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THE HAMILTONIAN CHROMATIC NUMBER OF

A CONNECTED GRAPH WITHOUT LARGE

HAMILTONIAN-CONNECTED SUBGRAPHS

Ladislav Nebeský, Praha

(Received June 26, 2003)

Abstract. If G is a connected graph of order n > 1, then by a hamiltonian coloring of G
we mean a mapping c of V (G) into the set of all positive integers such that |c(x)− c(y)| >
n − 1 − DG(x, y) (where DG(x, y) denotes the length of a longest x− y path in G) for all
distinct x, y ∈ V (G). Let G be a connected graph. By the hamiltonian chromatic number
of G we mean

min(max(c(z); z ∈ V (G))),

where the minimum is taken over all hamiltonian colorings c of G.
The main result of this paper can be formulated as follows: Let G be a connected graph

of order n > 3. Assume that there exists a subgraph F of G such that F is a hamiltonian-
connected graph of order i, where 2 6 i 6 1

2 (n+1). Then hc(G) 6 (n−2)2+1−2(i−1)(i−2).

Keywords: connected graphs, hamiltonian-connected subgraphs, hamiltonian colorings,
hamiltonian chromatic number
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By a graph we mean a finite undirected graph with no loop or multiple edge, i.e. a
graph in the sense of [1], for example. The letters f–n will be reserved for denoting

non-negative integers. The set of all positive integers will be denoted by
�
.

0.

If G0 is a connected graph and u, v ∈ V (G0), then we denote by DG0(u, v) the
length of a longest u− v path in G0. If G is a connected graph of order n > 1 and
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x, y ∈ V (G), then, following [5], we denote

D′
G(x, y) = n− 1−DG(x, y).

Consider a connected graph G. By a hamiltonian coloring of G we mean a map-

ping c of V (G) into
�
such that

|c(u)− c(v)| > D′
G(u, v)

for all distinct u, v ∈ V (G). If c is a hamiltonian coloring of G, then by hc(c) we
mean

max(c(w); w ∈ V (G)).

By the hamiltonian chromatic number hc(G) of G we mean

min(hc(c); c is a hamiltonian coloring of G).

The notions of a hamiltonian coloring and the hamiltonian chromatic number of a

connected graph were introduced by Chartrand, Nebeský and Zhang in [2]. The
adjective “hamiltonian” in these terms has a transparent motivation: if G is a con-
nected graph, then hc(G) = 1 if and only if G is hamiltonian-connected. Note that
if G is a connected graph with no hamiltonian path and c is a hamiltonian coloring
of G, then c(u) 6= c(v) for any distinct u, v ∈ V (G).
Let n > 3. The connected graph of order n which is, in a very natural sense, the

most different from the hamiltonian-connected graphs of order n is the star K1,n−1.

It was proved in [2] that hc(K1,n−1) = (n− 2)2 + 1. As was proved in [3], if G is a
connected graph of order n > 5 which is not a star, then hc(G) 6 hc(K1,n−1) − 2.
As follows from another result proved in [2],

hc(Cn) =
√

hc(K1,n−1)− 1 = n− 2.

Let G be a connected graph. We will say that a hamiltonian coloring c of G is

normal, if there exists u ∈ V (G) such that c(u) = 1. Clearly, if c0 is a hamiltonian
coloring of G such that hc(c0) = hc(G), then c0 is normal.

Observation 1. Let G1 be a connected factor of a graph G0. As immediately
follows from Lemma 4.5 in [2], hc(G0) 6 hc(G1). This result is easy but very
useful. It implies, for instance, that if G is a hamiltonian graph of order n > 3, then
hc(G) 6 n− 2.
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Further results concerning hamiltonian colorings were proved in [2], [3], [4], and [5].

Let G be a connected graph of order n > 3. Then G contains a nontrivial
hamiltonian-connected graph as a subgraph. The main result of the present pa-

per can be formulated as follows. If there exists a subgraph F of G such that F is a
hamiltonian-connected graph of order i, where 2 6 i 6 1

2 (n + 1), then

hc(G) 6 (n− 2)2 + 1− 2(i− 1)(i− 2)

(Theorem 4).

1.

We first introduce a special type of graphs. (Graphs of that type could be called
pseudostars.) Let n > 3, let H be a connected graph of order k, 1 6 k < n, let
u1, . . . , uj , where 1 6 j 6 k, be pairwise distinct vertices of H , and let b1, . . . , bj be

positive integers such that b1 + . . . + bj = n− k. Consider pairwise distinct vertices

(1) v1,1, . . . , v1,b1 , . . . , vj,1, . . . , vj,bj

not belonging to H . We denote by

S(H ; u1 : v1,1, . . . , v1,b1 ; . . . ; uj : vj,1, . . . , vj,bj )

the graph G0 such that

V (G0) = V (H) ∪ {v1,1, . . . , v1,b1 , . . . , vj,1, . . . , vj,bj}

and

E(G0) = E(H) ∪ {u1v1,1, . . . , u1v1,b1 , . . . , ujvj,1, . . . , ujvj,bj}.

Moreover, we say that a graph G is

S(H ; u1, b1; . . . ; uj , bj)

if there exist pairwise distinct vertices (1) not belonging to H such that

G = S(H ; u1 : v1,1, . . . , v1,b1 ; . . . ; uj : vj,1, . . . , vj,bj ).
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Lemma 1. Let n > 4, let H be a connected graph of order k, where 2 6 k 6 n−2,
let u ∈ V (H), and let v1, . . . , vn−k be pairwise distinct vertices not belonging to H .

Consider a normal hamiltonian coloring c of S(H ; u : v1, . . . , vn−k) such that

1 = c(v1) 6 . . . 6 c(vn−k) = hc(c).

Then there exists j, 1 6 j < n− k, such that

c(vj+1)− c(vj) > n.

���������
. Put

G = S(H ; u : v1, . . . , vn−k).

