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Abstract. We define a linear map called a semiinvolution as a generalization of an in-
volution, and show that any nilpotent linear endomorphism is a product of an involution
and a semiinvolution. We also give a new proof for Djocović’s theorem on a product of two
involutions.
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1. Introduction

Let V be an n-dimensional vector space over a field k of any characteristic. The
k-algebra of k-linear endmorphisms of V is denoted by Endk V , and the unit group

of Endk V is Autk V . An element ξ ∈ Autk V is called an involution if ξ2 = 1, and
two elements η, η′ ∈ Endk V are said to be similar if η′ = %η%−1 for some % ∈ Autk V .

An element σ ∈ Endk V is nilpotent if σn = 0 for some integer n > 1.
Suppose that V is a direct sum of two subspaces, say, V = L⊕M . Then we shall

call a linear map σ = 0L ⊕ % ∈ Endk V a semiinvolution if 0L ∈ Endk L is the zero
map on L and % ∈ Autk M is an involution on M . In case that L is spanned by a

subset S ⊆ V , we may write 0S for 0L. Also 1L or 1S ∈ Autk L denotes the identity
map on L.

Let H be a subspace of V having a basis Z = {x1, x2, . . . , xm, ym, . . . , y2, y1} of
an even number of elements. Then an involution ∆Z ∈ Autk H is defined by

x1 � y1, x2 � y2, . . . , xm � ym.

We shall call ∆Z the transpose of Z or H . Our purpose is to prove the following two
theorems, Theorems A and B.
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Theorem A. For σ ∈ Endk V , the following (a) and (b) are equivalent:

(a) σ is nilpotent.

(b) σ = θτ for an involution τ = 1Z1⊕∆Z2 and a semiinvolution θ = 0Z′
0
⊕1Z′

1
⊕∆Z′

2
,

where {Z1, Z2} and {Z ′
0, Z

′
1, Z

′
2} are two bases for V which satisfy the following

condition (C):

(C) Z1 and Z2 are expressed as

Z1 = {x10, x20, . . . , xr0},
Z2 = {Xr+s, . . . , Xr+1, Xr, . . . , X2, X1, Y1, Y2, . . . , Yr, Yr+1, . . . , Yr+s}

for Xi = {ximi , . . . , xi2, xi1}, Yi = {yi1, yi2, . . . , yimi} and 1 6 i 6 r + s, and for

which Z ′
0, Z

′
1, Z

′
2 are expressed as

Z ′
0 = {ximi : 1 6 i 6 r + s},(i)

i.e., the first elements of Xr+s, . . . , X2, X1,

Z ′
1 = {yi1 : r + 1 6 i 6 r + s},(ii)

i.e., the first elements of Yr+1, Yr+2, . . . , Yr+s,

and

Z ′
2 = {X ′

r+s, . . . , X
′
r+1, X

′
r, . . . , X

′
2, X

′
1, Y

′
1 , Y ′

2 , . . . , Y ′
r , Y ′

r+1, . . . , Y
′
r+s}(iii)

for

X ′
i =

{
{xi(mi−1), . . . , xi1, xi0} if 1 6 i 6 r,

{xi(mi−1), . . . , xi1} if r + 1 6 i 6 r + s,

and

Y ′
i =

{
{yi1, yi2, . . . , yimi} if 1 6 i 6 r,

{yi2, yi3, . . . , yimi} if r + 1 6 i 6 r + s.

Remark 1. Write ni = 2mi + 1 for 1 6 i 6 r and ni = 2mi for r + 1 6 i 6 r + s.

By a rearrangement of {mi} we may assume that n1 > n2 > . . . > nt for t = r + s.
Then, by the definition of τi and θi in the proof for Theorem A, we shall see that

{ni} are the invariants of σ. Thus, the involution τ and the semiinvolution θ in
Theorem A are unique for σ up to similarity. Further, as we see in Theorem A,

the relationship between τ and θ is given by the condition (C), more precisely τ

determines θ.
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Remark 2. τ is expressed in the basis {Z1, Z2} for V as




1
. . .

1
1

. .
.

1




and θ is expressed in the basis {Z ′
0, Z

′
1, Z

′
2} for V as




0
. . .

0
1
. . .

1
1

. .
.

1




.

Theorem B. Any σ ∈ Autk V is a product of two involutions τ , θ if and only if

σ and σ−1 are similar.

Djocović’ [1] proved Theorem B by applying the uniqueness of the elementary

divisors, whereas we will do it by using the uniqueness of the system of invariants.
As a result the proof will be shorter.

2. Proof of Theorem A

(I) (a) ⇒ (b): We start our proof from the following well-known result on nilpotent
linear endomorphisms of V .

Since σ ∈ Endk V is nilpotent, we may express V and σ as

V = V1 ⊕ V2 ⊕ . . .⊕ Vt, Vi = kvi1 ⊕ kvi2 ⊕ . . .⊕ kvini for 1 6 i 6 t,

and

σ = σ1 ⊕ σ2 ⊕ . . .⊕ σt, σi : vi1 → vi2 → . . . → vini → 0 for 1 6 i 6 t,
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where

σi = σ|Vi ∈ End
k

Vi

(see for example Herstein [5, Theorem 6.5.1]).

