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Abstract. The extension of a lattice ordered group A by a generalized Boolean algebra B
will be denoted by AB . In this paper we apply subdirect decompositions of AB for dealing
with a question proposed by Conrad and Darnel. Further, in the case when A is linearly
ordered we investigate (i) the completely subdirect decompositions of AB and those of B,
and (ii) the values of elements of AB and the radical R(AB).
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1. Introduction

To each pair (A,B), where A is a lattice ordered group and B is a generalized
Boolean algebra, there corresponds a lattice ordered group AB (cf. Conrad and Dar-
nel [3]); it is called a generalized Boolean algebra extension of A.

In [3], a series of results on AB was proved. The relations between some properties

of AB and of B were investigated in the author’s paper [10].

Let us remark that if A = Z (the additive group of all integers with the natural

linear order) then AB is a Specker lattice ordered group (cf. Conrad and Darnel [4]
and the author [7]). Further, if A = R (the additive group of all reals with the

natural linear order) then AB is a Carathéodory vector lattice (cf. Gofman [5], and
the author [6], [8], [9]).
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In [3] it was proved that if A is a vector lattice then AB is a vector lattice as well;

the following open question was proposed:

(Q) If AB is a vector lattice, then is A a vector lattice?

In Section 3 we prove that the answer to this question is ‘Yes’.

In the remaining part of the paper we assume that A is a linearly ordered group.

In [10] it was shown that each direct product decomposition of AB is finite (in the
sense that it has only a finite number of nonzero direct factors) and that there is

a one-to-one correspondence between internal direct product decompositions of AB

and finite internal direct product decompositions of B. We remark that internal

direct product decompositions of B need not be finite.

The notion of completely subdirect decomposition of a lattice ordered group was

introduced by Šik [11]. Analogously we can define this notion for generalized Boolean
algebras.

In Section 4 we show that the result of [9] concerning completely subdirect decom-

positions of Carathéodory vector lattices remains valid for the lattice ordered group
AB ; namely, we prove that there is a one-to-one correspondence between internal

completely subdirect decompositions of AB and those of B. We denote by S(AB)
the system of all internal completely subdirect decompositions of AB and we define

in a natural way a binary relation 6 on the system S(AB). We prove that under the
relation 6, S(AB) turns out to be a meet semilattice. If for each b ∈ B, the interval
[0, b] of B is a complete lattice, then S(AB) is a lattice.
In Section 5 we investigate the values of elements of AB and the radical R(AB).

We prove that R(AB) is determined by the set B1 of all atoms of B.

2. Preliminaries

For lattice ordered groups we use the notation as in Birkhoff [1] and Conrad [2].

The symbol 0 can denote the zero real, the neutral element of a lattice ordered

group or the least element of a generalized Boolean algebra; the meaning of this
symbol will be clear from the context.

The generalized Boolean algebra is defined to be a lattice B with the least element
0 such that for each b ∈ B, the interval [0, b] of B is a Boolean algebra. We always
assume that B has more than one element.

We recall some notions and the notation from [3] concerning the generalized
Boolean algebra extension of a latice ordered group.

We denote by Λ the set of all maximal proper filters of B. If b ∈ B, then b will be
identified with the set Λ(b) of all λ ∈ Λ such that b ∈ λ.
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Let A be a lattice ordered group, A 6= {0}. Consider the direct product G0 =∏
λ∈Λ

Aλ, where Aλ = A for each λ ∈ Λ. For a ∈ A and b ∈ B we denote by a[b] the

element of G0 such that

a[b](λ) =

{
a if λ ∈ b,
0 otherwise.

We denote by AB the set of all g ∈ G0 such that either g = 0 or g 6= 0 and g can
be expressed in the form

(1) g = a1[c1] + . . .+ an[cn],

where a1, . . . , an are nonzero elements of A and c1, . . . , cn are nonzero elements of

B such that ci(1) ∧ ci(2) = 0 whenever i(1), i(2) are distinct elements of the set
{1, 2, , . . . , n}. Then (1) is said to be a Specker representation of g.
If, moreover, ai(1) 6= ai(2) whenever i(1), i(2) ∈ {1, 2, . . . , n} and i(1) 6= i(2), then

(1) is called a standard Specker representation of g. Each nonzero element of g has

a uniquely determined standard Specker representation. AB is an `-subgroup of the
lattice ordered group G0.

Let G be a lattice ordered group. In view of the definition from [1], Chapter XV, G
is a vector lattice if the multiplication by scalars (= reals) in G is possible, conforming

to the usual rules of vector algebra, and also the rule that, for each r ∈ R, r → rx

preserves the order if r > 0, and inverts it if r < 0.
By considering a vector lattice X , the multiplication of elements of X by reals is

assumed to be fixed.

Sometimes it will be convenient to distinguish between the lattice ordered group G
(where the multiplication by reals is not taken into account) and the corresponding

vector lattice, if it exists; in such case, this latter will be denoted by V (G).

3. On the question (Q)

For the notion of a subdirect decomposition of an algebraic structure, cf., e.g., [1],
Chapter VI.

Let AB be as in Section 2.

Lemma 3.1. AB is a subdirect product of the indexed system (Aλ)λ∈Λ.
���������

. In view of the definition, AB is an `-subgroup of the direct product∏
λ∈Λ

Aλ.

Let λ ∈ Λ and a ∈ Aλ. There exists b ∈ B with λ ∈ b. Then a[b] belongs to AB

and (a[b])(λ) = a. This completes the proof. �
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Lemma 3.2. Let G be a lattice ordered group such that the vector lattice V (G)
exists. Let X be an `-ideal of G. Then for each r ∈ R and each x ∈ X , the element
rx belongs to X .

