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manifold with zero scalar curvature is flat.

Keywords: 4-dimensional anti-Kähler manifold, zero scalar curvature, Weyl curvature,
flat

MSC 2000 : 32J27, 53B30, 53C25, 53C56, 53C80

1. Introduction

An anti-Kähler manifold means a triple (M 2m, J, g) which consists of a smooth
manifold M2m of dimension 2m, an almost complex structure J and an anti-

Hermitian metric g such that 5J = 0 where 5 is the Levi-Civita connection of g.
The metric g is called anti-Hermitian if it satisfies g(JX, JY ) = −g(X, Y ) for all
vector fields X and Y on M2m. Then the metric g has necessarily a neutral signa-

ture (m, m) and M2m is a complex manifold and there exists a holomorphic metric
on M2m [2]. This fact gives us some topological obstructions to an anti-Kähler

manifold, for instance, all its odd Chern numbers vanish because its holomorphic
metric gives us a complex isomorphism between the complex tangent bundle and

its dual; and a compact simply connected Kähler manifold cannot be anti-Kähler
because it does not admit a holomorphic metric. We extend J , g and the Levi-Civita

connection 5 by C-linearity to the complexified tangent bundle TMC = TM ⊗ C.
From now on we will use the same notations J , g and 5 for the complex extended
almost complex structure of J , the complex extended metric of g and the complex
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extended Levi-Civita connection of 5, respectively. We will also use the same term
anti-Kähler manifold for the anti-Kähler manifold considered as a complex manifold
with the complex extended g and J . The purpose of this note is to prove the
following result.

Theorem 1. On a 4-dimensional anti-Kähler manifold, its zero scalar curva-
ture implies that its Weyl curvature vanishes and vice versa. In particular, any

4-dimensional anti-Kähler manifold with zero scalar curvature is flat.

In case of a 4-dimensional Kähler manifold, the above fact does not in general
happen. For instance a K3 surface with the Calabi-Yau metric is not flat while it is a
4-dimensional Kähler manifold with zero scalar curvature. The crucial ingredient in

the proof of this Theorem is the following: Every 4-dimensional anti-Kähler manifold
is Einstein.

2. Properties of anti-Kähler manifolds

Let (M2m, J, g) be a 2m-dimensional anti-Kähler manifold. We extend J , g and

the Levi-Civita connection of g by C-linearity to the complexification of the tangent
bundle TMC = TM ⊗ C. Fix a (real) basis {X1, . . . , Xm, JX1, . . . , JXm} in each
tangent space TxM , then the set {Za, Zā} where Za = Xa − iJXa, Zā = Xa + iJXa

form a basis for each complexified tangent space TxM ⊗C. Unless otherwise stated,

a, b, c, . . . run from 1 to m while A, B, C, . . . run through 1, . . . , m, 1̄, . . . , m̄. Then
JZa = iZa and JZā = −iZā. We set gAB = g(ZA, ZB) = gBA. Then the complex

extended metric g satisfies gab̄ = gb̄a = 0 and gĀB = gAB . Conversely if the complex
extended metric gAB satisfies the above properties then the initial metric must be

anti-Hermitian. It will be customary to write a metric satisfying the above properties
as

(∗) ds2 = gab dza dzb + gāb̄ dzā dzb̄.

In an adapted almost-complex coordinate, xµ = (xa, ya ≡ xm+a), za = xa + iya, one
has gµν dxµ dxν = 2 Re[gab dza dzb], where µ, ν = 1, . . . , 2m, a, b = 1, . . . , m and Re
means real part. We define now the complex Christoffel symbols ΓC

AB by

(∗∗) 5ZAZB = ΓC
ABZC .

Since the complex extended Levi-Civita connection 5 has vanishing torsion, the
complex Christoffel symbols are symmetric, i.e., ΓC

AB = ΓC
BA. In this case the com-

plex structure J is integrable so that the real manifold M 2m inherits the structure
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of a complex manifold. Let us now recall that there is one to one correspondence

between complex manifolds and real manifolds with an integrable complex struc-
ture. This means that there exists an atlas of real, adapted (local) coordinates
(x1, . . . , xm, y1, . . . , ym) such that J(∂/∂xa) = ∂/∂ya, J(∂/∂ya) = −∂/∂xa. We set

Xa = ∂/∂xa, Za = Xa − iJXa = 2∂a, Zā = Xa + iJXa = 2∂ā, where ∂A = ∂/∂zA,
zā = z̄a. It follows that (za) form an atlas of complex (analytic) coordinate charts
on M . By using Christoffel formulas, one gets ΓC

AB = 1
2gCD(ZAgBD + ZBgDA −

ZDgAB) = gCD(∂AgBD +∂BgDA−∂DgAB). The curvature tensor R is then given (in
complex coordinates) by the classical formula RA

BCD = ∂CΓA
BD−∂DΓA

BC+ΓA
ECΓE

BD−
ΓA

EDΓE
BC .

Theorem 2. Let (M2m, J, g) be a 2m-dimensional anti-Kähler manifold and

(z1, . . . , zm) an inherited (local) complex coordinate system. Then
(i) the (complex) Christoffel symbols satisfy ΓC

AB = 0 except for Γc
ab and Γc̄

āb̄
= Γ̄c

ab;

(ii) the components of the complex extended metric gab are holomorphic functions;

(iii) the curvature tensors satisfy RA
BCD = 0 except for Ra

bcd and Rā
b̄c̄d̄

= Ra
bcd.