By the above result, for 1 6 i 6 t, if we define τi, θi ∈ Endk Vi by

τi : vij → vi(ni−j+1) for 1 6 j 6 ni,(1)

and

θi = vi1 → 0 and vij → vi(ni−j+2) for 2 6 j 6 ni,(2)

we have

σi = θiτi for 1 6 i 6 t,(3)

and so

σ = θ1τ1 ⊕ θ2τ2 ⊕ . . .⊕ θtτt = (θ1 ⊕ θ2 ⊕ . . . θt)(τ1 ⊕ τ2 ⊕ . . .⊕ τt).(4)

To construct an involution τ and a semiinvolution θ as in the theorem, we will

rearrange the basis elements {vij} for V . To do so we will renumber the suffixes of
the subspaces {V1, V2, . . . , Vt} so that their dimensions {n1, n2, . . . , nr} are all odd
numbers with n1 > n2 > . . . > nr, and {nr+1, nr+2, . . . , nr+s} are all even with
nr+1 > nr+2 > . . . > nr+s and t = r + s. Moreover, we rewrite the basis elements in

Si = {vi1, vi2, . . . , vini} for Vi as

(5) Si =

{
{ximi , . . . , xi2, xi1, xi0, yi1, yi2, . . . , yimi} for 1 6 i 6 r,

{ximi , . . . , xi2, xi1, yi1, yi2, . . . , yimi} for r + 1 6 i 6 r + s,

where ni = 2mi + 1 for 1 6 i 6 r, and 2mi for r + 1 6 i 6 r + s.

This is equivalent to saying that for 1 6 i 6 r + s, setting

Xi = {ximi , . . . , xi2, xi1} and Yi = {yi1, yi2, . . . , yimi},

we then have

Si = {Xi, xi0, Yi} for 1 6 i 6 r, and Si = {Xi, Yi} for r + 1 6 i 6 r + s.
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Hence, if we define

Z1 = {x10, x20, . . . , xr0},
Z2 = {Xr+s, . . . , Xr+1, Xr, . . . , X1, Y1, . . . , Yr, Yr+1, . . . , Yr+s},

and

τ = 1Z1 ⊕∆Z2 ,

then by (1) we find that

(7) τ = τ1 ⊕ τ2 ⊕ . . .⊕ τt.

Similarly, setting

X ′
i = {xi(mi−1), . . . , xi0}, Y ′

i = {yi1, . . . , yimi} for 1 6 i 6 r,

and

X ′
i = {xi(mi−1), . . . , xi1}, Y ′

i = {yi2, . . . , yimi} for r + 1 6 i 6 r + s,

we get

Si = {ximi , X
′
i , Y

′
i } for 1 6 i 6 r, and {ximi , X

′
i , yi1, Y

′
i } for r + 1 6 i 6 r + s.

Therefore, if we define

Z ′
0 = {x1m1 , x2m2 , . . . , x(r+s)m(r+s)

},
Z ′

1 = {y(r+1)1, y(r+2)1, . . . , y(r+s)1},
Z ′

2 = {X ′
r+s, . . . , X

′
r+1, X

′
r, . . . , X

′
1, Y

′
1 , . . . , Y ′

r , Y ′
r+1, . . . , Y

′
r+s},

and

θ = 0Z′
0
⊕ 1Z′

1
⊕∆Z′

2
,(8)

we have

(9) θ = θ1 ⊕ θ2 ⊕ . . .⊕ θt.

This shows that σ = θτ by (4), which gives us (b).
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(II) (b) ⇒ (a): By the definition of τ and θ, we have for 1 6 i 6 r + s,

(10) yimi

θ

&&LLLLL
yi(mi−1)

θ

&&LLLLL

σmi−1 : ximi

τ
88rrrrrr σ // xi(mi−1)

τ 88rrrrr
σ // xi(mi−2) //

yi2
θ

&&NNNNNN

. . . // xi2

τ
88pppppp σ // xi1.

Further for 1 6 i 6 r,
(11)

yi1
θ

&&MMMMMM xi0
θ

&&MMMMMM xi1
θ

&&MMMMMM

σmi+2 : xi1

τ
88qqqqqq σ // xi0

τ
88qqqqqq σ // yi1

τ
88qqqqqq σ // yi2 //

ximi
θ

&&LLLLLL

. . . // yimi

τ 88rrrrr σ // 0.

and for r + 1 6 i 6 r + s,

(12) yi1
θ

&&MMMMMM xi1
θ

&&MMMMMM

σmi+1 : xi1

τ
88qqqqqq σ // yi1

τ
88qqqqqq σ // yi2 //

ximi
θ

&&MMMMMM

. . . // yimi

τ 88qqqqq σ // 0.