���������
. It suffices to consider the case when r 6= 0 and x 6= 0.

a) First suppose that x > 0 and r > 0. There exists a positive integer n with
n > r. Then we have 0 < rx < nx. Since nx ∈ X , we obtain rx ∈ X .
b) Let x > 0 and r < 0. Then in view of a), the element (−r)x = −(rx) belongs

to X , whence rx ∈ X .
c) Let x ∈ X and r ∈ R. We have x = x+ − x−, x+ > 0, x− > 0, thus in view of

a) and b) we get rx+ ∈ X , rx− ∈ X ; then rx ∈ X . �

Lemma 3.3. Let G and V (G) be as in 3.2. Let % be a congruence relation on
G. Then % is a congruence relation on V (G).
���������

. There exists an `-ideal X of G such that for any x, y ∈ G we have x%y
if and only if x − y ∈ X . For verifying that % is a congruence relation on V (G) it
suffices to show that if x1, x2 ∈ G and x1%x2, then rx1%rx2 for each r ∈ R.
The relation x1%x2 yields x1 − x2 ∈ X ; in view of 3.2 we get r(x1 − x2) ∈ X and

thus rx1%rx2. �

Corollary 3.4. Let G and V (G) be as in 3.2. Then the system of all congruence
relations on G coincides with the system of all congruence relations on V (G).

Lemma 3.5. Let G and V (G) be as in 3.2. Let G be a congruence relation on
G. Put G = G/%. Then the vector lattice G = G/% exists.

���������
. Let y ∈ G. There exists x ∈ G such y = x̄, where x̄ = {x1 ∈ G : x1%x}.

Let r ∈ R. We put rx̄ = r̄x; then in view of 3.2 and 3.3, the mapping x̄ → r̄x is

correctly defined and in this way we obviously obtain a vector lattice V (G). �

Proposition 3.6. Let A 6= {0} be a lattice ordered group. Further, let B 6= {0}
be a generalized Boolean algebra. Assume that G = AB is a vector lattice. Then A

is a vector lattice as well.

���������
. In view of 3.1, G is a subdirect product of the indexed system (Aλ)λ∈Λ.

Let λ0 ∈ Λ be fixed. In view of the well-known relation between subdirect decom-
positions and congruence relations (cf., e.g., [1], Chapter VI) we conclude that there
exists a congruence relation %0 on G such that Aλ0 is isomorphic to G/%0. Then

according to 3.5, Aλ0 is a vector lattice. Since Aλ0 ' A, we obtain that A is a vector
lattice as well. �
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Let Y be a nonempty subset of a vector lattice X . Assume that (i) Y is an `-

subgroup of the lattice ordered group X , and (ii) whenever r ∈ R and y ∈ Y , then
ry ∈ Y . We call Y a vector sublattice of X .
If Gi (i ∈ I) are vector lattices and G0 =

∏
i∈I

Gi then since the corresponding

operations in G0 are performed component-wise, for each r ∈ R and each g =
(gi)i∈I ∈ G0 we have

(1) rg = (rgi)i∈I ;

thus G0 is a vector lattice.

If A is a vector lattice and AB is as above, then we consider G = AB as a vector
sublattice of G0 with Gi = A for each i ∈ I . Thus according to the definition of a[b]
(where a ∈ A and b ∈ B) and in view of (1), for each r ∈ R we get

(∗) r(a[b]) = (ra)[b].

Let G1 be a lattice ordered group and suppose that X is a vector lattice which

has the following properties:

(i) G1 is an `-subgroup of the lattice ordered group X ;

(ii) whenever X1 is a lattice ordered group such that G1 is an `-subgroup of X1

and X1 is an `-subgroup of X with X1 ⊂ X , then X1 fails to be a vector

sublattice of X .

Under these assumptions we say that X is a minimal vector lattice over G1.

Again, let A and B be as above; denote G = AB . Let b be a fixed element of B
and

Ab = {a[b] : a ∈ A}.

Then Ab is an `-subgroup of G; moreover, the mapping a→ a[b] is an isomorphism
of A onto Ab.

Proposition 3.7. Let A 6= {0} be a lattice ordered group and let B 6= {0} be
a generalized Boolean algebra. Suppose that Ā is a minimal vector lattice over A.

Put G = AB and G = ĀB . Then G is a minimal vector lattice over G.

���������
. Since Ā is a vector lattice, in view of [3] we obtain that G is a vector

lattice as well. Further, because A is an `-subgroup of Ā we conclude that G is an

`-subgroup of G.

Let X1 be an `-subgroup of G such that G ⊆ X1 ⊂ G. Then in view of the
definition of G there exist ā ∈ Ā and b ∈ B such that ā[b] /∈ X1.

737



In view of the above mentioned isomorphism between A and Ab, and according to

the analogous isomorphism between Ā and Āb we obtain that Āb is a minimal vector
lattice over the lattice ordered group Ab.
We denote

X2 = Āb ∩X1.

Then ā[b] /∈ X2, whence Ab ⊆ X2 ⊂ Āb. This yields that X2 fails to be a vector
sublattice of the vector lattice Āb. Hence there exist r ∈ R and p ∈ X2 with rp /∈ X2.

Since p ∈ Āb it must have the form p = ā1[b] for some ā1 ∈ Āb. In view of (∗)
(applied for Āb) we obtain rp = r(ā[b]) = (rā)[b], whence rp ∈ Āb. If rp ∈ X1 then

we obtain rp ∈ X2, which is a contradiction. Thus rp /∈ X1. Since p ∈ X1 we
conclude that X1 fails to be a vector sublattice of G. Thus G is a minimal vector

lattice over the lattice ordered group G. �

In connection with 3.7, cf. also the question proposed on p. 306 of [3], where the

term ‘vector hull of a lattice ordered group’ has been used.

4. Completely subdirect products

Assume that a lattice ordered group G is a subdirect product of an indexed system
(Xi)i∈I of lattice ordered groups. For g ∈ G and i ∈ I we denote by gi the component

of g in Xi.
Suppose that for each i ∈ I and each xi ∈ Xi there exists g ∈ G such that gi = xi

and gj = 0 if j ∈ I , j 6= i. Then we say that the mapping ϕ : g → (gi)i∈I is a

completely subdirect decomposition of G. (Cf. [11].)
If, moreover, for each i ∈ I , Xi is an `-subgroup of G and xi = xi whenever

x ∈ Xi, then we call ϕ an internal completely subdirect product decomposition of
G. The lattice ordered groups Xi are called internal subdirect factors of G.

