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Abstract. A space X is L -starcompact if for every open cover U of X, there exists
a Lindelöf subset L of X such that St(L, U ) = X. We clarify the relations between L -
starcompact spaces and other related spaces and investigate topological properties of L -
starcompact spaces. A question of Hiremath [3] is answered.
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1. Introduction

By a space, we mean a topological space. Let us recall [6] that a space X is star-

Lindelöf if for every open cover U of X , there exists a countable subset B of X such
that St(B, U ) = X , where St(B, U ) =

⋃{U ∈ U : U ∩B 6= ∅}. It is clear that every
separable space is star-Lindelöf. Also, it is not difficult to see that every T1-space
with countable extent is star-Lindelöf. Therefore, every countably compact T1-space
is star-Lindelöf as well as every Lindelöf space. As generalities of star-Lindelöfness,

the following classes of spaces are given (see [6]):

Definition 1.1. A space X is L -starcompact if for every open cover U of X,

there exists a Lindelöf subset L of X such that St(L, U ) = X.

Definition 1.2. A space X is 1 1
2 -starLindelöf if for every open cover U of X ,

there exists a countable subset V of U such that St(
⋃

V , U ) = X.

In [3], L -starcompactness is called sLc property, and in [1], a 1 1
2 -star-Lindelöf

space is called a star-Lindelöf space and a star-Lindelöf space is called a strongly
star-Lindelöf space.
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From the above definitions, we have the following diagram:

star-Lindelöf −→ L -starcompact −→ 1 1
2 -starLindelöf.

In the following section, we give examples showing that the converses in the above

diagram do not hold.
The cardinality of a set A is denoted by |A|. Let ω be the first infinite cardinal,

ω1 the first uncountable cardinal and c the cardinality of the set of all real numbers.
As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals.

For each ordinals α, β with α < β, we write (α, β) = {γ : α < γ < β}, (α, β] =
{γ : α < γ 6 β} and [α, β] = {γ : α 6 γ 6 β}. Every cardinal is often viewed as a
space with the usual order topology. Other terms and symbols follow [2].

2. L -starcompact spaces and related spaces

In [3], Hiremath asked if the product of two countably compact spaces is L -
starcompact. However it is not difficult to see that the following well-known example

gives a negative answer to the above question, we shall give the proof roughly for
the sake of completeness. The symbol β(X) means the Čech-Stone compactification
of a Tychonoff space X .

Example 2.1. There exist two countably compact spaces X and Y such that

X × Y is not L -starcompact.
���������

. Let D be a discrete space of cardinality c. We can define X =
⋃

α<ω1

Eα,

Y =
⋃

α<ω1

Fα, where Eα and Fα are the subsets of β(D) which are defined inductively

so as to satisfy the following conditions (1), (2) and (3):

(1) Eα ∩ Fβ = D if α 6= β;

(2) |Eα| 6 c and |Fα| 6 c;
(3) every infinite subset of Eα (resp.Fα) has an accumulation point in Eα+1

(resp.Fα+1).

These sets Eα and Fα are well-defined since every infinite closed set in β(D) has
the cardinality 2c (see [5]). Then, X×Y is not L -starcompact, because the diagonal

{〈d, d〉 : d ∈ D} is a discrete open and closed subset of X × Y with the cardinality c

and L -starcompactness is preserved by open and closed subsets. �

We end this section by giving examples which show the converses in the above
diagram in §1 do not hold.

Example 2.2. There exists an L -starcompact Tychonoff space which is not
star-Lindelöf.
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���������
. Let D be a discrete space of cardinality c. Define

X = (β(D) × (ω + 1)) \ ((β(D) \D)× {ω}).

Then, X is L -starcompact, since β(D)× ω is a Lindelöf dense subset of X .