Therefore,

σ2mi+1{Xi, xi0, Yi} = 0 for 1 6 i 6 r,

and

σ2mi{Xi, Yi} = 0 for r + 1 6 i 6 r + s.

Hence, for l = max{{2mi +1: 1 6 i 6 r}∪{2mi : r+1 6 i 6 r+s}}, we conclude
that σlV = 0. Thus σ is nilpotent and we have proved Theorem A.
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3. Proof of Theorem B

If σ = τθ with τ2 = θ2 = 1, then σ−1 = θτ = θτθθ−1 = θσθ−1 is similar to σ. So,

all what we have to do is to show the converse.

Let k[x] be the polynomial ring in x over k. Then, since the correspondence

πσ : k[x] −→ End
k

V

defined by πσ(f(x))(v) = f(σ)(v) for v ∈ V and f(x) ∈ k[x] is a ring homomorphism,
if we define f(x)v = f(σ)(v), V is endowed a module structure over the principal
ideal domain k[x]. In particular, since dim V < ∞, V is a finitely generated torsion
k[x]-module. Therefore by [10, XIV, Theorem 2.1, p. 557] there is a finite number of
monic polynomials f1(x), f2(x), . . . , fn(x) in k[x] such that

V ' k[x]/(f1(x)) ⊕ . . .⊕ k[x]/(fn(x)) with f1 | . . . | fn

as k[x]-modules. Further the sequence of ideals (f1), . . . , (fn) is an invariant for V

and πσ , which is called the system of invariants.

Since k[x]/(fi(x)) = k[x](1 + (fi(x))) is a cyclic k[x]-submodule generated by one
element 1 + (fi(x)), if we write

(1) fi(x) = ai0 + ai1x + . . . + ai(mi−1)x
mi−1 + xmi , aij ∈ k,

for i = 1, 2, . . . , n, we will find n elements v1, v2, . . . , vn ∈ V which satisfy for i =
1, 2, . . . , n,

(i) V = V1 ⊕ V2 ⊕ . . .⊕ Vn where Vi = kvi ⊕ kσvi ⊕ . . .⊕ kσmi−1vi ' k[x]/(fi(x)),
(ii) σ = σ1 ⊕ σ2 ⊕ . . .⊕ σn, σi = σ|Vi , and

(iii) fi(x) is the minimal polynomial of σi.

Here we note that σi ∈ Autk Vi, or equivalently ai0 6= 0, since σ ∈ Autk V . This

implies that for i = 1, 2, . . . , n

Vi = (σ−1
i )

mi−1
Vi = kvi ⊕ kσ−1

i vi ⊕ . . .⊕ k(σ−1
i )

mi−1
vi,

σ−1 = σ−1
1 ⊕ σ−1

2 ⊕ . . .⊕ σ−1
n

and

gi(x) = a−1
i0 xmifi(x−1)(2)

= a−1
i0 + a−1

i0 ai(mi−1)x + . . . + a−1
i0 ai1x

mi−1 + xmi
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is the minimal polynomial of σ−1
i . Accordingly if we give V another k[x]-module

structure by a ring homomophism

πσ−1 : k[x] −→ End
k

V defined by πσ−1(f(x))(v) = f(σ−1)(v)

and write it V ′ for V , we have

V ′ ' k[x]/(g1(x))⊕ . . .⊕ k[x]/(gn(x)) with g1 | . . . | gn.

As for gi | gi+1, since fi | fi+1, if we set fi+1 = fihi withmi = dim fi and ri = dim hi,
we get gi+1(x) = gi(x)qi(x) for qi(x) = hi(0)−1xri

i hi(x−1) ∈ k[x]. Hence g1 | . . . | gn.

On the other hand, since σ and σ−1 are similar, we have σ−1 = %σ%−1 for some
% ∈ Autk V . Hence %πσ(f(x))(v) = %f(σ)(v) = πσ−1(f(x))%(v), since σ−1% = %σ.

This shows that % is a k[x]-module isomorphism of V to V ′. Therefore the uniqueness
of the system of invariants gives us (fi) = (gi) and so fi = gi, since they are monic.

Thus (1), (2) imply that

(3) ai0 = a−1
i0 , aij = a−1

i0 ai(mi−j) for j = 1, 2, . . . , mi − 1.

Now for i = 1, 2, . . . , n, we define τi, θi ∈ Autk Vi by

τi : σj
i vi −→ σ

mj−j−1
i vi for 0 6 j 6 mi − 1,

θi : σj
i vi −→ σmi−j

i vi for 0 6 j 6 mi − 1.

Then, for i = 1, 2, . . . , n, we have

σi = θiτi and τ2
i = 1 on Vi, and θ2

i = 1 on {σivi, . . . , σ
mi−1
i vi}.

However, using (3), an easy calculation gives us θ2
i vi = vi and so θ2

i = 1 on Vi.

Thus, setting

τ =
n⊕

i=1

τi and θ =
n⊕

i=1

θi,

we obtain σ = τθ and τ2 = θ2 = 1, which completes the proof of Theorem B.
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