The analogous terminology will be applied in the particular case when ϕ is a direct
product decomposition of G. In this case we speak about internal direct factors of G.

The case G = {0} being trivial we will assume that G 6= {0} and also that all
internal direct (or subdirect) factors under consideration are nonzero.

The definitions of a completely subdirect decomposition and of internal completely
subdirect decomposition of a Boolean algebra are analogous.

Let B be a generalized Boolean algebra and let C(B) be the Carathéodory vector
lattice corresponding to B. In [9], the relations between internal completely subdirect

decompositions of B and those of C(B) have been investigated.
Now let B be as above and let A be a linearly ordered group. In the present section

we will deal with the relations between internal completely subdirect decompositions
of B and those of AB .
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Lemma 4.1 (Cf. [10]). Let X be an `-subgroup of a lattice ordered group G.
Then the following conditions are equivalent:

(i) X is an internal subdirect factor of G.
(ii) X is an internal direct factor of G.

Analogously, we have

Lemma 4.2 (Cf. [10]). Let Y be an ideal of a generalized Boolean algebra. Then
the following conditions are equivalent:

(i) X is an internal subdirect factor of B.
(ii) X is an internal direct factor of B.

Now let us suppose that A 6= {0} is a linearly ordered group and that B 6= {0} is
a generalized Boolean algebra.

Let X be a convex `-subgroup of a lattice ordered group G. It is well-known
that X is an internal direct factor of G if and only if, for each 0 6 g ∈ G, the set
{0 6 x ∈ X : x 6 g} has a greatest element; if x1 is the mentioned greatest element,

then x1 is the component of g in the internal direct factor X .

An analogous result holds for generalized Boolean algebras. By a simple calcula-

tion we obtain

Lemma 4.2.1. Let X be an ideal of a generalized Boolean algebra B. Then X is
an internal direct factor of B if and only if, for each b ∈ B, the set {x ∈ X : x 6 b} has
a greatest element; if x1 is the mentioned greatest element, then x1 is the component

of b in the internal direct factor X .

The proof will be omitted.

Lemma 4.2.2. Let B be a generalized Boolean algebra and let (Xi)i∈I be a

system of ideals of B which determines a completely subdirect product decomposition

of B. For b ∈ B let bi be the component of b in Xi (i ∈ I). Then b =
∨
i∈I

bi.

���������
. Let b ∈ B. In view of 4.2.1 we have bi 6 b for each i ∈ I . Assume

that b0 ∈ B such that bi 6 b0 for each i ∈ I . Then bi = (bi)i 6 (b0)i for each i ∈ I ,
whence b 6 b0. Thus b is the supremum of the system (bi)i∈I . �

Let X be an internal direct factor of G. We denote by ϕ(X) the set of all b ∈ B
such that there exists a ∈ A with a[b] ∈ X .
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Lemma 4.3 (Cf. [10]). ϕ(X) is an internal direct factor of B.

Let Y be an internal direct factor of B. We denote by ψ(Y ) the set of all g ∈ G

such that either g = 0 or g has a Specker representation g = a1[c1] + . . . + an[cn],
where c1, . . . , cn ∈ B.

Lemma 4.4 (Cf. [10]). ψ(Y ) is an internal direct factor of AB .

Lemma 4.5 (Cf. [10]). Let A,B be as above and let G = AB .

(i) If X is an internal direct factor of G, then ψ(ϕ(X)) = X .

(ii) If Y is an internal direct factor of B, then ϕ(ψ(Y )) = Y .

For each lattice ordered group G we denote by F (G) the system of all internal
direct factors of G. Similarly, for each generalized Boolean algebra B, let F (B) be
the system of all internal direct factors of B. Both F (G) and F (B) are partially
ordered by the set-theoretical inclusion.

Again, let G = AB . In view of the definitions of ϕ and ψ we have

X1, X2 ∈ F (G), X1 6 X2 ⇒ ϕ(X1) 6 ϕ(X2);(1)

Y1, Y2 ∈ F (B), Y1 6 Y2 ⇒ ψ(Y1) 6 ψ(X2).(1′)

According to (1), (1′), 4.2, 4.4 and 4.5 we obtain

Lemma 4.6. Let A,B and G be as in 4.5. Then ϕ is an isomorphism of F (G)
onto F (B); similarly, ψ is an isomorphism of F (B) onto F (G).

Let {Xi}i∈I be a set of internal direct factors of a lattice ordered group G. For

g ∈ G and i ∈ I let gi be the component of g in Xi. If the mapping ϕ1 : G→ ∏
i∈I

Xi

(where ϕ1(g) = (xi)i∈I) is an internal completely subdirect decomposition of G, then

we say that the system α = {Xi}i∈I determines an internal completely subdirect
decomposition of G.

A similar terminology will be applied for generalized Boolean algebras.

Proposition 4.7. Assume that A 6= {0} is a linearly ordered group and that
B is a generalized Boolean algebra. Put G = AB . Let {Xi}i∈I be a set of internal

direct factors of G. Then the following conditions are equivalent:

(i) The system {Xi}i∈I determines an internal completely subdirect decomposi-

tion of G.

(ii) The system {ϕ(Xi)}i∈I determines an internal completely subdirect decom-

position of B.

���������
. This is a consequence of 4.6 and of [10]. �
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Hence there is a one-to-one correspondence between internal completely subdirect

decompositions of G and those of B, where A,B and G are as in 4.7.
Under the notation as above, let S(G) be the system of all internal completely

subdirect product decompositions of G, and let S(B) be defined analogously.
We assume that G 6= {0} and B 6= {0}. Thus we can suppose that S(B) is the set

of all systems α = {Yi}i∈I , where {Yi}i∈I is a set of nonzero internal direct factors

of B which determine an internal completely subdirect decomposition of B.
Let β = {Y ′

j }j∈J be another such system. We put α 6 β if for each i ∈ I there

exists j ∈ J such that Yi ⊆ Y ′
j .

Analogously we define the relation 6 on the set S(G).