For each i, 1 6 i < n − k, we denote by Wi the set of all w ∈ V (H) such that
c(vi) 6 w 6 c(vi+1). We distinguish two cases.
1. Assume that k 6 2

3 (n − 1). Clearly, there exists j, 1 6 j < n − k, such that
u ∈ Wj . If |Wj | = 1, then c(u)−c(vj) > D′

G(u, vj) = n−2 and c(vj+1)−c(u) > n−2,
thus c(vj+1)− c(vj) > 2n− 4 > n. Let now |Wj | = 2, and let w be the vertex in Wj

different from u. Without loss of generality we may assume that c(w) 6 c(u). Then
c(w) − c(vj) > D′

G(w, vj) > n − k − 1, c(u) − c(w) > D′
G(u, w) > n − k and

c(vj+1)− c(u) > n− 2. Thus

c(vj+1)− c(vj) > 3n− 2k − 3 > 3n− 4
n− 1

3
− 3 = 5

n− 1
3

> n.

Finally, let |Wj | > 3. Since 2 6 k 6 2
3 (n− 1), we get

c(vj+1)− c(vj) > 4(n− k)− 2 > 4
(
n− 2

n− 1
3

)
− 2 > n.

2. Assume that k > 2
3 (n− 1). Put

m =
n− 1

n− k − 1
(n− k)− 2.

If m 6 n, then k 6 2
3 (n− 1); a contradiction. Thus m > n. Since k > 2

3 (n− 1), we
have

k

n− k − 1
> 2.

Clearly, there exists j, 1 6 j < n− k, such that

|Wj | >
k

n− k − 1
.
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This implies that

c(vj+1)− c(vj) > (|Wj |+ 1)(n− k)− 2

>
( k

n− k − 1
+ 1

)
(n− k)− 2

=
n− 1

n− k − 1
(n− k)− 2 = m > n,

which completes the proof. �

Observation 2. Obviously, the complement of a path of order four is a path.
On the other hand, the complement of K1,n−1, where n > 2, has no hamiltonian
path. As was shown in Lemma 4.9 of [2], if T is a tree different from a star, then the

complement of T has a hamiltonian path. This result can be extended as follows:
if F is a forest different from a star, then the complement of F has a hamiltonian
path. The proof is easy and will be left to the reader.

Lemma 2. Let G0 be a connected graph of order n > 3, let H be a connected

graph of order k, where 2 6 k < n, and let u ∈ V (H). Assume that H is an

induced subgraph of G0, and that G0 − (V (H −u)) is a tree. Then for every normal
hamiltonian coloring c1 of S(H ; u, n−k) there exists a hamiltonian coloring c0 of G0

such that

hc(c0) = hc(c1).

���������
. The case when n − k = 1 is obvious. Let n − k > 2. Then n > 4.

Consider pairwise distinct vertices v1, . . . , vn−k not belonging to H and put

G1 = S(H ; u : v1, . . . , vn−k).

Denote J0 = G0 − V (H). Obviously, J0 is a forest.

Let c1 be an arbitrary normal hamiltonian coloring of G1. Without loss of gener-
ality we may assume that

c1(v1) 6 . . . 6 c1(vn−k).

Since D′
G1

(vf , vg) = n − 3 for all f and g such that 1 6 f < g 6 n − k, we get

c1(vh+1)− c1(vh) > n− 3 for each h, 1 6 h < n− k.

We will construct a mapping c0 of V (G0) into
�
such that

(2) c0(v) = c1(v) for each v ∈ V (H).
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We will show that

(3) c0 is a hamiltonian coloring of G0 and hc(c0) = hc(c1).

The construction of c0 will be divided into several cases and subcases.
1. Assume that J0 is not a star. Observation 2 implies that there exists a linear

ordering

u1, . . . , un−k

of all the vertices of J0 such that uf and uf+1 are non-adjacent in G0 for each f ,

1 6 f < n− k. We define

c0(uf ) = c1(vf ) for each f, 1 6 f 6 n− k.

Consider an arbitrary w ∈ V (H). Using (2), we get

|c0(uf )− c0(w)| = |c1(vf )− c1(w)| > D′
G1

(vf , w) > D′
G0

(uf , w)

for each f , 1 6 f 6 n− k. Moreover, we have

c0(uf+1)− c0(uf ) = c1(vf+1)− c1(vf ) > D′
G1

(vf+1, vf ) = n− 3 > D′
G0

(uf+1, uf )

for each f , 1 6 f < n− k. Since n > 4, we see that c0(uh)− c0(ug) > n− 2, for all g
and h such that 1 6 g and g + 2 6 h 6 n. It is clear that (3) holds.
2. Assume that J0 is a star. We denote by y the vertex of J0 adjacent to u in G0.

Recall that n− k > 2. Let first n− k > 3; we denote by x the central vertex of J0;
clearly, either y = x or x and y are adjacent in J0. If n− k = 2, then we put x = y.

2.1. Assume that c1(v1) > 1 or c1(vn−k) < hc(c1). Without loss of generality, let
c1(vn−k) < hc(c1).
2.1.1. Assume that y = x. Let u2, . . . , un−k be the vertices of J0 adjacent to x.

We define c0(x) = c1(v1) and

c0(uf ) = c1(vf ) + 1 for each f, 2 6 f 6 n− k.