Next, we shall show that X is not star-Lindelöf. Let us consider the open cover

U = {{d} × (ω + 1): d ∈ D} ∪ {β(D)× {n} : n ∈ ω}

of X . Let B be a countable subset of X . Then, there exists a d∗ ∈ D such that

B ∩ ({d∗} × (ω + 1)) = ∅. This means that U = {d∗} × (ω + 1) is the only element
of U containing the point 〈d∗, ω〉, and hence 〈d∗, ω〉 /∈ St(B, V ). �

Example 2.3. There exists a 1 1
2 -starLindelöf Tychonoff space which is not L -

starcompact.
���������

. Let R be a maximal almost disjoint family of infinite subsets of ω with
|R| = c. Define

X = R ∪ (c× ω).

We topologize X as follows: c × ω has the usual product topology and is an open
subspace of X . On the other hand a basic neighbourhood of r ∈ R takes the form

Gβ,K(r) = ({α : β < α < c} × (r \K)) ∪ {r}

for β < c and a finite subset K of ω. To show that X is 1 1
2 -starLindelöf, let U be

an open cover of X . Let

M = {n ∈ ω : (∃U ∈ U )(∃β < c)((β, c) × {n} ⊆ U)}.

For each n ∈ M , there exist Un ∈ U and βn < c such that (βn, c)×{n} ⊆ Un. If we

put V ′ = {Un : n ∈ M}, then

R ⊆ St
(⋃

V ′, U
)
.

On the other hand, for each n < ω, since c× {n} is countably compact, we can find
a finite subfamily Vn of U such that

c× {n} ⊆ St
(⋃

Vn, U
)
.

Consequently, if we put V = V ′ ∪⋃{Vn : n < ω}, then, V is a countable subfamily
of U and X = St(

⋃
V , U ). Hence, X is 1 1

2 -starLindelöf.
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Next, we shall show that X is not L -starcompact. Since |R| = c, enumerate R

as {rα : α < c}. For each α < c, let Uα = {rα} ∪ ((α, c) × rα). Consider the open
cover

U = {Uα : α < c} ∪ {c× ω}

of X and let L be a Lindelöf subset of X . Since R is discrete closed in X , L ∩R is
countable. Hence, there exists β′ < c such that

(1) L ∩ {rα : α > β′} = ∅.

On the other hand, L∩ (c×{n}) is bounded in c× {n} for each n < ω. Thus, there

exists βn < c such that βn > sup{α < c : 〈α, n〉 ∈ L}. Pick β′′ < c such that β′′ > βn

for each n ∈ ω. Then,

(2) ((β′′, c)× ω) ∩ L = ∅.

Choose γ < c such that γ > max{β′, β′′}. Then, Uγ is the only element of U

containing the point rγ and Uγ ∩L = ∅ by (1) and (2). It follows that rγ 6∈ St(L, U ),
which shows that X is not L -starcompact. �

Remark 1. The author does not know if each arrow in the above diagram can
be reversed in the realm of normal spaces.

3. Properties of L -starcompact spaces

Topological behavior of L -starcompact spaces was extensively studied by Hire-
math [3] and Ikenaga [4]. The purpose of this section is to prove some results which

supplement their investigation. In [3, Example 3.6], Hiremath proved that a closed
subspace of an L -starcompact space need not be L -starcompact. The following

example shows that a regular closed subspace of an L -starcompact space need not
be L -starcompact.

Example 3.1. There exists a star-Lindelöf (hence, an L -starcompact) Tychonoff
space having a regular-closed subset which is not L -starcompact.
���������

. Let S1 = (c×ω)∪R be the same space as the space X in Example 2.3.
As we have proved above, S1 is not L -starcompact. Let S2 = ω ∪ R be the Isbell-

Mrówka space [7], where R is a maximal almost disjoint family of infinite subsets of
ω with |R| = c. Then, S2 is L -starcompact because it is separable.

Assume S1 ∩ S2 = ∅ and let X be the quotient image of the disjoint sum S1 ⊕ S2

identifying the subspace R of S1 with the subspace R of S2. Let ϕ : S1 ⊕ S2 → X
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be the quotient map. Then, ϕ[S1] is a regular-closed subspace of X which is not

L -starcompact.
We shall show that X is star-Lindelöf. Let U be an open cover of X . For each n ∈

ω, since ϕ[c×{n}] is countably compact, there exists a finite subset Fn ⊆ ϕ[c×{n}]
such that ϕ[c× {n}] ⊆ St(Fn, U ). Thus, if we put B′ =

⋃{Fn : n ∈ ω}, then

ϕ[c× ω] ⊆ St(B′, U ).