Lemma 4.8. The relation 6 is a partial order on S(B).
���������

. It is obvious that the relation 6 is reflexive and transitive. Let α, β ∈
S(B) such that α 6 β and β 6 α. For α and β we apply the notation as above.
Let i0 ∈ I . Then there is j(i0) ∈ J with Yi0 ⊆ Y ′

j(i0). If j ∈ J , j 6= j(i0), then
Y ′

j ∩ Y ′
j(i0) = {0}. Hence the element j(i0) is uniquely determined. Similarly, for

each j0 ∈ J there exists a unique i(j0) ∈ I with Y ′
j0
⊆ Yi(j0). Then Yi0 ⊆ Yi(j(i0)),

whence Yi0 = Yi(j(i0)) yielding that Yi0 = Y ′
j(i0) and so the mapping i0 → j(i0) is a

bijection. Therefore α = β. �

An analogous result holds for the relation 6 on S(G).
In view of 4.7 we obtain

Lemma 4.8.1. The partially ordered systems S(B) and S(AB) are isomorphic.

Let α and β be as above. For b ∈ B and i ∈ I let b(Yi) be the component of b in
Yi. The meaning of b(Y ′

j ) is analogous. Then in view of 4.2.2 we have

(1) b =
∨

i∈I

b(Yi) =
∨

j∈J

b(Y ′
j ).

We denote by γ the system of those Yi ∩ Y ′
j which have more than one element.

Let K be the set of all pairs (i, j) with i ∈ I , j ∈ J such that Yi ∩ Y ′
j ∈ γ.

Lemma 4.9. The set K is nonempty.
���������

. There exists 0 < b ∈ B. In view of (1) we have

(2) b = b ∧
∨

i∈I

b(Yi) =
∨

i∈I

(b ∧ b(Yi)) =
∨

i∈I

∨

j∈J

(b(Y ′
j ) ∧ b(Yi)).

For i ∈ I and j ∈ J , b(Y ′
j )∧ b(Yi) ∈ Y ′

j ∩ Yi. If γ = ∅, then b(Y ′
j )∧ b(Yi) = 0 for each

i ∈ I and each j ∈ J , whence b = 0, which is a contradiction. �
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For each b ∈ B and each (i, j) ∈ K we put

bij = b(Yi) ∧ b(Y ′
j ).

Further, we set

χ(b) = (bij)(i,j)∈K .

Lemma 4.10. Let b ∈ B and bi ∈ Yi for each i ∈ I . Assume that b =
∨
i∈I

bi.

Then bi = b(Yi) for each i ∈ I .
���������

. Let i0 ∈ I . We have

bi0 = bi0 ∧ b = bi0 ∧
( ∨

i∈I

b(Yi)
)

=
∨

i∈I

(bi0 ∧ b(Yi)).

If i ∈ I , i 6= i0, then bi0 ∧ b(Yi) = 0, whence

bi0 = bi0 ∧ b(Yi0 ),

thus bi0 6 b(Yi0). By similar steps we prove the relation b(Yi0) 6 bi0 . �

Lemma 4.11. Let b ∈ B and (i, j) ∈ K. Then

bij = (b(Yi))(Y ′
j ) = (b(Y ′

j ))(Yi).

���������
. Put bi = b(Yi), bj = b(Y ′

j ). We have

bi = bi ∧ b = bi ∧
( ∨

j∈J

bj

)
=

∨

j∈J

(bi ∧ bj).

Since bi ∧ bj ∈ Y ′
j , in view of 4.10 (applied for the element bi and for the subdirect

decomposition β) we obtain bi(Y ′
j ) = bi∧bj . Analogously we get bj(Yi) = bi∧bj . �

Lemma 4.12. The mapping χ is a homomorphism of B into
∏

(i,j)∈K

Cij , where

Cij = Yi ∩ Y ′
j . Moreover, χ is a monomorphism.

���������
. For each i ∈ I , the mapping b→ b(Yi) is a homomorphism of B into Yi.

Similarly, for each j ∈ J , the mapping b → b(Y ′
j ) is a homomorphism of B into Y ′

j .
For (i, j) ∈ K, Cij is an ideal of B. According to 4.11 we conclude that the mapping

b → bij is a homomorphism of B into Cij . Hence χ is a homomorphism of B into∏
(i,j)∈K

Cij .
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It remains to verify that χ is a monomorphism. Since B is a generalized Boolean

algebra it suffices to show that if b ∈ B and χ(b) = 0, then b = 0. By way of
contradiction, assume that 0 6= b and χ(b) = 0. Thus bij = 0 for each (i, j) ∈ K.
According to (1) there exists i ∈ I with bi > 0. Then we have bi =

∨
j∈J

(bi(Y ′
j )),

hence there exists j ∈ J with bi(Y ′
j ) > 0. Thus 4.11 yields bij > 0, which is a

contradiction. �

Lemma 4.13. The system (Cij)(i,j)∈K determines an internal completely sub-

direct decomposition of B.

���������
. Let (i, j) ∈ K and x ∈ Cij . Then x ∈ Yi, whence xi = x. Further,

x ∈ Y ′
j , yielding xj = x. Thus in view of 4.11, xij = (xi)j = xj = x. According to

4.12, the proof is complete. �

We denote by γ the internal completely subdirect decomposition of B which is
determined by the system (Cij )(i,j)∈K .

Proposition 4.14. Let α, β and γ be as above. Then in the partially ordered
set S(B) we have α ∧ β = γ.

���������
. Let (i, j) ∈ K. Then Cij ⊆ Yi and Cij ⊆ Y ′

j , whence γ 6 α and
γ 6 β. Let γ1 be an element of S(B) which is generated by a system (Zm)m∈M of

ideals of B. Assume that γ1 6 α and γ1 6 β. Thus for each m ∈ M there exist
i ∈ I and j ∈ J such that Zm ⊆ Yi and Zm ⊆ Y ′

j . Then Zm ⊆ Yi ∩ Y ′
j = Cij . We

have {0} 6= Zm, whence Cij 6= {0}, thus (i, j) ∈ K. Therefore γ1 6 γ. This yields
γ = α ∧ β. �

Hence we obtain

Theorem 4.15. Let B be a generalized Boolean algebra. Then the partially

ordered set S(B) is a meet-semilattice.

