(l) for each l ∈ L, then Aj
∼= Cj ,

(2) if j = τ(l), l ∈ L, then Aj is a subalgebra extension of Cj by Bl.
���������

. Suppose that (i) is valid, i.e., B is a subalgebra of A and C ∼= A /B.
By 3.2 we have A =

∑
j∈J

Aj . Further, since B is a subalgebra of A , for each l ∈ L

there is a uniquely determined j ∈ J such thatBl is a subalgebra of Aj ; put τ(l) = j.
Then τ : L → J is an injection.

Let j ∈ J . If j 6= τ(l) for each l ∈ L, then Cj
∼= Aj by 3.2. If j = τ(l), then 3.2

implies that Aj is a subalgebra extension of Cj by Bl.

Conversely, assume that (ii) holds. Then B is a subalgebra of A . Denote D =
A /B. In view of 3.2, D =

∑
j∈J

Dj . Further, B can be by 3.2 written in the form

B =
∑

k∈K

Ek, K ⊆ J and

(3) if j ∈ J −K, then Dj
∼= Aj ,

(4) if j ∈ K, then Aj is a subalgebra extension of Dj by Ej . According to the
assumption, B =

∑
l∈L

Bl, thus there is a bijection τ : L → K such that

Bl = Eτ(l) for each l ∈ L. Then τ is an injection of L into J .

Let j ∈ J −K, i.e., j 6= τ(l) for each l ∈ L. By (1) and (3) we obtain
(5) Cj

∼= Aj
∼= Dj .

Let j ∈ K, i.e., j = τ(l) for some l ∈ L. From (2) and (4) we obtain
(6) Aj is a subalgebra extension of Cj by Bl,

(7) Aj is a subalgebra extension of Dj by Eτ(l) = Bl.
Therefore

(8) Bl is a subalgebra of Aj and Aj/Bl
∼= Cj ,

(9) Bl is a subalgebra of Aj and Aj/Bl
∼= Dj ,

hence

(10) Cj
∼= Dj .

Then (5) and (10) imply that C ∼= D and that A is a subalgebra extension of C

by B. �

3.4 Theorem. Let B =
∑
l∈L

Bl, C =
∑
j∈J

Cj , B∩C = ∅. A subalgebra extension

A of C byB exists if and only if there is an injection τ : L → J such that if j = τ(l)
for some l ∈ L, then there exists a top cj in Cj and either both partial algebras Bl,

Cj are complete or both partial algebras Bl, Cj are incomplete.
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4. Remark to the problem (β)

Let us notice that a subalgebra B of A ∈ U need not be an ideal of A and that

an ideal X of A need not be a subalgebra of A :

Example 1. Let A = (A, fA) A = {0, 1, 2, 3} = dom fA, fA(2) = fA(3) = 1,
fA(0) = fA(1) = 0, B = {0, 1}, X = {1, 2, 3}, fB = fA � B, fX = fA � X . Then
B = (B, fB) is a subalgebra of A which is not an ideal of A , X = (X, fX) is an
ideal of A which is not a subalgebra of A .

4.1 Lemma. Let A = (A, fA) ∈ U be connected, x ∈ A, y ∈ A, x 6= y. Then

there exists a minimal upper bound of the set {x, y}.
���������

. There exist nonnegative integers m, n such that fm(x) = fn(y). The
assertion holds if either m = 0 or n = 0. In the remaining cases we have m > 1
and n > 1. Thus, there exists an integer m > 1 such that fm(x) = fn(y) for some
integer n > 1. Denote by m0 the least integer m > 1 such that there exists an integer
n > 1 with fm(x) = fn(y) and put z = fm0(x). Then z is an upper bound of the

set {x, y}. Let t be an upper bound of the set {x, y}. Then there exist nonnegative
integers m1, n1 with fm1(x) = t = fn1(y). By our hypothesis, we have m1 > 1,
n1 > 1. The minimality of m0 implies m0 6 m1 and the existence of a nonnegative
integer p such that m1 = m0 + p. It follows that fp(z) = fp(fm0(x)) = fm1(x) = t,

hence z 6 t and z is a minimal upper bound of the set {x, y}. �

4.2 Lemma. Let A = (A, fA) ∈ U be connected and let X = (X, fX) be an
ideal of A , |X | > 1. Then θX contains only one nontrivial equivalence class; this

class is equal to the set X ∪ {fn
A(x) : x ∈ X, n ∈ � , fn−1

A (x) ∈ dom fA}.���������
. Since |X | > 1, the definition of an ideal and 4.1 imply that there is

x ∈ X ∩ dom fA such that fA(x) ∈ X . Consider the congruence relation θX ; we
obtain (x, fA(x)) ∈ θX . If fA(x) ∈ dom fA, then (fA(x), f2

A(x)) ∈ θX . Similarly,

if fn−1
A (x) ∈ dom fA for n ∈ �

, then (fn−1
A (x), fn

A(x)) ∈ θX . Thus the elements
x, fA(x), f2

A(x), . . . are in the same congruence class of θX . By the minimality of θX

we get that θX contains only one nontrivial equivalence class, and this class is equal
to X ∪ {fn

