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Abstract. In this paper we investigate finite rank operators in the Jacobson radical
RN⊗M of Alg(N ⊗M), where N ,M are nests. Based on the concrete characterizations of
rank one operators in Alg(N ⊗M) and RN⊗M, we obtain that each finite rank operator
in RN⊗M can be written as a finite sum of rank one operators in RN⊗M and the weak
closure of RN⊗M equals Alg(N ⊗M) if and only if at least one of N ,M is continuous.
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1. Introduction

Finite rank operators and rank one operators have played a central role in the the-
ory of nest algebras since the inception of that theory. For example, Ringrose make

very effective use of the rank one operators in a nest algebra in his characterization
of the radical of a nest algebra [10] and in his theorem that algebraic isomorphisms of

nest algebras are necessarily spatial [11]. In a nest algebra, any finite rank operator
is a finite sum of rank one operators from the nest algebra [2]. The theorem has

been verified for special cases of reflexive algebras, namely algebras whose subspace
lattice L forms an atomic Boolean algebra [9] or L is commutative and has finite
width [6].
Recall that the Jacobson radical of a Banach algebra coincides with the elements T

such that AT is quasinilpotent for every A in the algebra. The Jacobson radical of
a Banach algebra is a structural object that has been frequently studied over the

years. In [10], Ringrose characterized the Jacobson radical of a nest algebra. In [1],
Davidson and Orr pushed the characterization further to the case of all width two
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CSL algebras. The result is essential to our paper. For a subspace lattice L, we
denote by RL the Jacobson radical of AlgL.
The main purpose of this paper is to study finite rank operators in the radical

RN⊗M of Alg(N ⊗M). As we know, each finite rank operator in the radical of
a nest algebra can be written as a finite sum of rank one operators in this radical.
This result owes much to the total order of N . In the case of N ⊗M, the key to the
main result is Lemma 4 which gives a concrete description of rank one operators in
Alg(N ⊗M). As an application of Lemma 4, we give a simple proof of the tensor
product formula in [3]. At last, we compute the weak closure of the radical RN⊗M
and show that Rw

N⊗M = Alg(N ⊗ M) if and only if at least one of N , M is

continuous.

Let us introduce some notation and terminology. H represents a complex Hilbert
space, B(H) the algebra of bounded operators on H and F(H) the set of finite-rank
operators on H. A sublattice L of the projection lattice of B(H) is said to be a
subspace lattice if it contains 0 and I and is strongly closed, where we identify pro-

jections with their ranges. If the elements of L pairwise commute, L is a commutative
subspace lattice (CSL). A subspace lattice is completely distributive if distributive

laws are valid for families of arbitrary cardinality (see [8]). A nest N is a totally
ordered subspace lattice. For L ∈ L, we define

L− =
∨
{E ∈ L : L

�
E}.

In the case of nests, either N− is the immediate predecessor of N or N = N−. If
N = N− for any N ∈ N , N is called a continuous nest. If L is a subspace lattice,
AlgL denotes the set of operators in B(H) that leave the elements of L invariant. If
L is a CSL, AlgL is said to be a CSL algebra. If L is a nest, AlgL is said to be a
nest algebra.

Let Hi (i = 1, 2) be complex Hilbert spaces. If Li ⊂ B(Hi) (i = 1, 2) are subspace
lattices, L1⊗L2 is the subspace lattice in B(H1⊗H2) generated by {L1⊗L2 : Li ∈
Li, i = 1, 2}. If Si ⊂ B(Hi) (i = 1, 2) are subspaces, then S1 ⊗ S2 denotes the

linear span of {S1 ⊗ S2 : Si ∈ Si}; S1 ⊗w S2 denotes the weak closure of S1 ⊗ S2 in
B(H1 ⊗H2).

2. Finite rank operators

In the sequel we suppose that N and M are nests on H1 and H2 respectively;

and that N ⊗M is the tensor product of N andM. RN , RM and RN⊗M denote
Jacobson radicals of AlgN , AlgM and Alg(N ⊗M) respectively.
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For x, y ∈ H, the rank-one operator xy∗ is defined by the equation

(xy∗)(z) = 〈z, y〉x ∀ z ∈ H.

