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Abstract. Let T be a γ-contraction on a Banach space Y and let S be an almost γ-
contraction, i.e. sum of an (ε, γ)-contraction with a continuous, bounded function which is
less than ε in norm. According to the contraction principle, there is a unique element u
in Y for which u = Tu. If moreover there exists v in Y with v = Sv, then we will give
estimates for ‖u−v‖. Finally, we establish some inequalities related to the Cauchy problem.
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Let (Y, ‖ · ‖) be a real Banach space. For a bounded function ϕ : D ⊂ Y → Y we

define the norm

‖ϕ‖ = sup
y∈D

‖ϕ(y)‖.

A map T : Y → Y is called γ-contraction if

‖Tu− Tv‖ 6 γ‖u− v‖

for all u, v ∈ Y. The constant γ ∈ (0, 1) is also called the contraction coefficient.
According to the contraction principle, there is a unique element u in Y for which
u = Tu.

Given ε > 0, we will say that a continuous, bounded map S : Y → Y is an almost
(ε, γ)-contraction if there exists a γ-contraction T : Y → Y for which

‖Sy − Ty‖ 6 ε, ∀ y ∈ Y.
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It results that an almost (ε, γ)-contraction S can be written as

(1) S = T + ϕ,

where T is a γ-contraction and ϕ is continuous and bounded, with

‖ϕ‖ 6 ε.

Proposition 1. Let T : Y → Y be a γ-contraction γ ∈ (0, 1) and let S : Y → Y

be an almost (ε, γ)-contraction. Assume that u ∈ Y is such that u = Tu and there

exists v ∈ Y such that v = Sv. Then

‖u− v‖ 6 ε

1− γ
.

���������
. We have

‖u− v‖ = ‖Tu− Sv‖ 6 ‖Tu− Tv‖+ ‖Tv − Sv‖ 6 γ‖u− v‖+ ε

or
‖u− v‖ 6 γ‖u− v‖+ ε.

Hence

‖u− v‖ − γ‖u− v‖ 6 ε⇔ ‖u− v‖ 6 ε

1− γ
.

�

By taking ϕ = 0 in (1), we deduce that every γ-contraction is an (ε, γ)-contraction,
so we can prove

Proposition 2. Let a γ1-contraction T1 : Y → Y and a γ2-contraction T2 : Y →
Y (γ1, γ2 ∈ (0, 1)) with

‖T1y − T2y‖ 6 ε

for all y in Y be given. We consider also the corresponding fixed points u and v, i.e.

u = T1u, v = T2v.

Then

‖u− v‖ 6 ε

1−min {γ1, γ2}
.

���������
. Setting T = T1, S = T2, then T = T2, S = T1, in Proposition 1, we

obtain successively

‖u− v‖ 6 ε

1− γ1
, ‖u− v‖ 6 ε

1− γ2
,

so the inequality is proved. �
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We use now these inequalities to establish some estimates in the existence theory

of differential systems.

Let f : D ⊂ � × � m → � m be a continuous function defined on a rectangle

D = {(x, y) ∈ � × � m ; |x− x0| 6 a, ‖y − y0‖ 6 b}

where a, x0 ∈ � and b, y0 ∈ � m . Here ‖ · ‖ denotes a norm on the m-dimensional
space � m . Let us consider the Cauchy problem

(PC)

{
y′ = f(x, y),

y(x0) = y0.

This problem is uniquely solvable (at least locally) if f is Lipschitz with respect to
the second argument, i.e.,

‖f(x, y1)− f(x, y2)‖ 6 L‖y1 − y2‖, ∀ (x, y1), (x, y2) ∈ D,

for some positive real constant L. According to a well-known result, the solution of
the Cauchy problem (PC) is defined at least on

y : (x0 − δ, x0 + δ) → �

where

δ = min
{
a,

b

M

}
.

The constant M satisfies

‖f(x, y)‖ 6 M ∀ (x, y) ∈ D,

possibly

M = sup
(x,y)∈D

‖f(x, y)‖.

Moreover, a well-known theorem due to Peano says that the continuity condition on
f ensures the existence of a solution of the Cauchy problem (PC). For proof and

other details, see [5], [6]. We introduce
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Theorem 1. Assume that continuous functions f, g : D ⊂ � × � m → � m satisfy

the following conditions:

a) f is Lipschitz with respect to the second argument, i.e.

‖f(x, y1)− f(x, y2)‖ 6 L‖y1 − y2‖ ∀ (x, y1), (x, y2) ∈ D,

for some L > 0.
b) There exists ε > 0 such that ‖f − g‖ 6 ε.

Let u and v be solutions of the Cauchy problems

{
y′ = f(x, y),

y(x0) = y0,

{
y′ = g(x, y),

y(x0) = y0

respectively and denote M = max {‖f‖, ‖g‖} .
Then for every 0 < δ < min{a, b/M, 1/L} we have

‖u(x)− v(x)‖ 6 ε

δ−1 − L
∀ x ∈ [x0 − δ, x0 + δ].