Consider an arbitrary w ∈ V (H). Using (2), we get

|c0(uf )− c0(w)| = |c1(vf ) + 1− c1(w)| > D′
G1

(vf , w)− 1 = D′
G0

(uf , w)

for each f , 2 6 f 6 n− k, and

|c0(x)− c0(w)| = |c1(v1)− c1(w)| > D′
G1

(v1, w) = D′
G0

(x, w).
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Obviously, c0(x) < c0(u2) 6 . . . 6 c0(un−k). We have

c0(u2)− c0(x) = c1(v2) + 1− c1(v1) > D′
G1

(v2, v1) + 1 = n− 2 = D′
G0

(u2, x)

and

c0(uf+1)− c0(uf ) = (c1(vf+1) + 1)− (c1(vf ) + 1)

> D′
G1

(vf+1, vf ) = n− 3 = D′
G0

(uf+1, uf )

for each f , 2 6 f < n − k. Recall that c0(un−k) = c1(vn−k) + 1 6 hc(c1). We see
that (3) holds.
2.1.2 Assume that y 6= x. Then n − k > 3. We denote by u2, . . . , un−k−1 the

vertices of J0 adjacent to x and different from y. We define c0(y) = c1(v1),

c0(uf ) = c1(vf ) for each f, 2 6 f < n− k,

and c0(x) = c1(vn−k) + 1. Consider an arbitrary w ∈ V (H). Using (2), we get

|c0(y)− c0(w)| = |c1(v1)− c1(w)| > D′
G1

(vf , w) = D′
G0

(y, w),

|c0(uf )− c0(w)| = |c1(vf )− c1(w)| > D′
G1

(vf , w) = D′
G0

(uf , w) + 2

for each f , 2 6 f < n− k, and

|c0(x) − c0(w)| = |c1(vn−k) + 1− c1(w)| > D′
G1

(vn−k , w)− 1 = D′
G0

(x, w).

Obviously, c0(y) < c0(u2) 6 . . . 6 c0(un−k−1) < c0(x). We have

c0(u2)− c0(y) = c1(v2)− c1(v1) > D′
G1

(v2, v1) = n− 3 = D′
G0

(u2, y),

c0(uf+1)− c0(uf ) = c1(vf+1)− c1(vf ) > D′
G1

(vf+1, vf ) = n− 3 = D′
G0

(uf+1, uf )

for each f , 2 6 f 6 n− k − 2, and

c0(x) − c0(un−k−1) = c1(vn−k) + 1− c1(vn−k−1) > D′
G1

(vn−k , vn−k−1) + 1

= n− 2 = D′
G0

(x, un−k−1).

We see that c0(x) − c0(y) > n − 2 = D′
G(x, y). Recall that c0(x) = c1(vn−k) + 1 6

hc(c1). It is clear that (3) holds.
2.2. Assume that c1(v1) = 1 and c1(vn−k) = hc(c1). By Lemma 1, there exists j,

1 6 j < n− k such that c1(vj+1)− c1(vj) > n.
2.2.1. Assume that 1 < j < n− k − 1. Then n− k > 4.
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2.2.1.1. Assume that y = x. Similarly as 2.2.1, let u2, . . . , un−k be the vertices

of J0 adjacent to x. We define c0(x) = c1(v1),

c0(uf ) = c1(vf ) + 1 for each f, 2 6 f 6 j

and

c0(uf ) = c1(vf ) for each f, j + 1 6 g 6 n− k.

Consider an arbitrary w ∈ V (H). Using (2), we get

|c0(x)− c0(w)| = |c1(v1)− c1(w)| > D′
G1

(v1, w) = D′
G0

(x, w),

|c0(uf )− c0(w)| = |c1(vf ) + 1− c1(w)| > D′
G1

(vf , w)− 1 = D′
G0

(uf , w)

for each f , 2 6 f 6 j and

|c0(uf )− c0(w)| = |c1(vf )− c1(w)| > D′
G1

(vf , w) = D′
G0

(uf , w) + 1

for each f , j + 1 6 f 6 n− k. Obviously, c0(x) < c0(u2) 6 . . . 6 c0(un−k). We see
that

c0(u2)− c0(x) = c1(v2) + 1− c1(v1) > D′
G1

(v2, v1) + 1 = n− 2 = D′
G0

(u2, x),

c0(uf+1)− c0(uf ) = c1(vf+1)− c1(vf ) > D′
G1

(vf+1, vf ) = n− 3 = D′
G0

(uf+1, uf )

for each f , 2 6 f 6 j − 1,

c0(uj+1)− c0(uj) = c1(vj+1)− (c1(vj) + 1) > n− 1 > D′
G0

(uj+1, uj),

and

c0(uf+1)− c0(uf ) = c1(vf+1)− c1(vf ) > D′
G1

(vf+1, vf ) = n− 3 = D′
G0

(uf+1, uf )

for each f , j + 1 6 f 6 n − k − 1. Recall that c0(un−k) = c1(vn−k). We see that
(3) holds.

2.2.1.2. Assume that y 6= x. Let uf , where 2 6 f 6 j or j + 2 6 f 6 n− k, be the
vertices of J0 adjacent to x and different from y. We define c0(y) = c1(v1),

c0(uf ) = c1(vf ) for each f, 2 6 f 6 j or j + 2 6 f 6 n− k

and c0(x) = c1(vj+1)− 1. Consider an arbitrary w ∈ V (H). Using (2), we get

|c0(y)− c0(w)| = |c1(v1)− c1(w)| > D′
G1

(vf , w) = D′
G0

(y, w),

|c0(uf )− c0(w)| = |c1(vf )− c1(w)| > D′
G1

(vf , w) = D′
G0

(uf , w) + 2
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for each f , 2 6 f 6 j or j + 2 6 f 6 n− k, and

|c0(x) − c0(w)| = |c1(vj+1)− 1− c1(w)| > D′
G1

(vj+1, w)− 1 = DG0(x, w).

Moreover, we get

c0(u2)− c0(y) = c1(v2)− c1(v1) > D′
G1

(v2, v1) = n− 3 = D′
G0

(u2, y),

c0(uf+1)− c0(uf ) = c1(vf+1)− c1(vf ) > D′
G1

(vf+1, vf ) = n− 3 = D′
G0

(uf+1, uf )

for each f , 2 6 f 6 j or j + 2 6 f < n− k,

c0(x) − c0(uj) = c1(vj+1)− 1− c1(vj) > n− 1 > D′
G0

(x, uj),

and

c0(uj+2)− c0(x) = c1(vj+2)− (c1(vj+1)− 1) > D′
G1

(vj+2, vj+1) + 1

= n− 2 = D′
G0

(uj+2, x).