In view of 4.15 and 4.7 we get

Theorem 4.15.1. Let A 6= {0} be a linearly ordered group and let B 6= {0}
be a generalized Boolean algebra. Then the partially ordered set S(AB) is a meet-
semilattice.

Let (i1, j1) and (i2, j2) be elements of K. We put (i1, j1) ≡ (i2, j2) if there exist
elements

(i1, j1), (i2, j2), . . . , (in, jn)
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of K such that (i1, j1) = (i1, j1), (in, jn) = (i2, j2) and whenever m ∈ {1, 2, . . . ,
n − 1}, then either im = im+1 or jm = jm+1. The relation ≡ is an equivalence on
the set K; let % be the partition of the set K corresponding to the equivalence ≡.
For (i, j) ∈ K let ¯(i, j) be the class in % containing the element (i, j).
Recall that in view of 4.13 and 4.1, for each (i, j) ∈ K the ideal Cij of B is an

internal direct factor of B. Thus for each b ∈ B there exists a uniquely determined
component b(Cij) of b in Cij .
For any (i, j) ∈ K let D ¯(i,j) be the set of all elements b ∈ B such that b(Ci1,j1) = 0

whenever (i1, j1) /∈ ¯(i, j). Thus in view of (1) we obtain

Lemma 4.16. Let (i0, j0) ∈ K and b ∈ B. Then the following conditions are

equivalent:

(i) b ∈ D ¯(i0,j0);

(ii) b =
∨

(i,j)∈ ¯(i0,j0)

b(Cij).

In the remaining part of the present section we assume that the following condition

is satisfied:

(∗) If 0 < b ∈ B, then the interval [0, b] of B is a complete lattice.
We apply the notation as above. Let b ∈ B. In view of (1) and 4.13, we have

b =
∨

(i,j)∈K

bij .

Let (i0, j0) ∈ K. Then according to (∗), the set {bij}(i,j)∈ ¯(i0,j0) has a supremum
in B; we denote it by b ¯(i0,j0).

Lemma 4.17. For each b ∈ B and each (i0, j0) ∈ K, b ¯(i0,j0) is the greatest

element of the set

{x ∈ D ¯(i0,j0)
: x 6 b}.

���������
. Let b ∈ B and (i0, j0) ∈ K. In view of the definition of b ¯(i0,j0)

, this

element belongs to the set D ¯(i0,j0). Let x ∈ D ¯(i0,j0), x 6 b.
From the first of the mentioned relations we obtain

x ¯(i0,j0) = x.

Further, from x 6 b we get
x ¯(i0,j0) 6 b ¯(i0,j0).

This completes the proof. �

By applying 4.2.1 we get

744



Corollary 4.18. Let (i0, j0) ∈ K. Then D ¯(i0,j0) is an internal direct factor of

B. For each b ∈ B, the element b ¯(i0,j0) is the component of b in D ¯(i0,j0).

We denote K = { ¯(i, j) : (i, j) ∈ K}. For b ∈ B we put

χ1(b) = {bk}k∈K .

In view of 4.18, χ1 is a homomorphism of B into
∏

k∈K

Dk. Similarly as in 4.12 we

can verify that χ1 is a monomorphism. From this and from 4.17 we conclude that

χ determines an internal completely subdirect decomposition of B; let us denote it
by ∆.

Lemma 4.19. ∆ = α ∨ β.
���������

. Let i0 ∈ I . There exists j0 ∈ J with (i0, j0) ∈ K. Then in view of the
definition of Dk for k = ¯(i0, j0) we have Yi0 ⊆ Dk. Hence α 6 ∆. Similarly we have
β 6 ∆.
Let ∆1 ∈ S(B) such that α 6 ∆1 and β 6 ∆1. Assume that ∆1 is determined by

a system {Et}t∈T of ideals of B. Let i0 ∈ I . There exists t0 ∈ T with Yi0 ⊆ Et0 .
Thus whenever (i0, j0) ∈ K, then Ci0 ,j0 ⊆ Et0 . Analogously, if j1 ∈ J is given and

(i1, j1) ∈ K, then Ci1 ,j1 ⊆ Et1 for some t1 ∈ T . From this and from the definition of
Dk for k ∈ K we conclude that Dk is a subset of some Et(t ∈ T ). Therefore ∆ 6 ∆1

and thus ∆ = α ∨ β. �

From 4.14, 4.19 and 4.8.1 we conclude

Theorem 4.20. Let A 6= {0} be a linearly ordered group and let B 6= {0} be
a generalized Boolean algebra. Suppose that the condition (∗) is satisfied. Then
S(AB) is a lattice.

5. The radical of AB

In Conrad [2], there are investigated three types of radicals of a lattice ordered
group G (the radical R(G), the distributive radicalD(G) and the ideal radical L(G)).
In the present section we deal with the radical R(G) for the case when G = AB , when
A 6= {0} is a linearly ordered group and B is a generalized Boolean algebra.
We recall the corresponding definitions from [2].

LetG be a lattice ordered group and 0 6= g ∈ G. A value of g is a convex `-subgroup
Gα of G such that Gα is maximal with respect to non-containing the element g. Put
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Rg =
∨
Gα, where Gα runs over the system of all values of g. Further, we set

R(G) =
⋂

06=g∈G

Rg .

Then R(G) is the radical of G.
Again, let 0 6= g ∈ G and let Lg be the join of all `-ideals of G not containing g.

Put

L(G) =
⋂

06=g∈G

Lg.

Then L(G) is the ideal radical of G.
A lattice ordered group is called representable if it is isomorphic to a subdirect

product of linearly ordered groups.

Proposition 5.1 (Cf. [2]). Let G be a representable lattice ordered group. Then
L(G) = R(G).

Corollary 5.2. Let A 6= {0} be a linearly ordered group and let B 6= {0} be a
generalized Boolean algebra. Then L(AB) = R(AB).
���������

. In view of the definition of AB we obtain that AB is a subdirect product

of replicas of A. Hence AB is representable and now it suffices to apply 5.1. �

The following result is easy to verify.

Lemma 5.3. Let G be a lattice ordered group and g ∈ G. Let X be a convex

`-subgroup of G. Then g ∈ X if and only if |g| ∈ X .