���������
. From (∗∗) we have ΓC

ĀB
= Γ̄C

AB . Furthermore, since 5J = 0 the
connection satisfies the conditions J(5ZAZB) = 5ZA(JZB) = 5ZA(iZB) = i5ZA

ZB and J(5ZAZB) = 5ZA(JZB) = 5ZA(−iZB) = −i5ZA ZB . This implies Γa
Bc̄ =

Γā
Bc = 0 for any B. In particular, Γa

bc̄ = gaD(∂bgc̄D +∂c̄gDb−∂Dgbc̄) = gad∂c̄gbd = 0.
So ∂c̄gbd = 0. By using the definition of the curvature tensor and the above described
properties of Christoffel symbols, the desired properties of the curvature tensor are

easily verified. This completes the proof. �

The Ricci tensor RAB and the scalar curvature S are respectively given (in complex
coordinate) as follows: by using the Einstein summation convention RAB = RC

ACB

and S = gABRAB = RA
A. Let (M

2m, g, J) be an anti-Kähler manifold, i.e., a complex
manifold of complex dimension m with a holomorphic metric gab(z), a, b = 1, . . . , m

and a real metric gµν(x), µ, ν = 1, . . . , 2m defined by (∗).

Theorem 3. The holomorphic metric gab(z) is Einstein if and only if the real
metric gµν(x) is a solution of the Einstein equations. In other words we have: Rab =
(S/2m)gab if and only if Rµν = (S/2m)gµν .
���������

. By Theorem 2 we have Rab̄ = 0. The (complex) Einstein equations
RAB(g) = rgAB are thus equivalent to the pair of equations

(∗∗∗) Rab(gcd) = rgab

and

(∗∗∗∗) Rāb̄(gc̄d̄) = rgāb̄.
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To get a real solution of Einstein equations from (∗∗∗) and (∗∗∗∗), one uses the real
coordinates (xµ), µ = 1, . . . , 2m on M , i.e., za = xa + ixm+a, a = 1, . . . , m and
writes the real Ricci tensor Rµν as Rµν dxµ dxν = Rab dza dzb + Rāb̄ dzā dzb̄. The
result then follows.

3. The main result

In case of a 4-dimensional Kähler manifold, zero scalar curvature does not neces-
sarily imply flatness. For instance a K3 surface with the Calabi-Yau metric is not

flat while it is a 4-dimensional Kähler manifold with zero scalar curvature. On the
other hand, we prove that on a 4-dimensional anti-Kähler manifold, its zero scalar

curvature implies that its Weyl curvature vanishes and vice versa. In particular any
4-dimensional anti-Kähler manifold with zero scalar curvature is flat. The following

Lemma 1 is a crucial ingredient to prove our main result.

Lemma 1. Every 4-dimensional anti-Kähler manifold is Einstein.
���������

. Let {E1, E2} be a local unitary basis. Then we obtain R11 = R22 =
R1212 and R1̄1̄ = R2̄2̄ = R1̄2̄1̄2̄ = R1212 and RAB = 0 for the other cases because
we have RA

BCD = 0 except for Ra
bcd and Rā

b̄c̄d̄
= Ra

bcd. These facts imply that every

4-dimensional anti-Kähler manifold is Einstein. This completes the proof. �

The Weyl curvature tensor W is written (in complex coordinates) as WABCD =
RABCD + 1

2 (gADRBC − gBDRAC + RADgBC −RBDgAC)− 1
6S(gADgBC − gBDgAC).

Now we can prove the following main result.

Theorem 4. On a 4-dimensional anti-Kähler manifold, its zero scalar curva-
ture implies that its Weyl curvature vanishes and vice versa. In particular, any

4-dimensional anti-Kähler manifold with zero scalar curvature is flat.
���������

. In local complex coordinates (z1, z2) on M4, we have W1212 = R1212 +
1
2 (g12R21−g22R11 +R12g21−R22g11)− 1

6S(g12g21−g22g11) = − 1
6S(g12g21−g22g11).

On the other hand, Lemma 1 and R12̄12̄ = 0 imply that W12̄12̄ = R12̄12̄ + 1
2 (g12̄R2̄1−

g2̄2̄R11+R12̄g2̄1−R2̄2̄g11)− 1
6S(g12̄g2̄1−g2̄2̄g11) = 1

2 (g12̄
1
4Sg2̄1−g2̄2̄

1
4Sg11+ 1

4Sg12̄g2̄1−
1
4Sg2̄2̄g11)− 1

6S(g12̄g2̄1 − g2̄2̄g11) = − 1
12S(g11g2̄2̄). The following results can also be

verified in the same manner: W1̄2̄1̄2̄ = − 1
6S(g1̄2̄g2̄1̄− g2̄2̄g1̄1̄), W1̄21̄2 = − 1

12S(g22g1̄1̄),
W1̄11̄1 = W11̄11̄ = − 1

12S(g11g1̄1̄), W2̄22̄2 = W22̄22̄ = − 1
12S(g22g2̄2̄) and WABCD = 0

for the other cases.

Hence, zero scalar curvature implies that the Weyl curvature vanishes and vice
versa. In particular, zero scalar curvature implies that the curvature tensor must
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vanish because of the Einstein condition and vanishing Weyl curvature [1]. This

completes the proof. �
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