On the other hand, since ϕ[S2] is separable, there exists a countable subset B′′ of

ϕ[S2] such that ϕ[S2] ⊆ St(B′′, U ). Consequently, we can show that St(B′∪B′′, U ) =
X , which shows that X is star-Lindelöf. �

Theorem 3.2. An open Fδ-subset of anL -starcompact space isL -starcompact.
���������

. Let X be an L -starcompact space and let Y =
⋃{Hn : n ∈ ω} be an

open Fδ-subset of X , where the set Hn is closed in X for each n ∈ ω. To show that

Y is L -starcompact, let U be an open cover of Y . We have to find a Lindelöf subset
L of Y such that St(L, U ) = Y . For each n ∈ ω, consider the open cover

Un = U ∪ {X \Hn}

of X . Since X is L -starcompact, there exists a Lindelöf subset Ln of X such that
St(Ln, Un) = X . Let Mn = Ln ∩ Y . Since Y is a Fδ-set, Mn is Lindelöf, and clearly

Hn ⊆ St(Mn, U ). Thus, if we put L =
⋃{Mn : n ∈ ω}, then L is a Lindelöf subset

of Y and St(L, U ) = Y . Hence, Y is L -starcompact. �

A cozero-set in a space X is a set of the form f−1(R \ {0}) for some real-valued
continuous function f on X . Since a cozero-set is an open Fσ-set, we have the

following corollary:

Corollary 3.3. A cozero-set of an L -starcompact space is L -starcompact.

Let τ be an infinite cardinal. Recall that a space X is Lindelöf-τ -bounded if every

subset of X of cardinality 6 τ is contained in a Lindelöf subset of X ([6]).

Theorem 3.4. Every Lindelöf-ω1-bounded space is star-Lindelöf.
���������

. Let X be a Lindelöf-ω1-bounded space. Suppose that X is not star-

Lindelöf. Then, there exists an open cover U of X such that St(B, U ) 6= X for every
countable subset B of X . By induction, we can define a sequence {xα : α < ω1} of
points of X such that

xα /∈ St({xβ : β < α}, U ) for each α < ω1.
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Since X is Lindelöf-ω1-bounded, the set {xα : α < ω1} is contained in a Lindelöf
subspace L ⊆ X . Thus, there exists a countable subfamily V ⊆ U which covers
L. Then at least one element of V contains uncountably many points xα, which is
a contradiction to the definition of the sequence {xα : α < ω1}. Hence, X is star-

Lindelöf. �

For a space X , let l(X) be the Lindelöf number of X , i.e., the smallest cardinal λ
such that every open cover of X has an open refinement V with |V | 6 λ.

Theorem 3.5. Let τ > ω1. Let X = Y ∪ Z, where Y is dense in X , Y is

Lindelöf-τ -bounded and l(Z) 6 τ . Then, X is L -starcompact.
���������

. Let U be an open cover of X . Since Y is Lindelöf-τ -bounded, from

Theorem 3.4, there exists a countable subset B of Y such that Y ⊆ St(B, U ). So it
remains to find a Lindelöf subset L′ ⊆ Y such that Z ⊆ St(L′, U ). Since l(Z) 6 τ ,

there is a subfamily V ⊆ U such that |V | 6 τ and Z ⊆ ⋃
V . Pick xV ∈ V ∩ Y

for each V ∈ V . Since Y is Lindelöf-τ -bounded, the subset {xV : V ∈ V } of Y is

included in some Lindelöf subspace L′ ⊆ Y . Hence, Z ⊆ St(L′, U ). Let L = L′ ∪B.
Then, L is a Lindelöf subspace of X and X = St(L, U ), which completes the proof.