Lemma 1. Let L be a subspace lattice and let {Nα : α ∈ Λ} be a family of
elements in L. Then

( ∨
α∈Λ

Nα

)
−

=
∨

α∈Λ

(Nα)−.

���������
. For any α ∈ Λ, since Nα 6

∨
α∈Λ

Nα, it follows that if F 	 Nα then

F 	 ∨
α∈Λ

Nα; hence (Nα)− 6
( ∨

α∈Λ

Nα

)
−
. So

∨
α∈Λ

(Nα)− 6
( ∨

α∈Λ

Nα

)
−
.

Conversely, suppose that F 	 ∨
α∈Λ

Nα. If F > Nα for each α ∈ Λ, then F >
∨

α∈Λ

Nα; hence, there exists α0 ∈ Λ such that F 	 Nα0 . Thus F 6
∨

α∈Λ

(Nα)−. Thus,
( ∨

α∈Λ

Nα

)
−

=
∨{F : F 	 ∨

α∈Λ

Nα} 6
∨

α∈Λ

(Nα)− and we are done. �

Set N ⊗ I = {N ⊗ I : N ∈ N}; N ⊗ I is a nest on H1 ⊗H2.

Lemma 2. Suppose that N ∈ N and M ∈ M, then (N ⊗M)− = (N−⊗ I)∨ (I ⊗
M−) and (N ⊗M)⊥− = N⊥

− ⊗M⊥
− in N ⊗M.

���������
. First, we prove the following assertion:

(N ⊗M)− =
∨
{F : F 	 N ⊗M} =

∨
{E1 ⊗E2 : E1 ⊗E2 	 N ⊗M}.

Indeed, suppose that F 	 N ⊗M . For any E1⊗E2 6 F we have E1⊗E2 	 N ⊗M .
Thus,

{E1 ⊗E2 : E1 ⊗E2 6 F} ⊆ {E1 ⊗E2 : E1 ⊗E2 	 N ⊗M}.

Hence it follows from [3] Proposition 2.4 that

F =
∨
{E1 ⊗E2 : E1 ⊗E2 6 F} 6

∨
{E1 ⊗E2 : E1 ⊗E2 	 N ⊗M}

and

(N ⊗M)− =
∨
{F : F 	 N ⊗M} 6

∨
{E1 ⊗E2 : E1 ⊗E2 	 N ⊗M}.

The converse inequality is obvious.

Secondly, we show that E1 ⊗ E2 > N ⊗M if and only if E1 > N and E2 > M .
Suppose that E1 ⊗ E2 > N ⊗M . If E1 < N , choose nonzero vectors x1 ∈ N 	 E1

and x2 ∈ M . Thus x1 ⊗ x2 ∈ N ⊗M ⊆ E1 ⊗E2. But (E1 ⊗E2)(x1 ⊗ x2) = 0 shows
that x1 ⊗ x2 6∈ E1 ⊗E2. This contradiction shows that E1 > N . Similarly, E2 > M .
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The converse implication is obvious. Hence E1⊗E2 	 N ⊗M if and only if E1 	 N

or E2 	 M .
Therefore

(N ⊗M)− =
∨
{E1 ⊗E2 : E1 ⊗E2 	 N ⊗M}

=
∨
{E1 ⊗E2 : E1 < N or E2 < M}

= (N− ⊗ I) ∨ (I ⊗M−).

We can easily prove that (N− ⊗ I)⊥ = N⊥
− ⊗ I , thus

(N ⊗M)⊥− = (N− ⊗ I)⊥ ∧ (I ⊗M−)⊥ = (N⊥
− ⊗ I) ∧ (I ⊗M⊥

− ) = N⊥
− ⊗M⊥

− .

�

The following result of Longstaff [8] is essential to this paper.