In view of 5.3 we have

(1) R(G) =
⋂

0<g∈G

Rg.

Lemma 5.4. Let A and B be as in 5.2. Let 0 < g ∈ AB and suppose that g has

a Specker representation

g = a1[c1] + . . .+ an[cn].

Let X be a convex `-subgroup of G = AB . Then g belongs to X if and only if all

ai[ci] (i = 1, 2, . . . , n) belong to X .
���������

. If all ai[ci] belong to X then in view of the Specker representation we
get g ∈ X . Conversely, let g ∈ X and i ∈ {1, 2, . . . , n}. Since 0 < ai[ci] 6 g, we

obtain ai[ci] ∈ X . �
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Lemma 5.5. Under the assumption as in 5.4 we have

Rg = Ra1[c1] ∨ . . . ∨ Ran[cn].

���������
. a) Let X be a value of g. Hence g /∈ X . Thus in view of 5.4 there is

i ∈ {1, 2, . . . , n} such that ai[ci] /∈ X . Then there is a value Y of ai[ci] with X ⊆ Y .
According to the definition of Rg and of Rai[ci] we obtain X ⊆ Rai[ci] and

Rg 6 Ra1[c1] ∨ . . . ∨ Ran[cn].

b) Let i ∈ {1, 2, . . . , n} and let Y1 be a value of ai[ci]. Hence ai[ci] /∈ Y1. In view

of 5.4, g /∈ Y1. Then there is a value X1 of g with Y1 ⊆ X1. This yields Rai[ci] 6 Rg .
Thus we obtain

Ra1[c1] ∨ . . . ∨ Ran[cn] 6 Rg ,

completing the proof. �

Lemma 5.6. Let A and B be as in 5.2; put G = AB . Then

R(G) =
⋂

0<a∈A,0<b∈B

Ra[b].

���������
. Let 0 < a ∈ A, 0 < b ∈ B; then a[b] ∈ G, whence

R(G) ⊆
⋂

0<a∈A,0<b∈B

Ra[b].

Assume that x ∈ Ra[b] for each 0 < a ∈ A and each 0 < b ∈ B. Let 0 < g ∈ G. Then
in view of 5.5 we have x ∈ Rg , whence x ∈ R(G). �

In view of 5.6, for characterizing R(G) we have to describe the `-subgroups Ra[b]

for 0 < a ∈ A and 0 < b ∈ B. Since A is linearly ordered, there exists a unique value
Aa of the element a in A. We denote

Aa
b = {a1[b] : a1 ∈ Aa}.

For each x ∈ G, let (x)δ be the orthogonal polar of x, i.e.,

(x)δ = {y ∈ G : |x| ∧ |y| = 0}.

Then (x)δ is a convex `-subgroup of G. For ∅ 6= X ⊆ G we put Xδ =
⋂

x∈X

(x)δ .
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Each linearly ordered group is projectable. Thus according to [4] the lattice or-

dered group G is projectable. Therefore (a[b])δ is an internal direct factor of G. Thus
we have

(2) G = (a[b])δ × (a[b])δδ .

We put
G1 = {t ∈ G : t((a[b])δδ) ∈ Aa

b}.

Then we obtain

(3) G1 = (a[b])δ ×Aa
b .

Lemma 5.7. Assume that b is an atom of B. Then G1 is a value of a[b].
���������

. We have a[b] ∈ (a[b])δδ, whence

a[b]((a[b])δδ) = a[b]

and a[b] /∈ Aa
b . Thus a[b] /∈ G1.

Let H be a convex `-subgroup of G with G1 ⊂ H . Then according to (2) we obtain
H = H1 ×H2, where

H1 = H ∩ (a[b])δ, H2 = H ∩ (a[b])δδ .

In view of (3), (a[b])δ ⊆ G1, thus (a[b])δ ⊆ H . This yields H1 = (a[b])δ and

H = (a[b])δ ×H2.

Since G1 ⊂ H , by using (3) again we obtain Aa
b ⊂ H2. Then there exists 0 < t ∈ H2

with t /∈ Aa
b . Let

t = a1[c1] + . . .+ an[cn]

be a Specker representation of t. Since t ∈ H2, all ai[ci] (i = 1, 2, . . . , n) belong to
H2. Further, since t /∈ Aa

b , there exists i ∈ {1, 2, . . . , n} with ai[ci] /∈ Aa
b .

From ai[ci] ∈ H2 ⊆ (a[b])δδ we get ci 6 b. Since 0 < ci and since b is an atom of

B we have ci = b. Then ai[b] ∈ H2 and ai[b] /∈ Aa
b . Hence ai /∈ Aa.

We denote by A′ the set of all a0 ∈ A such that a0[b] ∈ H2. Then A′ is a convex

`-subgroup of A and Aa ⊆ A′. Since ai ∈ A′ and ai /∈ Aa we obtain Aa ⊂ A′. From
the fact that Aa is a value of a we get a ∈ A′. Hence a[b] ∈ H2 ⊆ H . Therefore G1

is a value of a[b]. �
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Lemma 5.8. Assume that b is an atom of B and let 0 < a ∈ A. Then the lattice
ordered group (a[b])δδ is linearly ordered.

���������
. Let x1, x2 ∈ (a[b])δδ . Since b is an atom of B we conclude that there

exist a1, a2 ∈ A with x1 = a1[b], x2 = a2[b]. Because A is linearly ordered, the
elements a1 and a2 are comparable and thus x1 and x2 are comparable as well. �

Lemma 5.9. Let a and b be as in 5.8. Further, let G1 be as above. Then G1 is

a unique value of a[b].
���������

. Assume that G′
1 is a value of a[b]. Then according to (2) we have

G′
1 = K1 ×K2, where

K1 = G′
1 ∩ (a[b])δ, K2 = G′

1 ∩ (a[b]δδ).

Put

G′′
1 = (a[b])δ ×K2.

Thus G′′
1 ⊇ G′

1. Suppose that G
′′
1 6= G′

1.