A(x) : n ∈ � , fn−1
A (x) ∈ dom fA}. �

4.3 Lemma. Let A = (A, fA) ∈ U be connected and let X = (X, fX) be
an ideal of A , |X | > 1. Then there is a unique subalgebra B of A such that

A /B = A /X .
���������

. Denote B = X ∪ {fn
A(x) : n ∈ � , fn−1

A (x) ∈ dom fA}. It is clear that
B = (B, fA � B) is a subalgebra of A . Further, B is the unique subalgebra of A

such that A /B = A /X in view of 1.3 and 4.2. �
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4.3.1 Notation. If the assumption of 4.3 is valid, then the algebra B of 4.3 will

be denoted X ∗.

4.4 Theorem. Let A =
∑
j∈J

Aj and let X = (X, fX) be an ideal of A . For

j ∈ J let Xj = X∩Aj . Suppose that K = {j ∈ J : |Xj | > 1} 6= ∅. IfB =
∑

k∈K

(Xk)∗,

then B is the unique subalgebra of A such that A /B = A /X .
���������

. The assertion follows from 4.3 and from the definitions of θB and θX .
�

4.4.1 Notation. If the assumption of 4.4 is satisfied, then we denote B = X ∗;

X ∗ will be called the subalgebra of A generated by the ideal X .

For given B, C ∈ U let S (C , B) be the system of all subalgebra extensions of C
by B. Further, let I (C , B) be the system of all ideal extensions of C by B.

Example 2. Let C = (C, fC), B = (B, fB), C = {c, d}, dom fC = {d}, fC(d) =
c, B = {0, 1, 2}, dom fB = {1, 2}, fB(1) = fB(2) = 0. By 2.5 and 2.4, S (C , B) 6= ∅
and there are (up to isomorphism) exactly three algebras belonging to S (C , B):
they have the carrier P = {0, 1, 2, d} and their operations f1, f2, f3 have the domain

{1, 2, d}, fi(j) = 0 for i = 1, 2, 3, j = 1, 2 and f1(d) = 0, f2(d) = 1, f3(d) = 2, since
we obtain them using three possible critical mappings. For i = 1, 2, 3, (B, fB) is not
an ideal of (P, fi), thus (P, fi) /∈ I (C , B), i.e.,

(1) S (C , B) ∩I (C , B) = ∅.
Let (Q, fQ) be such that Q = {0, 1, 2, 3, 4, d}, {4} = Q−domfQ, fQ(1) = fQ(2) = 0,
fQ(0) = 3, fQ(3) = fQ(d) = 4. Then (Q, fQ) ∈ I (C , B).
This example shows that neither S (C , B) nor I (C , B) is empty and (1) is valid.

Example 3. Let C = (C, fC), C = {c, d}, fC(c) = fC(d) = c, X = (X, fX),
X = {0, 1, 2}, dom fX = {1, 2}, fX(1) = fX(2) = 0. By 2.5, S (C , X ) = ∅. Let
us consider the system I (C , X ). If A ∈ I (C , X ), i.e., X is an ideal of A

and A /X ∼= C, then by 4.3 and 4.3.1 there is a subalgebra X ∗ of A such that
A /X = A /X ∗. We can try to describe I (C , X ) using the fact that we already
know how to construct S (C , B) for given C , B. Therefore we will try to assign
some algebra B to X , then to construct S (C , B) and we will hope it will be useful
for describing I (C , X ).

Since C is complete, S (C , B) 6= ∅ only if also B is complete. In a natural way,

to X there corresponds the following partial monounary algebra B = (B, fB):

B = X ∪ {fB(0), f2
B(0), f3

B(0), . . .}
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(with fk
B(0) 6= f j

B(0) for k 6= j), fB(1) = fB(2) = 0. (This seems to be the most
natural way of assigning B to X .)
ThenS (C , B) 6= ∅; the algebras belonging toS (C , B) are of the form s(C , B, µ),

where µ is a critical mapping.

For each P ∈ S (C , B) we get

(i) C ∼= P/B = P/X ,

(ii) B is a subalgebra of P .

Thus S (C , B) consists of algebras with the carrier B∪{d}. Let (P, fP ) ∈ S (C , B).
If fP (d) /∈ {0, 1, 2}, then (P, fP ) belongs also to I (C , X ). If fP (d) ∈ {0, 1, 2}, then
X is not an ideal of (P, fP ), therefore (P, fP ) /∈ I (C , X ). Hence we obtain

(1) S (C , B) 	 I (C , X ),
(2) S (C , B) ∩I (C , X ) 6= ∅.

Further, let (Q, fQ) be as in Example 2. Then (Q, fQ) ∈ I (C , X )−S (C , B), thus

(3) I (C , X ) 	 S (C , B).

The construction of replacing the top of an algebra C by some algebra B using
critical mappings did not solve the problem (β).
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