Lemma 3. Let L be a subspace lattice. Then xy∗ ∈ AlgL if and only if there is
an element L ∈ L such that x ∈ L and y ∈ L⊥−.

Lemma 4. The rank one operator xy∗ belongs to Alg(N ⊗M) if and only if
there exist N ∈ N and M ∈ M such that x ∈ N ⊗M and y ∈ N⊥

− ⊗M⊥
− .���������

. Since N ⊗M = (N ⊗ I) ∨ (I ⊗M), so

Alg(N ⊗M) = Alg(N ⊗ I) ∩Alg(I ⊗M).

Now suppose that xy∗ ∈ Alg(N ⊗M). Thus xy∗ ∈ Alg(N ⊗ I); by the definition
of N ⊗I and Lemma 2 and Lemma 3, there is an element N ∈ N such that x ∈ N⊗I

and y ∈ (N ⊗ I)⊥− = N⊥
− ⊗ I . Similarly, there exists M ∈ M such that x ∈ I ⊗M

and y ∈ I ⊗M⊥
− . Hence, x ∈ N ⊗M and y ∈ N⊥

− ⊗M⊥
− .

For the converse, if x ∈ N ⊗M and y ∈ N⊥
− ⊗M⊥

− then, in particular, x ∈ N ⊗ I

and y ∈ N⊥
− ⊗ I . Lemma 2 and Lemma 3 show that xy∗ ∈ Alg(N ⊗ I). Similarly,

xy∗ ∈ Alg(I ⊗M). Hence

xy∗ ∈ Alg(N ⊗ I) ∩ Alg(I ⊗M) = Alg(N ⊗M).

�

As an application of Lemma 4 we give a simple proof of the tensor product formula
in [3].
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Theorem 5 ([3], Theorem 2.6). Alg(N ⊗M) = AlgN ⊗w AlgM.
���������

. Each of the operators which generate AlgN ⊗w AlgM leaves invariant

each of the projections which generate N ⊗M; therefore

AlgN ⊗w AlgM⊆ Alg(N ⊗M).

It remains to show that Alg(N ⊗M) ⊆ AlgN ⊗w AlgM. It follows from [5,
Theorem 10] that N ⊗M is a completely distributive CSL. Thus, by virtue of [7,
Theorem 3], Alg(N ⊗M) is weakly generated by the rank one operators in itself. So
it suffices to show that each rank one operator in Alg(N ⊗M) belongs to AlgN ⊗w

AlgM. Now for any N ∈ N , M ∈ M and xi, yi ∈ Hi (i = 1, 2), we have that

(N ⊗M)[(x1 ⊗ x2)(y1 ⊗ y2)∗](N⊥
− ⊗M⊥

− )

= (N ⊗M)[(x1y
∗
1)⊗ (x2y

∗
2)](N⊥

− ⊗M⊥
− )

= N(x1y
∗
1)N

⊥
− ⊗M(x2y

∗
2)M

⊥
− ∈ AlgN ⊗w AlgM.

(It is routine to verify that (x1 ⊗ x2)(y1 ⊗ y2)∗ = (x1y1)∗ ⊗ (x2y
∗
2).)

For any rank one operator zw∗ ∈ Alg(N ⊗M), it follows from Lemma 4 that
there exist N ∈ N and M ∈ M such that z ∈ N ⊗M and w ∈ N⊥

− ⊗M⊥
− . Since

z, w ∈ H1 ⊗H2, there exist sequences {zn} and {wn} such that

zn
‖·‖−→ z and wn

‖·‖−→ w,

where {zn}, {wn} are finite linear combinations of simple tensors. Thus,

(N ⊗M)(znw∗n)(N⊥
− ⊗M⊥

− )
‖·‖−→ (N ⊗M)(zw∗)(N⊥

− ⊗M⊥
− ) = zw∗.