Clearly, c0(x)− c0(y) > 2n− 4 > n > D′
G(x, y). This implies that (3) holds.

2.2.2. Assume that j = 1 or j = n − k − 1. Without loss of generality we
assume that j = 1. Let u2, . . . , un−k be the vertices of J0 adjacent to x. We define

c0(x) = 1 = c1(v1) and

c0(uf ) = c1(vf ) for each f, 2 6 f 6 n− k.

Recall that c1(v2) − c1(v1) > n. Then c0(u2) − c0(x) > n > D′
G0

(x, u2). Using (2),
we can easily show that (3) holds.

Thus the lemma is proved. �

Corollary 1. Let G be a connected graph of order n > 3, let H be a connected

graph of order k, where 2 6 k < n, and let u ∈ V (H). Assume that H is an induced

subgraph of G and that G− (V (H − u)) is connected. Then

hc(G) 6 hc(S(H ; u, n− k)).

���������
. Obviously, there exists a connected factor G0 of G such that H is an

induced subgraph of G0 and G0−(V (H−u)) is a tree. As follows from Observation 1,
hc(G) 6 hc(G0). Combining this inequality with Lemma 2, we get the desired result.

�

The next theorem is an important step towards the main result of this paper:
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Theorem 1. Let G be a connected graph of order n > 3 and let F be an induced

subgraph of G. Assume that F is a connected graph of order i, where 2 6 i < n.

Then there exist pairwise distinct u1, . . . , uj ∈ V (F ), where 1 6 j 6 i, and positive

integers b1, . . . , bj such that b1 + . . . + bj = n− i and

(4) hc(G) 6 hc(S(F ; u1, b1; . . . ; uj , bj)).

���������
. Obviously, there exists a connected factor G∗ of‘ G such that no edge

of G∗ −E(F ) belongs to a cycle in G∗. By Observation 1,

hc(G) 6 hc(G∗).

Since i < n, we see that there exist pairwise distinct vertices u1, . . . , uj of G∗, where
1 6 j 6 i, and pairwise vertex-disjoint subtrees L1, . . . , Lj of G∗ such that

V (Lf ) ∩ V (F ) = {uf} for each f, 1 6 f 6 j,

and V (L1)∪. . .∪V (Lj)∪V (F ) = V (G∗). Put bf = |V (Lf )|−1 for each f , 1 6 f 6 j.

Moreover, we put G∗
0 = G∗ and

G∗
f = S(G∗

f−1 − V (Lf − {uf}); uf , bf ) for each f, 1 6 f 6 j.

It is clear that
G∗

j = S(F ; u1, b1; . . . ; uj , bj).

It follows from Lemma 2 that

hc(G∗
0) 6 hc(G∗

1) 6 . . . 6 hc(G∗
j ),

which completes the proof. �

2.

As we will see, Theorem 1 can be improved under the condition that i 6 1
2 (n + 1)

and F is hamiltonian-connected.
Recall that every complete graph is hamiltonian-connected. If f and i are positive

integers, then by S(Ki; f) we mean a graph S(H ; u, f), where H is a complete graph
of order i and u ∈ V (H).
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Proposition 1. Let F be a complete graph of order i > 2, let u1, . . . , uj ∈ V (F ),
where 1 6 j 6 i, be pairwise distinct vertices of F , and let b1, . . . , bj be positive

integers. Put

G = S(F ; u1, b1; . . . ; uj , bj).

Consider an arbitrary A ⊆ E(F ) such that F − A is hamiltonian-connected. Then

every hamiltonian coloring of G is a hamiltonian coloring of G−A.
���������

. The proposition immediately follows from the definition of a hamilto-

nian coloring. �

Observation 3. Put G = S(Ki; n− i), where n > 4 and 2 6 i 6 n− 2. Consider
arbitrary distinct v, w ∈ V (G) such that degG v 6 degG w. Then

if degG v = degG w = 1, then D′
G(v, w) = n− 3,

if degG v = 1 and degG w = i− 1, then D′
G(v, w) = n− i− 1,

if degG v = 1 and degG w = n− 1, then D′
G(v, w) = n− 2,

if degG v = i− 1 and degG w = i− 1 or n− 1, then D′
G(v, w) = n− i.

Lemma 3. Let F be a complete graph of order i > 2, let u1, . . . , uj , where

1 6 j 6 i, be pairwise distinct vertices of F , and let b1, . . . , bj be positive integers

such that i 6 b1 + . . . + bj + 1, and

j > 3 or bj > 2.

Then for every hamiltonian coloring c∗ of S(F ; uj , b1 + . . .+ bj) there exists a hamil-
tonian coloring c of S(F ; u1, b1; . . . ; uj , bj) such that hc(c) = hc(c∗).
���������

. The case when j = 1 is obvious. Let j > 2. Put

n = i + b1 + . . . + bj , G = S(F ; u1, b1; . . . ; uj , bj) and G∗ = S(F ; uj , n− i).

Obviously, i 6 1
2 (n + 1). Since j > 2, we have n − i > 2. Put W = V (G) \ V (F )

and W ∗ = V (G∗) \ V (F ). For every f , 1 6 f 6 j, we denote by Wf the set of all
vertices in W adjacent to uf in G. Thus |W | = n − i = |W ∗| and |Wf | = bf for

each f , 1 6 f 6 j.
Consider an arbitrary hamiltonian coloring c∗ of G∗. Since i > 2 and n − i > 2,

we see that G∗ has no hamiltonian path; therefore c∗(v) 6= c∗(w) for all distinct
v, w ∈ V (G∗). If j > 3, then, without loss of generality, we assume that

c∗(u1) < . . . < c∗(uj−1).

Consider an arbitrary f , 1 6 f 6 j − 1. If there exists x ∈ W ∗ such that
c∗(x) < c∗(uf ) and there exists no r ∈ V (G∗) such that c∗(x) < c∗(r) < c∗(uf ), then
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we put u−
f = x. If there exists x ∈ W ∗ such that c∗(uf ) < c∗(x) and there exists no

s ∈ V (G∗) such that c∗(uf ) < c∗(s) < c∗(x), then we put u+
f = x.