Since G′
1 is a value of a[b] we get a[b] ∈ G′′

1 . Because (a[b])(a[b])δ = 0 we have
a[b] ∈ K2. This yields a[b] ∈ G′

1, which is a contradiction. Therefore G
′′
1 = G′

1 and

hence

G′
1 = (a[b])δ ×K2.

Both Aa
b and K2 are convex `-subgroups of (a[b])δδ . According to 5.8, (a[b])δδ is

linearly ordered. Then the system of convex `-subgroups of (a[b])δδ is linearly ordered
as well. This yields that G1 and G′

1 are comparable. But two distinct values of the
same element cannot be comparable. Therefore G′

1 = G1. �

Corollary 5.10. Let a and b be as in 5.8. Then Ra[b] = G1, where G1 is as

above.

From the definition of the partial order in G we obtain

Lemma 5.11. Let a and b be as in 5.8. Then (a[b])δ is the set of all g ∈ G such
that either g = 0, or g has a Specker representation g = a1[c1] + . . . + an[cn] such
that a ∧ ci = 0 for i = 1, 2, . . . , n.

Corollary 5.12. Let a, b be as in 5.8 and let a1 ∈ A, a1 6= 0. Then (a[b])δ =
(a1[b])δ .
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Lemma 5.13. Let a, b be as in 5.8 and let a1 ∈ A, a 6 a1. Then Ra[b] ⊆ Ra[b1].
���������

. If Aa1 is defined analogously as Aa, then we have Aa ⊆ Aa1 , whence

Aa
b ⊆ Aa1

b . Hence in view of 5.9 and 5.12 we obtain Ra[b] ⊆ Ra1[b]. �

Corollary 5.14. Let a and b be as in 5.8. Let c1, . . . , cn be mutually orthogonal
nonzero elements of B such that b ∧ ci = 0 for i = 1, 2, . . . , n. Let a1, . . . , an ∈ A.

Then a1[c1] + . . .+ an[cn] ∈ Ra[b].

Now let 0 < a ∈ A, 0 < b ∈ B; in 5.15–5.22 we suppose that b fails to be an atom
of B.
Consider the Boolean algebra [0, b]. There exists a proper maximal ideal B∗ of

[0, b]. Let X be the set of all elements x of G such that either x = 0 or x has
a Specker representation of the form x = a1[c1] + . . . + an[cn] such that c1, . . . , cn
belong to [0, b] and ai ∈ Aa whenever i ∈ {1, 2, . . . , n} with c1 /∈ B∗. Then a[b] does
not belong to X .
The set Xδ consists of all elements g ∈ G such that either g = 0 or g has a Specker

representation g = a0
1[c

0
1] + . . .+ a0

m[c0m] such that c0j ∧ b = 0 for j = 1, 2, . . . ,m.
Put X1 = X +Xδ. An easy calculation shows that X1 is a convex `-subgroup of

G and that a[b] /∈ X1.

Lemma 5.15. Under the assumptions as above, X1 is a value of a[b].
���������

. By way of contradiction, assume that X1 fails to be a value of a[b].
Hence there exists a convex `-subgroup Y of G such that a[b] /∈ Y and X1 ⊂ Y .
There is 0 < y ∈ Y with y /∈ X1. Let

y = a′1[b1] + . . .+ a1
k[bk]

be a Specker representation of y.

Put b11 = b1 ∧ b and let b12 be the complement of b11 in the interval [0, b1] of B.
Hence we have

b11 ∧ b12 = 0, b11 ∨ b12 = b1, b11 ∈ [0, b], b12 ∧ b = 0.

We apply the same procedure to the elements b2, . . . , bk.

If for each k(1) ∈ {1, 2, . . . , k} we have either (i) bk(1),1 ∈ B∗, or (ii) a1
k(1) ∈ Aa,

then in view of the definition of X1 we obtain y ∈ X1, which is a contradiction.

Hence there is k(1) ∈ {1, 2, . . . , k} such that bk(1),1 /∈ B∗ and a1
k(1) /∈ Aa. We denote

by b′ the complement of bk(1),1 in the Boolean algebra [0, b]. Then a1
k(1)[b

′] ∈ X1.

Further,
0 < a1

k(1)[bk(1),1] 6 a1
k(1)[bk(1)] 6 y,
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whence a1
k(1)[bk(1),1] ∈ Y . Thus we obtain

a1
k(1)[b

′] + a1
k(1)[bk(1),1] ∈ Y.

Since b′ ∧ bk(1),1 = 0 and b′ ∨ bk(1),1 = b, we have

a1
k(1)[b

′] + a1
k(1)[bk(1),1] = a1

k(1)[b].

Thus a1
k(1)[b] ∈ Y .

For each a1 ∈ A we put f(a1) = a1[b]. Then f is an isomorphism of the lattice
ordered group A onto the `-subgroup Ab of G. Since Aa is the unique value of a in

A, we infer that Aa
b is the unique value of a[b] in Ab.

We have a1
k(1) /∈ Aa. Hence a1

k(1)[b] ∈ Aa
b . Therefore the convex `-subgroup Y1

of G which is generated by a1
k(1)[b] contains the element a[b]. Clearly Y1 ⊆ Y and

hence a[b] ∈ Y , which is a contradiction. �

If the value X1 of a[b] is constructed as above by using the maximal proper ideal
of the Boolean algebra [0, b] then we say that X1 is determined by B∗.

Again, let 0 < a ∈ A, 0 < b ∈ B. Suppose that b fails to be an atom of B. Let X2

be a value of a[b].

Lemma 5.16. [0, a[b]]δ ⊆ X2.
���������

. By way of contradiction, assume that [0, a[b]]δ fails to be a subset of
X2. Denote Y = X2 ∨ [0, a[b]]δ. Then Y is a convex `-subgroup of G and X2 ⊂ Y .
Since X2 is a value of a[b] we must have a[b] ∈ Y .
There exist z1, . . . , zn ∈ X2 ∪ [0, a[b]]δ such that

0 < a[b] = z1 + . . .+ zn.