The above paragraph shows that

(N ⊗M)(znw∗n)(N⊥
− ⊗M⊥

− ) ∈ AlgN ⊗w AlgM,

so zw∗ ∈ AlgN ⊗w AlgM. This completes the proof. �

Lemma 6. If (N 	N−)⊗ (M 	M−) 6= 0, then it is an atom of N ⊗M.
���������

. Recall that an atom P of N ⊗M is an interval projection from N ⊗M
such that for any E ∈ N ⊗ M, either P 6 E or PE = 0 (see [4]). Set P =
(N 	 N−) ⊗ (M 	 M−). P = N ⊗ M − [(N− ⊗ M) ∨ (N ⊗ M−)] is an interval
projection. For any E = E1 ⊗ E2 ∈ N ⊗M, since N is totally ordered, either
E1 6 N− or E1 > N . If E1 6 N− then P (E1 ⊗E2) = 0; if E1 > N , sinceM is also
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totally ordered, either E2 6 M− or E2 > M . If E2 6 M− then P (E1⊗E2) = 0; and
if E2 > M then P 6 E1 ⊗ E2. Hence for any E = E1 ⊗ E2, either P 6 E1 ⊗ E2 or
P (E1 ⊗E2) = 0.
Now for any E ∈ N ⊗M, by virtue of [3, Proposition 2.4] we have

E =
∨
{E1 ⊗E2 : E1 ⊗E2 6 E}.

If P (E1 ⊗ E2) = 0 for any E1 ⊗ E2 6 E, then PE = 0; if there exist E1, E2 with
E1 ⊗E2 6 E such that P (E1 ⊗E2) 6= 0 then it follows from the result of the above
paragraph that P 6 E1 ⊗E2 and P 6 E. �

Proposition 7. If a rank-one operator xy∗ belongs to Alg(N ⊗M), then the
following statements are equivalent:

1) xy∗ ∈ RN⊗M;
2) there exists L ∈ N ⊗M such that x ∈ L and y ∈ L⊥.

���������
. 1) ⇒ 2) Since xy∗ ∈ Alg(N ⊗M), it follows from Lemma 4 that

there exist N ∈ N and M ∈ M such that x ∈ N ⊗ M and y ∈ N⊥
− ⊗ M⊥

− . Set

G1 = (N 	N−) ⊗ (M 	M−), G2 = (N ⊗M)	 G1 = (N− ⊗M) ∨ (N ⊗M−) and
G3 = (N⊥

− ⊗M⊥
− )	G1 = (N⊥⊗M⊥

− )∨ (N⊥
− ⊗M⊥). If G1 = 0 then N 	N− = 0 or

M 	M− = 0. In this case L = N ⊗M satisfies the condition in 2). Now we suppose
that G1 6= 0. Since N ⊗M = G1 + G2 and N⊥

− ⊗M⊥
− = G1 + G3, we have

xy∗ = (G1 + G2)(xy∗)(G1 + G3)

= (N ⊗M)(xy∗)G3 + G2(xy∗)G1 + G1(xy∗)G1.

Since xy∗ ∈ RN⊗M and G1 is an atom of N ⊗M, it follows from [1, Theorem 4.8]
that G1(xy∗)G1 = 0. Hence x ∈ G⊥1 or y ∈ G⊥1 . If x ∈ G⊥1 then x ∈ G2 and

y ∈ G1 + G3 = N⊥
− ⊗ M⊥

− ⊆ G⊥2 ; if y ∈ G⊥1 , then y ∈ G3 ⊆ (N ⊗ M)⊥ and
x ∈ N ⊗M .

2) ⇒ 1) If there exists L ∈ N ⊗M such that x ∈ L and y ∈ L⊥, then for any
T ∈ Alg(N ⊗M) we have L⊥TL = 0 and

[(xy∗)T ]n = [L(xy∗)L⊥T ]n = 0 ∀n > 2.

So (xy∗)T is quasinilpotent. It follows from the definition of RN⊗M and from
xy∗ ∈ Alg(N ⊗M) that xy∗ ∈ RN⊗M. �
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Theorem 8. Each finite rank operator in RN⊗M can be written as a finite sum
of rank one operators in RN⊗M.���������

. Suppose that F is a finite rank operator inRN⊗M. Since F ∈ RN⊗M ⊆
Alg(N ⊗M), it follows from [6, Corollary 7] that F can be written as a finite sum

of rank one operators in Alg(N ⊗M). Write

F =
n∑

i=1

xiy
∗
i , where xiy

∗
i ∈ Alg(N ⊗M) for i = 1, . . . . , n.