Moreover, we put

Xf = {u−
f , u+

f } if both u−
f and u+

f are defined,

Xf = {u−
f } if u−

f is defined and u+
f is not,

Xf = {u+
f } if u+

f is defined and u−
f is not, and

Xf = ∅ if neither u−
f nor u+

f are defined.

Recall that if j > 3, then c∗(u1) < c∗(uj−1). This means that if j > 3 and u+
j−1 is

defined, then u+
j−1 6∈ X1.

We introduce the following notation. Consider arbitrary vertices z1, . . . , zf of G∗

such that c∗(z1) < . . . < c∗(zf ), where f > 1. Put Z = {z1, . . . , zf}. If 1 6 g 6 f ,

then we write

Z〈g〉 = {z1, . . . , zg}.

We now define the sets W ∗
f , where 1 6 f 6 j, as follows:

W ∗
1 = (W ∗ \X1)〈b1−1〉 ∪ {u+

j−1}
if j > 3, u+

j−1 is defined and u+
j−1 6∈ (W ∗ \X1)〈b1−1〉,

W ∗
1 = (W ∗ \X1)〈b1〉 otherwise;

if j > 3 and 2 6 f < j, then

W ∗
f = ((W ∗ \ (W ∗

1 ∪ . . . ∪W ∗
f−1)) \Xf )〈bf 〉;

finally

W ∗
j = W ∗ \ (W ∗

1 ∪ . . . ∪W ∗
j−1).

Clearly, if j > 3, then

|(W ∗ \ (W ∗
1 ∪ . . . ∪W ∗

j−2)) ∩ {Xj−1)| 6 1.

It is easy to see that the sets W ∗
1 , . . . , W ∗

j−1, W
∗
j are well-defined.

Let c be a mapping of V (G) into
�
such that

c(v) = c∗(v) for every v ∈ V (F )

and

c(wf ) = c∗(w∗
f ) for each f, 1 6 f 6 j.
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Consider distinct w1, w2 ∈ W . Then there exist distinct w∗
1 , w∗

2 ∈ W ∗ such that

c(w1) = c∗(w∗
1) and c(w2) = c∗(w∗

2). Thus

|c(w1)− c(w2)| = |c∗(w∗
1)− c∗(w∗

2)| > D′
G∗(w∗

1 , w∗
2) = n− 3 > D′

G(w1, w2).

Consider an arbitrary f , 1 6 f 6 j, and an arbitrary w ∈ Wf . There exists w∗ ∈ W ∗
f

such that c(w) = c∗(w∗). Clearly,

|c(w) − c(uj)| = |c∗(w∗)− c∗(uj)| > D′
G∗(w∗, uj) = n− 2 > D′

G(w, uj).

Let v ∈ V (F ) and uf 6= v 6= uj . Then

|c(w)− c(v)| = |c∗(w∗)− c∗(v)| > D′
G∗(w∗, v) = n− i− 1 = D′

G(w, v).

Without loss of generality we assume that c∗(w∗) < c∗(uf ). As follows from the
definition of W ∗

f , there exists r ∈ V (G∗) such that c∗(w∗) < c∗(r) < c∗(uf ). Clearly,

|c(uf )− c(w)| = c∗(w∗)− c∗(uf ) > (c∗(uf )− c∗(r)) + (c∗(r) − c∗(w∗)).

Obviously, if r ∈ V (F−uj), then c∗(uf )−c∗(r) > n−i and c∗(r)−c∗(w∗) > n−i−1;
if r = uj , then c∗(uf ) − c∗(r) > n − i and c∗(r) − c∗(w∗) > n − 2; and if r ∈ W ∗,
then c∗(uf )− c∗(r) > n− i− 1 and c∗(r) − c∗(w∗) > n− 3. Hence

|c(uf )− c(w)| > min(2n− 2i− 1, 2n− i− 4).

Recall that i 6 1
2 (n + 1). We see that

2n− 2i− 1 > n− 2 = D′
G(uf , w).

Since n > 4 and i is an integer, we see that

2n− i− 4 > n− 2 = D′
G(uf , w)

again.

This implies that c is a hamiltonian coloring of G and hc(c) = hc(c∗), which
completes the proof. �
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Lemma 4. Let F be a complete graph of order i > 2, and let u1 and u be distinct

vertices of F . Then hc(S(F ; u1, 1; u, 1) 6 hc(S(F ; u, 2).

���������
. Put G = S(F ; u1, 1; u2, 1) and G∗ = S(F ; u2, 2). If i = 2, then it is easy

to show that hc(G) = 4 < 5 = hc(G∗).
Let i > 3. The definition of a hamiltonian coloring implies that hc(G∗) > 2i− 1.

Let u2, . . . , ui−1 be the vertices of F different from u1 and u, and let v1 and v be the
vertices of degree one in G such that u1v1, uv ∈ E(G). We denote by c the mapping

of V (G) into
�
defined as follows:

c(u1) = 1, c(u2) = 3, . . . , c(ui−1) = 2i− 3, c(u) = 2i− 1, c(v) = 2,

and

c(v1) = i + 1 if i is odd, and c(v1) = i + 2 if i is even.

It is easy to see that c is a hamiltonian coloring of G. Thus hc(G) 6 hc(G∗), which
completes the proof. �

The next theorem is a further important step towards the main result of this
paper:

Theorem 2. Let G be a connected graph of order n > 3 and let F be an induced

subgraph of G. Assume that F is a hamiltonian-connected graph of order i, where

2 6 i 6 1
2 (n + 1). Then

hc(G) 6 hc(S(Ki; n− i)).

���������
. By Theorem 1, there exist pairwise distinct u1, . . . , uj ∈ V (F ), where

1 6 j 6 i, and positive integers b1, . . . , bj such that b1+ . . .+bj = n−i and (4) holds.