���������
. The given Cauchy problems are equivalent to the integral equations

u(x) = y0 +
∫ x

x0

f(s, u(s)) ds, v(x) = y0 +
∫ x

x0

g(s, v(s)) ds,

so we naturally define operators

T, S : C(I) → C(I)

by the formulas

Tu(x) = y0 +
∫ x

x0

f(s, u(s)) ds, Sv(x) = y0 +
∫ x

x0

g(s, v(s)) ds.

By C(I) we mean the Banach space of all continuous functions

y : I → � m , I = [x0 − δ, x0 + δ], δ < min
{
a,

b

M
,
1
L

}
,

endowed with the norm of uniform convergence,

‖y‖ = max
x∈I

‖y(x)‖.

692



Now the given Cauchy problems can be written as fixed point problems

u = Tu, v = Sv, u, v ∈ C(I).

We will use Proposition 1 to prove Theorem 1. In Y = C(I) we have

‖Ty1(x)− Ty2(x)‖ =
∥∥∥∥

∫ x

x0

[f(s, y1(s))− f(s, y2(s))] ds
∥∥∥∥

6
∣∣∣∣
∫ x

x0

‖f(s, y1(s))− f(s, y2(s))‖ ds
∣∣∣∣

6 L

∣∣∣∣
∫ x

x0

‖y1(s)− y2(s)‖ ds
∣∣∣∣

6 Lδ‖y1 − y2‖.

Hence

‖Ty1 − Ty2‖ 6 γ‖y1 − y2‖

with γ = Lδ < 1. Further,

‖Ty− Sy‖ =
∥∥∥∥

∫ x

x0

[f(s, y(s))− g(s, y(s))] ds
∥∥∥∥

6
∣∣∣∣
∫ x

x0

‖f(s, y(s))− g(s, y(s))‖ ds
∣∣∣∣ 6 ε

∣∣∣∣
∫ x

x0

ds
∣∣∣∣ 6 εδ.

Hence

‖Ty− Sy‖ 6 δε ∀ y ∈ C(I),

so S is an almost (δε, γ)-contraction. The hypotheses of Proposition 1 are fulfilled,
so

‖u− v‖ 6 εδ

1− δL
.

�

Further, we give a uniqueness result for a class of Cauchy problems.

Theorem 2. Let ϕ, ψn : D ⊂ � × � m → � m be continuous and consider the

Cauchy problems

(PCn)

{
y′ = ϕ(x, y) + ψn(x, y),

y(x0) = y0,
n > 1.

Assume that
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a) ϕ is Lipschitz with respect to the second argument, i.e.

‖ϕ(x, y1)− ϕ(x, y2)‖ 6 L‖y1 − y2‖ ∀ (x, y1), (x, y2) ∈ D.

b) ψn are Lipschitz with respect to the second argument, i.e.

‖ψn(x, y1)− ψn(x, y2)‖ 6 L′‖y1 − y2‖ ∀ (x, y1), (x, y2) ∈ D, n > 1.

c) The sequence (ψn)n>1 converges to ψ uniformly on D.

Then the Cauchy problem

(PC∞)

{
y′ = ϕ(x, y) + ψ(x, y),

y(x0) = y0

has (locally) a unique solution.
���������

. According to the Peano theorem, the problem (PC∞) has at least one
solution. From c) it follows that the sequence (ψn)n>1 is uniformly bounded, i.e.

‖ψn‖ 6 M, ‖ψ‖ 6 M, ∀ n > 1,

for someM > 0. Then each problem (PCn) has a unique solution un defined at least

on

un : (x0 − δ, x0 + δ) → � ,

where δ > 0 is chosen in

0 < δ < min
{
a,

b

M
,

1
L+ L′

}
.

We apply Theorem 1 to the Cauchy problems

{
y′ = ϕ(x, y) + ψn(x, y),

y(x0) = y0,

{
y′ = ϕ(x, y) + ψ(x, y),

y(x0) = y0.

In order to respect the notation from Theorem 1, let us put

f(x, y) = ϕ(x, y) + ψn(x, y), g(x, y) = ϕ(x, y) + ψ(x, y).

Then evidently f is Lipschitz with respect to the second argument,

‖f(x, y1)− f(x, y2)‖ 6 (L+ L′)‖y1 − y2‖ ∀ (x, y1), (x, y2) ∈ D
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and

‖f − g‖ = ‖ψn − ψ‖.

From Theorem 1 we obtain that for every solution u of the problem (PC∞), we have

‖un(x) − u(x)‖ 6 ‖ψn − ψ‖
δ−1 − L− L′

∀ x ∈ (x0 − δ, x0 + δ) .

Finally, by taking the limit for n→∞, we obtain

u = lim
n→∞

un (uniformly),

which proves the uniqueness of u. �
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