Then it is easy to verify that without loss of generality we can suppose that zi > 0
for i = 1, 2, . . . , n. If zi ∈ [0, a[b]]δ for some i ∈ {1, 2, . . . , n}, then we would have
zi ∧ a[b] = 0 which is a contradiction, since zi 6 a[b]. Therefore all zi belong to X2

yielding that a[b] ∈ X2, which is a contradiction. �

Lemma 5.17. There exist b1 ∈ B with 0 < b1 < b and a1 ∈ A with a1 /∈ Aa

such that a1[b1] ∈ X2.
���������

. By way of contradiction, assume that for each a1 and b1 with the

mentioned properties we have a1[b1] /∈ X2. Let B∗ be a proper maximal ideal of
the Boolean algebra [0, b] and let X1 be the value of a[b] which is determined by
B∗. Then X2 ⊂ X1 and a[b] /∈ X1. Thus X2 fails to be a value of a[b], which is a
contradiction. �
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We denote by B0 the set of all b1 ∈ B such that either b1 = 0, or 0 < b1 < b and

there exists a1 ∈ A such that a1 /∈ Aa and a1[b1] ∈ X2. In view of 5.17, B0 6= ∅.

Lemma 5.18. B0 is an ideal of [0, b] and b /∈ B0.

���������
. Let 0 < b1 ∈ B0 and 0 < b2 ∈ B, b2 < b1. There exists 0 < a1 ∈ A

with a1 /∈ Aa, a1[b1] ∈ X2. Then 0 < a1[b2] < a1[b1], whence a1[b2] ∈ X2 and thus
b2 ∈ B0.

Let 0 < b1 ∈ B0, 0 < b2 ∈ B0. Then there exist ai ∈ A such that 0 < ai /∈ Aa,

ai[bi] ∈ X2 for i = 1, 2. Put a3 = a1 ∧ a2. Hence without loss of generality we can
suppose that a3 = a2 and then

a2[b1] ∨ a2[b2] = a2[b1 ∨ b2] ∈ X2.

Thus b1 ∨ b2 ∈ B0. Therefore B0 is an ideal of [0, b]. Assume that 0 < a4 ∈ A,
a4 /∈ Aa and a4[b] ∈ X2. Let A1 be the convex `-subgroup of A generated by a4.

Since a4 /∈ Aa we have Aa ⊂ A1 and hence a ∈ A1. Then there is n ∈ N with
a 6 na4. We get 0 < a[b] 6 na4[b] ∈ X2 yielding a[b] ∈ X2, which is a contradiction.

�

Lemma 5.19. B0 is a proper maximal ideal of [0, b] and X2 is generated by B0.

���������
. By way of contradiction, assume that B0 fails to be a proper maximal

ideal of [0, b]. Then in view of 5.17 and 5.18, there exists a proper maximal ideal
B∗ of [0, b] such that B0 ⊂ B∗. Let X1 be as above. Then X2 ⊂ X1, which is a
contradiction. Thus we have B∗ = B0.

Let a1 ∈ A and b1 ∈ B∗. If a1[b1] /∈ X2, then X2 ⊂ X1, which is impossible. From
this we conclude that X2 = X1. �

Corollary 5.20. There is a one-to-one correspondence between values of a[b]
and proper maximal ideals of the Boolean algebra [0, b].

Lemma 5.21. Let a1 ∈ A. There exist values X1 and X2 of a[b] such that
a1[b] ∈ X1 ∨X2.

���������
. It suffices to consider the case a1 > 0. Let X1 be as above. There exists

b1 ∈ [0, b] such that b1 < b and b1 /∈ B∗. Further, there exists a proper maximal

ideal B∗
1 of [0, b] such that b1 ∈ B∗

1 . Also, there exists a value X2 of a[b] which is
determined by B∗

1 .
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Let b′1 be the complement of b1 in the Boolean algebra [0, b]. Since b1 /∈ B∗ we get

b′1 ∈ B∗. In view of the definition of B∗ we have a1[b′1] ∈ X1. Similarly, a1[b1] ∈ X2.
Then

a1[b′1] ∨ a1[b1] = a1[b′1 ∨ b1] = a1[b].

Since a1[b′1] ∨ a1[b1] ∈ X1 ∨X2, the proof is complete. �

Lemma 5.22. Let 0 6= g ∈ G. Then g ∈ Ra[b].

���������
. By applying the Specker representation of g we conclude that it suffices

to verify the validity of the relation a1[b1] ∈ Ra[b] for each 0 < a1 ∈ A and each
0 < b1 ∈ B. Put b11 = b1 ∧ b and let b12 be the complement of b11 in the interval
[0, b1] of B. Then b12 ∧ b = 0 and hence in view of 5.16 we get a1[b12] ∈ X for each
value X of a[b].
Further, in view of 5.21, there exist values X1 and X2 of a[b] such that a1[b11] ∈

X1 ∨X2. Hence

a1[b1] = a1[b11] ∨ a1[b12] ∈ X1 ∨X2.

Therefore a1[b1] ∈ Ra[b]. �

We denote by B1 the set of all atoms of B. From 5.6 and 5.22 we obtain

Proposition 5.23. If B1 = ∅, then R(G) = G. If B1 6= ∅, then R(G) = ∩Ra[b],

where 0 < a ∈ A and b ∈ B1.

Let b ∈ B1 and 0 < a ∈ A. In view of 5.10 we have

Ra[b] = (a[b])δ ×Aa
b .

Recall that Aa
b = {a1[b]}a1∈Aa . Since Aa ⊂ [−a, a], we get

⋂

0<a∈A

Aa = {0},

whence ⋂

0<a∈A

Aa
b = {0}.

Further, 5.12 yields (a[b])δ = (a0[b])δ for each 0 < a0 ∈ A. Denote

Rb =
⋂

0<a∈A

Ra[b].
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Then for each 0 < a ∈ A we have

Rb = (a[b])δ × {0} = (a[b])δ,

R(G) =
⋂

0<b∈B1

Rb =
⋂

0<b∈B1

(a[b])δ .(+)

Thus in view of 5.22 we obtain

Theorem 5.24. Let A 6= {0} be a linearly ordered group, B 6= {0} be a
generalized Boolean algebra. Let B1 be the set of all atoms of B. (i) If B1 = ∅, then
R(G) = G. (ii) If B1 6= ∅, then R(G) is given by the relation (+).
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