Without loss of generality we assume that

if bj = 1, then bf = 1 for each f, 1 6 f 6 j − 1.

If j > 3 or bj > 2, the result follows from Proposition 1 and Lemma 3. Let now j = 2
and bj = 1. Then n− i = 2. The result immediately follows from Proposition 1 and
Lemma 4. �
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3.

Let n > 3. Then S(K2; n − 2) = K1,n−1 and thus, by Theorem 3.2 of [2],
hc(S(K2; n − 2) = (n − 2)2 + 1. Moreover, as follows from Lemma 2.3 of [2],
hc(S(Kn−1; 1) = n− 1.
We will prove that if 2 6 i 6 1

2 (n+1), then hc(S(Ki, n− i)) = (n−2)2 +1−2(i−
1)(i− 2).
Let G be a connected graph of order n > 1, and let c be a mapping of V (G) into

�
.

We will say that c is a pseudohamiltonian coloring of G if there exists an ordering

u1, . . . , un

of V (G) such that

c(u1) 6 . . . 6 c(un)

and

c(uf+1)− c(uf ) > D′
G(uf+1, uf ) for each f, 1 6 f < n.

Obviously, every hamiltonian coloring ofG is pseudohamiltonian. On the other hand,

we will prove that if G = S(Ki; n− i), where n > 4 and 3 6 i 6 1
2 (n+1), then every

pseudohamiltonian coloring of G is hamiltonian.

In the rest of this paper we will study S(Ki; n− i).
We now introduce several useful conventions. Let G = S(Ki; n− i), where n > 4

and 3 6 i 6 n− 2. We denote by u the only vertex of degree n− 1 in G, by V1 the
set of all vertices of degree one in G, and by Vi−1 the set of all vertices of degree

i− 1 in G. Clearly, |V1| = n− i and |Vi−1| = i− 1. Put R = Vi−1 ∪ {u}.
Consider an arbitrary pseudohamiltonian coloring c of G. There exists an ordering

vc
1, . . . , v

c
n−i

of V1 such that

c(vc
1) < . . . < c(vc

n−i).

We denote

Rc
0 = {r ∈ R; c(r) < c(vc

1)},
Rc

f = {r ∈ R; c(vc
f ) < c(r) < c(vc

f+1)} for each f, 1 6 f < n− i,

and

Rc
n−i = {r ∈ R; c(vc

n−i) < c(r)}.
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Moreover, we denote

ac
f = |Rc

f | for each f, 0 6 f 6 n− i.

Consider an arbitrary f , 0 6 f 6 n − i such that ac
f > 1. Then there exists an

ordering

rc
f,1, . . . , r

c
f,af

of Rc
f such that

c(rc
f,1) < . . . < c(rc

f,af
).

Obviously, there exist integers j(c) and m(c) such that

0 6 j(c) 6 n− i, ac
j(c) > 1, 1 6 m(c) 6 ac

j(c), and rc
j(c),m(c) = u.

Let a1, . . . , an−i, j and m be non-negative integers such that

(5) a1 + . . . + an−i = i, j 6 n− i and 1 6 m 6 aj .

Consider a pseudohamiltonian coloring c of G. If

ac
f = af for each f, 0 6 f 6 n− i,

j(c) = j and m(c) = m, then we say that c has the type

(6) (a0, . . . , an−i; j, m).

Let c be a pseudohamiltonian coloring of G = S(Ki; n − i), where n > 5 and
3 6 i 6 n−2. Then there exist non-negative integers a0, . . . , an−i such that (5) holds

and (6) is the type of c. Clearly, there exists an ordering

u1, . . . un

of V (G) such that

|c(uf+1)− c(uf )| > D′
G(uf+1, uf ) for each f, 1 6 f < n.

If c(u1) = 1 and

|c(uf+1)− c(uf )| = D′
G(uf+1, uf ) for each f, 1 6 f < n,

then we will say that c is the minimum pseudohamiltonian coloring of the type (6)

and we will write
c = M(a0, . . . , an−i; j, m).
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Lemma 5. Let G = S(Ki; n − i), where n > 5 and 3 6 i 6 n − 2, and let
a0, . . . , an−i, j and m be non-negative integers such that (5) holds, and let c =
M(a0, . . . , an−i; j, m). Put k = max(c(u); u ∈ V (G)). Then

if a0 = 0, then c(vc
1) = 1;

if a0 > 1 and (j > 1 or (j = 0 and m < a0)), then c(vc
1) = a0(n− i);

if a0 > 1, j = 0 and m = a0, then c(vc
1) = (a0 − 1)(n− i) + n− 1;

if 1 6 f < n− i and af = 0, then c(vc
f+1) = c(vc

f ) + n− 3;

if 1 6 f < n− i, af > 1, and (j 6= f or (j = f and 1 < m < af )),

then c(vc
f+1) = c(vc

f ) + (af + 1)(n− i)− 2;

if 1 6 f < n− i and af > 2 and (m = 1 or af ),

then c(vc
f+1) = c(vc

f ) + af (n− i) + n− 3;

if 1 6 f < n− i, af = 1 and j = f, then c(vc
f+1) = c(vc

f ) + 2(n− 2);

if an−i = 0, then k = c(vc
n−i);

if an−i > 1 and (j < n− i or (j = n− i and m > 2)),

then k = c(vc
n−i) + an−i(n− i)− 1; and

if an−i > 1, j = n− i and m = 1, then k = c(vc
n−i) + (an−i − 1)(n− i) + n− 2.

���������
is easy and will be left to the reader. �

Remark. Let c and k be the same as in Lemma 5. If c is hamiltonian, then

hc(c) = k.