�

In [3], Hiremath proved that a continuous image of an L -starcompact space is L -

starcompact. By contrast, he also showed a perfect preimage of an L -starcompact
space need not be L -starcompact. Now we give a positive result:

Theorem 3.6. Let f be an open perfect map from a space X to an L -

starcompact space Y . Then, X is L -starcompact.
���������

. Since f [X ] is open and closed in Y , we may assume that f [X ] = Y . Let
U be an open cover of X and let y ∈ Y . Since f−1(y) is compact, there exists a finite
subcollection Uy of U such that f−1(y) ⊆ ⋃

Uy and U∩f−1(y) 6= ∅ for each U ∈ Uy.
Pick an open neighbourhood Vy of y in Y such that f−1[Vy] ⊆ ⋃{U : U ∈ Uy}, then
we can assume that

(1) Vy ⊆
⋂
{f [U ] : U ∈ Uy},

because f is open. Taking such open set Vy for each y ∈ Y , we have an open cover
V = {Vy : y ∈ Y } of Y . Let L be a Lindelöf subset of the L -starcompact space Y

such that St(L, V ) = Y . Since f is perfect, the set f−1(L) is a Lindelöf subset of
X . To show that St(f−1(L), V ) = X , let x ∈ X . Then, there exists y ∈ Y such that

f(x) ∈ Vy and Vy ∩ L 6= ∅. Since

x ∈ f−1[Vy] ⊆
⋃
{U : U ∈ Uy},
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we can choose U ∈ Uy with x ∈ U . Then Vy ⊆ f [U ] by (1), and hence U∩f−1[L] 6= ∅.
Therefore, x ∈ St(f−1[L], U ). Consequently, we have St(f−1(L), U ) = X . �

Corollary 3.7 (Hiremath [3]). Let X be an L -starcompact space and Y a

compact space. Then, X × Y is L -starcompact.

The following theorem is a generalization of Corollary 3.7.

Theorem 3.8. Let X be an L -starcompact space and Y a locally compact,

Lindelöf space. Then, X × Y is L -starcompact.
���������

. Let U be an open cover of X × Y . For each y ∈ Y , there exists an

open neighbourhood Vy of y in Y such that clY Vy is compact. By Corollary 3.7,
the subspace X × clY Vy is L -starcompact. Thus, there exists a Lindelöf subset

Ly ⊆ X × clY Vy such that

X × clY Vy ⊆ St(Ly, U ).

Since Y is Lindelöf, there exists a countable cover {Vyi : i ∈ ω} of Y . Let L =⋃{Lyi : i ∈ ω}. Then, L is a Lindelöf subset of X ×Y such that St(L, U ) = X ×Y .

Hence, X × Y is L -starcompact. �

Hiremath [3] showed that the product of two Lindelöf spaces need not be L -
starcompact. In [1, Example 3.3.3], van Douwen-Reed-Roscoe-Tree also gave an

example of a countably compact (and, hence, starcompact) space X and a Lindelöf
space Y such that X × Y is not star-Lindelöf. Now, we shall show that the product
X × Y is not L -starcompact:

Example 3.3.9. There exist a countably compact space X and a Lindelöf space

Y such that X × Y is not L -starcompact.
���������

. Let X = ω1 with the usual order topology, Y = ω1 + 1 with the
following topology. Each point α with α < ω1 is isolated and a set U containing ω1

is open if and only if Y \ U is countable. Then, X is countably compact and Y is

Lindelöf. Now, we show that X × Y is not L -starcompact. For each α < ω1, let
Uα = [0, α]× [α, ω1], and Vα = (α, ω1)× {α}. Consider the open cover

U = {Uα : α < ω1} ∪ {Vα : α < ω1}

of X × Y and let L be a Lindelöf subset of X × Y . Then, πX [L] is a Lindelöf subset
of X , where πX : X × Y → X is the projection. Thus, there exists β < ω1 such that
L ∩ ((β, ω1) × Y ) = ∅. Pick α with α > β. Then, 〈α, β〉 /∈ St(L, U ) since Vβ is the

only element of U containing 〈α, β〉. Hence, X × Y is not L -starcompact, which
completes the proof. �
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Remark. In [4, Example 2], Ikenaga gave an example of a Lindelöf space X and

a separable space Y such that X × Y is not star-Lindelöf. By contrast, as far as
the author knows, it is open whether the product of an L -starcompact space and a
separable space is L -starcompact.
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