For any fixed i (1 6 i 6 n), since xiy
∗
i ∈ Alg(N ⊗M), it follows from Lemma 4 that

there exist Ni ∈ N and Mi ∈ M such that

xi ∈ Ni ⊗Mi and yi ∈ N⊥
i− ⊗M⊥

i−.

If Ni = Ni− or Mi = Mi−, Proposition 7 shows that xiy
∗
i ∈ RN⊗M. Without loss

of generality, we can suppose that Ni 6=Ni− and Mi 6= Mi−. Set

G
(1)
i = (Ni 	Ni−)⊗ (Mi 	Mi−),

G
(2)
i = (Ni ⊗Mi)	G

(1)
i ,

G
(3)
i = (N⊥

i− ⊗M⊥
i−)	G

(1)
i .

Thus

xiy
∗
i = (G(1)

i + G
(2)
i )(xiy

∗
2)(G

(1)
i + G

(3)
i )

= (Ni ⊗Mi)(xiy
∗
i )G(3)

i + G
(2)
i (xiy

∗
i )G(1)

i + G
(1)
i (xiy

∗
i )G(1)

i .

Since Ni⊗Mi⊥G
(3)
i , G

(2)
i ⊥G

(1)
i and xiy

∗
i ∈ Alg(N ⊗M), so (Ni⊗Mi)(xiy

∗
i )G(3)

i and

G
(2)
i (xiy

∗
i )G(1)

i belong to RN⊗M by Proposition 7. Now we consider the operator
G

(1)
i (xiy

∗
i )G(1)

i .

Set Λi = {j : G
(1)
j = G

(1)
i }. Since G

(1)
i is an atom of N ⊗M and G

(1)
i ∈ Alg(N ⊗

M), we have
G

(1)
i FG

(1)
i =

∑

j∈Λi

G
(1)
j (xjy

∗
j )G(1)

j ∈ RN⊗M.

By virtue of [1, Theorem 4.8], G(1)
i FG

(1)
i = 0. Owing to the arbitrariness of i, we

obtain that
n∑

j=1

G
(1)
j (xjy

∗
j )G(1)

j = 0.

Hence

F =
n∑

i=1

xiy
∗
i =

n∑

i=1

(Ni ⊗Mi)(xiy
∗
i )G(3)

i + G
(2)
i (xiy

∗
i )G(1)

i .

Thus, F can be written as a finite sum of rank one operators in RN⊗M. �
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Lemma 9. Suppose that Uτ is a weakly closed Alg(N ⊗M)-module determined
by an order homomorphism τ from N ⊗M into itself. Then a rank one operator xy∗

belongs to Uτ if and only if there exists an element L ∈ N ⊗M such that x ∈ L and

y ∈ L⊥∼, where L∼ =
∨{G : L

�
τ(G)}.

���������
. Suppose that there exists an element L ∈ N ⊗M such that x ∈ L and

y ∈ L⊥∼. For any G ∈ N ⊗M, if L 6 τ(G) then

(xy∗)G = L(xy∗)L⊥∼G 6 L 6 τ(G);

if L
�

τ(G), then G 6 L∼ and

(xy∗)G = L(xy∗)L⊥∼G = (0) ⊆ τ(G).

Thus the rank one operator xy∗ belongs to Uτ .

Conversely, suppose that xy∗ ∈ Uτ . Set L =
∧{G ∈ N ⊗M : Gx = x}, certainly

x ∈ L. For any G ∈ N ⊗M and L
�

τ(G), it follows from the definition of L that
τ(G)x 6= x. If Gy 6= 0, since (xy∗)G = τ(G)(xy∗)G, we have that

[(xy∗)G](Gy) = [τ(G)(xy∗)G](Gy)

and

‖Gy‖2x = ‖Gy‖2τ(G)x.