Proposition 2. Let n > 5, and let 3 6 i 6 n− 2. Then every pseudohamiltonian
coloring c of S(Ki; n− i) is hamiltonian if and only if i 6 1

2 (n + 1).
���������

. Put G = S(Ki; n− i).
Let first i 6 1

2 (n + 1). Consider an arbitrary pseudohamiltonian coloring c of G.
Then there exist non-negative integers a1, . . . , an−i, j and m such that (5) holds and

that (6) is the type of c.
Consider an arbitrary f , 0 < f < n− i− 1; assume that af > 1. Then

c(rc
f+1,1)− c(rc

f,af
) = (c(rc

f+1,1)− c(vc
f+1)) + (c(vc

f+1)− c(rc
f,af

))

> D′
G(rc

f+1,1, v
c
f+1) + D′

G(vc
f+1, r

c
f,af

)

> 2(n− i− 1) > n− i = D′(rc
f+1,1, r

c
f,af

).

Consider an arbitrary f , 0 < f < n − i such that af > 1; if f 6= j or (f = j and
1 < m < af ), then

c(vc
f+1)− c(vc

f ) > (af + 1)(n− i)− 2 > 2(n− i)− 2 > n− 3 = D′
G(vc

f+1, v
c
f );
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if f = j and (m = 1 or af ), then

c(vc
f+1)− c(vc

f ) > max(c(vc
f+1)− c(u), c(u)− c(vc

f )) > n− 2 > D′(vc
f+1, v

c
f ).

If j < n− i and m < aj , then

c(vc
j+1)− c(u) > (aj −m + 1)(n− i)− 1 > 2(n− i)− 1 > n− 2 = D′

G(vc
j+1, u).

If j > 0 and m > 1, then

c(u)− c(vc
j ) > m(n− i)− 1 > 2(n− i)− 1 > n− 2 > D′

G(u, vc
j ).

As easily follows from these observations, c is a hamiltonian coloring of G.

Let now i > 1
2 (n + 1). Consider an arbitrary pseudohamiltonian coloring of G

such that (6) is the type of c,

a0 = 2, a1 = 1, af = 0 for each f,

1 < f < n− i, an−i = n− i− 3, j = 0 and m = 1,

and the following holds

c(rc
0,1) = 1, c(rc

0,2) = 1 + (n− i), c(vc
1) = c(rc

0,2) + n− i− 1,

c(rc
1,1) = c(vc

1) + n− i− 1 and c(vc
2) = c(vr

1,1) + n− i− 1.

Recall that rc
0,1 = u. Since i > 1

2 (n + 1), we get

c(vc
1)− c(u) = 2n− 2i− 1 < n− 2

and

c(vc
2)− c(vc

1) = 2n− 2i− 2 < n− 3.

Thus c is not a hamiltonian coloring of G. �

Remark. Using the technique of the proof of Proposition 1, it is easy to show
that every pseudohamiltonian coloring of K1,n−1, where n > 3, is hamiltonian.
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Lemma 6. Let G = S(Ki; n− i), where n > 5, and let 3 6 i 6 1
2 (n+1). Consider

non-negative integers a0, . . . , an−i such that

a0 + . . . + an−i = i.

Assume that there exist f and g, 1 < f < n− i and 0 6 g 6 n− i, such that

af = 0,

ag > 3 if g = 0,

ag > 2 if 1 6 g < n− i, and

ag > 1 if g = n− i.

Put

a+
f = 1, a+

g = ag − 1 and a+
h = ah for each h, 0 6 h 6 n− i, f 6= h 6= g.

Then

hc(M(a+
0 , . . . , a+

n−i; 0, 1)) < hc(M(a0, . . . , an−i; 0, 1)).

���������
. Put c = M(a0, . . . , an−i; 0, 1) and c+ = M(a+

0 , . . . , a+
n−i; 0, 1). By

Lemma 5, c(vc
f+1)− c(vc

f ) = n− 3. If g < n− i or (g = n− i and ag > 2), then

hc(c+) = hc(c)− ((n− i) + (n− 3)) + 2(n− i− 1) = hc(c) + 1− i.

If g = n − i and ag = 1, then hc(c+) = hc(c) + 2 − i. Since i > 3, the lemma is
proved. �

The next theorem is the last important step to the main result of this paper:

Theorem 3. Let n > 3 and 2 6 i 6 1
2 (n + 1). Then

hc(S(Ki; n− i) = (n− 2)2 + 1− 2(i− 1)(i− 2).

���������
. If i = 2, then the result immediately follows from Theorem 3.2 in [2].

We assume that i > 3. Then n > 5.
Let c be an arbitrary hamiltonian coloring of G. It is easy to see that there exist

non-negative integers a0, . . . , an−i, j and m such that (5) holds and (6) is the type

of c. Put
c0 = M(a0, . . . , an−i; j, m).

By Proposition 2, c0 is a hamiltonian coloring of G. Obviously, hc(c0) 6 hc(c).
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Consider the hamiltonian coloring

c∗ = M(a∗0, . . . , a
∗
n−i; 0, 1)

of G, where a∗0, . . . a
∗
n−i will be defined in exactly one of the following Cases 1–6:

1. Assume that a0 > 2 and j = 0. Put a∗0 = a0, . . . , a
∗
n−i = an−i.

If m < a0, then hc(c∗) = hc(c0).
If m = a0, then hc(c∗) = hc(c0)− (i− 1).

2. Assume that a0 = 1 and j = 0. Clearly, there exists k, 1 6 k 6 n− i, such that
ak > 1. Put a∗0 = 2, a∗k = ak − 1, and a∗f = af for each f , 1 6 f 6 n− i, f 6= k.

If k < n− i and ak > 2, then hc(c∗) = hc(c0)− (i− 1).
If k < n− i and ak = 1, then hc(c∗) = hc(c0).
If k = n− i and ak > 2, then hc(c∗) = hc(c0)− (i− 1).
If k = n− i and ak = 1, then hc(c∗) = hc(c0)− (i− 2).

3. Assume that a0 > 2 and j > 1. Put a∗0 = a0, . . . a
∗
n−i = an−i.

If j < n− i and 1 < m < aj , then hc(c∗) = hc(c0).
If j < n− i, aj > 2, and (m = 1 or aj), then hc(c∗) = hc(c0)− (i− 1).
If j < n− i and aj = 1, then hc(c∗) = hc(c0)− (2i− 2).
If j = n− i and m > 1, then hc(c∗) = hc(c0).
If j = n− i and m = 1, then hc(c∗) = hc(c0)− (i− 1).

4. Assume that a0 = 1 and j > 1. Put a∗0 = 2, a∗j = aj − 1, and a∗f = af for
each f , 1 6 f 6 n− i, f 6= j.

If j < n− i and 1 < m < aj , then hc(c∗) = hc(c0).
If j < n− i, aj > 2, and (m = 1 or aj), then hc(c∗) = hc(c0)− (i− 1).
If j < n− i and aj = 1, then hc(c∗) = hc(c0)− (i− 1).
If j = n− i and m > 1, then hc(c∗) = hc(c0).
If j = n− i, aj > 2, and m = 1, then hc(c∗) = hc(c0)− (i− 1).
If j = n− i and aj = 1, then hc(c∗) = hc(c0)− (i− 2).

5. Assume that a0 = 0 and aj > 2. Put a∗0 = 2, a∗j = aj − 2 and a∗f = af for

each f , 1 6 f 6 n− i, f 6= j.

If j < n− i and 1 < m < aj , then hc(c∗) = hc(c0)− 1.
If j < n− i and aj > 3 and m = 1 or aj , then hc(c0)− i.

If j < n− i and aj = 2, then hc(c∗) = hc(c0)− 1.
If j = n− i, aj > 3, and m > 1, then hc(c∗) = hc(c0)− 1.
If j = n− i, aj = 2, and m = 2, then hc(c∗) = hc(c0).
If j = n− i, aj > 3, and m = 1, then hc(c∗) = hc(c0)− i.
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If j = n− i, aj = 2, and m = 1, then hc(c∗) = hc(c0)− (i− 1).

6. Assume that a0 = 0 and aj = 1. Clearly there exists k, 1 6 k 6 n− i, such that
k 6= j and ak > 1. Put a∗0 = 2, a∗j = 0, a∗k = ak − 1, and a∗f = af for each f ,

1 6 f 6 n− i, j 6= f 6= k.

If j < n− i, k < n− i and ak > 2, then hc(c∗) = hc(c0)− i.

If j < n− i, k < n− i and ak = 1, then hc(c∗) = hc(c0)− 1.
If j = n− i and ak > 2, then hc(c∗) = hc(c0)− (i− 1).
If j = n− i and ak = 1, then hc(c∗) = hc(c0).
If k = n− i and ak > 2, then hc(c∗) = hc(c0)− i.

If k = n− i and ak = 1, then hc(c∗) = hc(c0)− (i− 1).

Since i > 3, we have hc(c∗) 6 hc(c0). Lemma 6 implies that there exist non-
negative integers a+

1 , . . . , a+
n−i−1 such that

a+
1 6 1, . . . , a+

n−i−1 6 1, a+
1 + . . . + a+

n−i−1 = i− 2

and

hc(M(2, a+
1 , . . . , a+

n−i−1, 0; 0, 1)) 6 hc(c∗).

There exists a permutation α of (1, . . . , n− i− 1) such that

a+
α(1) > . . . > a+

α(n−i−1).

Put

copt = M(2, a+
α(1), . . . , a

+
α(n−i−1), 0; 0, 1).

It is clear that hc(copt) = hc(M(2, a+
α(1), . . . , a

+
α(n−i−1), 0; 0, 1)).

We have proved that hc(copt) 6 hc(c) for every hamiltonian coloring c of G. It
follows from Lemma 5 that

hc(copt) = 2(n− 1) + (i− 2)(2n− 2i− 2) + (n− 2i + 3)(n− 3)

= n2 − 4n− 2i2 + 6i + 1

= (n− 2)2 + 1− 2(i− 1)(i− 2),

which completes the proof of the theorem. �
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4.

Let G be a connected graph of order n > 3, and let 2 6 i 6 n. It is obvious that

G contains a hamiltonian-connected graph of order i as a subgraph if and only if
G contain a hamiltonian-connected graph of order i as an induced subgraph.

Clearly, every nontrivial connected graph contains a nontrivial hamiltonian-
connected graph as a subgraph.

The next theorem is the main result of the this paper:

Theorem 4. Let G be a connected graph of order n > 3. If 2 6 i 6 1
2 (n+1) and

there exists a hamiltonian-connected graph F of order i such that F is a subgraph

of G, then

hc(G) 6 (n− 2)2 + 1− 2(i− 1)(i− 2).

���������
. The result immediately follows from Theorems 2 and 3. �

Remark. Let G, i and F be the same as in Theorem 4. As immediately follows
from Proposition 1 and Theorem 3, if G = S(F ; n− i), then

hc(G) = (n− 2)2 + 1− 2(i− 1)(i− 2).

References

[1] G. Chartrand and L. Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall,
London, 1996. Zbl 0890.05001

[2] G. Chartrand, L. Nebeský, and P. Zhang: Hamiltonian colorings of graphs. Discrete
Appl. Math. 146 (2005), 257–272. Zbl 1056.05054

[3] G. Chartrand, L. Nebeský, and P. Zhang: On hamiltonian colorings of graphs. Discrete
Mathematics 290 (2005), 133–134. Zbl 1059.05046

[4] G. Chartrand, L. Nebeský, and P. Zhang: Bounds for the hamiltonian chromatic number
of a graph. Congressus Numerantium 157 (2002), 113–125. Zbl 1029.05059

[5] L. Nebeský: Hamiltonian colorings of connected graphs with long cycles. Math. Bohem.
128 (2003), 263–275. Zbl 1050.05055

Author’s address: Univerzita Karlova v Praze, Filozofická fakulta, nám. J. Palacha 2,
116 38 Praha 1, e-mail: Ladislav.Nebesky@ff.cuni.cz.

338


		webmaster@dml.cz
	2020-07-03T15:53:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