This contradicts τ(G)x 6= x, so Gy = 0. From the definition of L∼ we have L∼y = 0
and y ∈ L⊥∼. �

Lemma 10. Let U = {T ∈ B(H1⊗H2) : TL ⊆ L− ∀L ∈ N ⊗M}. Then a rank
one operator xy∗ belongs to U if and only if there exists L ∈ N ⊗M such that x ∈ L

and y ∈ L⊥.
���������

. Necessity. It follows from Lemma 9 that if xy∗ ∈ U then there is
L ∈ N ⊗M such that x ∈ L and y ∈ L⊥∼, where L∼ =

∨{E : L
�

E−}. Now we
compute L∼. Since L =

∨{L1 ⊗ L2 : L1 ⊗ L2 6 L}, it is easy to show that

{E : L
�

E−} =
⋃

L1⊗L26L

{E : L1 ⊗ L2

�
E−}.

Since E =
∨{E1 ⊗E2 : E1 ⊗E2 6 E}, it follows from Lemma 1 that

E− =
∨
{(E1 ⊗E2)− : E1 ⊗E2 6 E}.
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We first verify the following assertion:

∨
{E : L1 ⊗ L2

�
E−} =

∨
{N ⊗M : L1 ⊗ L2

�
(N ⊗M)−}.

For E ∈ N ⊗M and L1 ⊗ L2

�
E− = ∨{(E1 ⊗E2)− : E1 ⊗E2 6 E}, we have

L1 ⊗ L2

�
(E1 ⊗E2)− for any E1 ⊗E2 6 E.

Thus

E1 ⊗E2 ∈ {N ⊗M : L1 ⊗ L2

�
(N ⊗M)−}

and

E =
∨
{E1 ⊗E2 : E1 ⊗E2 6 E} 6

∨
{N ⊗M : L1 ⊗ L2

�
(N ⊗M)−}.

Hence

∨
{E : L1 ⊗ L2

�
E−} 6

∨
{N ⊗M : L1 ⊗ L2

�
(N ⊗M)−}.

The converse inequality is obvious. Thus, we have

L∼ =
∨
{E : L

�
E−} =

∨ ⋃

L1⊗L26L

{E : L1 ⊗ L2

�
E−}

=
∨

L1⊗L26L

∨
{E : L1 ⊗ L2

�
E−}

=
∨

L1⊗L26L

∨
{N ⊗M : L1 ⊗ L2

�
(N ⊗M)−}

=
∨

L1⊗L26L

∨
{N ⊗M : N− < L1 or M− < L2}

=
∨
{(L1 ⊗ I) ∨ (I ⊗ L2) : L1 ⊗ L2 6 L}

>
∨
{L1 ⊗ L2 : L1 ⊗ L2 6 L} = L.

The fourth equality follows from (N⊗M)− = (N−⊗I)∨(I⊗M−). Hence L⊥∼ 6 L⊥.

Sufficiency. Suppose that there exists L ∈ N ⊗M such that x ∈ L and y ∈ L⊥.
For any M ∈ N ⊗M, if M 6 L, then (xy∗)M = L(xy∗)L⊥M = (0) ⊆ M−; if
M

�
L, then (xy∗)M ⊆ L 6 M−. Thus, by the definition of U , xy∗ ∈ U . �
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Theorem 11.

Rw
N⊗M = {T ∈ Alg(N ⊗M) : T (N ⊗M) ⊆ (N ⊗M)− ∀N ∈ N , M ∈ M}

= {T ∈ Alg(N ⊗M) : TL ⊆ L− ∀L ∈ N ⊗M}.

���������
. By [3, Proposition 2.4], L =

∨{N⊗M : N⊗M 6 L} for all L ∈ N⊗M.
It follows from Lemma 1 that L− =

∨{(N ⊗M)− : N ⊗M 6 L}. Thus it is routine
to prove that {T ∈ Alg(N ⊗M) : T (N ⊗M) ⊆ (N ⊗M)− ∀N ∈ N , M ∈ M} =
{T ∈ Alg(N ⊗M) : TL ⊆ L− ∀L ∈ N ⊗M}.
Suppose that T ∈ RN⊗M and let FN⊗M be the linear span of rank one operators

in RN⊗M. It follows from [7, Theorem 3] that there exists a net {Fα} ⊆ Alg(N⊗M)
such that

Fα
w−→ I,

where Fα is a finite linear combination of rank one operators in Alg(N ⊗M). Thus

FαT
w−→ T

and FαT belongs to FN⊗M. Hence

Fw
N⊗M ⊇ RN⊗M

and

Fw
N⊗M = Rw

N⊗M.

If xy∗ ∈ RN⊗M ⊆ Alg(N ⊗M), then there exists E ∈ N ⊗M such that x ∈ E

and y ∈ E⊥ by Proposition 7. For any L ∈ N ⊗ M, if L 6 E then (xy∗)L =
E(xy∗)E⊥L = (0); if L

�
E then (xy∗)L = E(xy∗)E⊥L ⊆ E ⊆ L−. Thus

xy∗ ∈ {T ∈ Alg(N ⊗M) : TL ⊆ L− ∀L ∈ N ⊗M}

and

Rw
N⊗M = Fw

N⊗M ⊆ {T ∈ Alg(N ⊗M) : TL ⊆ L− ∀L ∈ N ⊗M}.

Conversely, set U = {T ∈ B(H1 ⊗ H2) : TL ⊆ L−}. Then U ∩ Alg(N ⊗M) is
a weakly closed module of Alg(N ⊗M). Just like in the above paragraph, we can
show that U ∩Alg(N ⊗M) is weakly generated by rank one operators in itself. For
any rank one operator xy∗ ∈ U ∩ Alg(N ⊗M) ⊆ U , it follows from Lemma 10 that
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there exists L ∈ N ⊗M such that x ∈ L and y ∈ L⊥. Since xy∗ ∈ Alg(N ⊗M), so
xy∗ ∈ RN⊗M by Proposition 7. Hence

U ∩ Alg(N ⊗M) ⊆ Rw
N⊗M

and

Rw
N⊗M = {T ∈ Alg(N ⊗M) : TL ⊆ L− ∀L ∈ N ⊗M}.

�

Corollary 12. RN⊗M and Rw
N⊗M have the same rank one operators.���������

. If xy∗ ∈ Rw
N⊗M, it follows from Lemma 10 and Theorem 11 that there

exist L ∈ N ⊗M and x ∈ L and y ∈ L⊥. By Proposition 7, xy∗ ∈ RN⊗M. �

Corollary 13. Rw
N⊗M = Alg(N ⊗M) if and only if at least one of N , M is

continuous.
���������

. Without loss of generality, we suppose that N is continuous. It follows
from Lemma 2 that for any T ∈ Alg(N ⊗M) and N ∈ N , M ∈ M, we have

T (N ⊗M) ⊆ N ⊗M ⊆ (N ⊗ I) ∨ (I ⊗M−) = (N ⊗M)−.

So T ∈ Rw
N⊗M by Theorem 11 and Rw

N⊗M = Alg(N ⊗M).
Conversely, suppose that Rw

N⊗M = Alg(N ⊗M) and N , M are not continuous.

Thus there exist N ∈ N and M ∈ M such that N 6= N− and M 6= M−. Thus we
can choose non-zero vectors x1 ∈ N	N− and x2 ∈ M	M−. By virtue of Lemma 4,

the rank one operator (x1 ⊗ x2)(x1 ⊗ x2)∗ belongs to Alg(N ⊗M) = Rw
N⊗M. But

it follows from Lemma 10 and Theorem 11 that there exists L ∈ N ⊗M such that

x1 ⊗ x2 ∈ L and x1 ⊗ x2 ∈ L⊥. This contradiction shows that at least one of N ,M
is continuous. �
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