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AN EXAMPLE OF A FIBER IN FIBRATIONS WHOSE

SERRE SPECTRAL SEQUENCES COLLAPSE
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Abstract. We give an example of a space X with the property that every orientable
fibration with the fiber X is rationally totally non-cohomologous to zero, while there exists
a nontrivial derivation of the rational cohomology of X of negative degree.
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1. Introduction

An orientable fibration X
i→ E → B is said to be TNCZ (rationally totally non-

cohomologous to zero) if the induced map in rational cohomology i∗ : H∗(E; Q) →
H∗(X ; Q) is surjective. It is equivalent to the fact that the Serre spectral se-
quence (Er, dr) collapses at the E2-level, i.e., H∗(E; Q) ∼= H∗(B; Q) ⊗ H∗(X ; Q)
as H∗(B; Q)-modules. In this paper everything is considered over the rationals.
A simply connected space X is said to be elliptic if the rank of homotopy

group π∗(X) and the dimension of H∗(X ; Q) are both finite. S. Halperin formulated
a conjecture saying that every orientable fibration with fiber an elliptic space X

with evenly graded cohomology (equivalently, with positive Euler characteristic) is

TNCZ. This conjecture has been neither proved nor disproved yet. It is well-known
that the Halperin conjecture can be equivalently formulated as saying that there are

no negative-degree derivations of H∗(X ; Q) ([5, Theorem A]).
In [4, page 154], M. Markl denoted by (†) the property of certain simply con-

nected spaces X that every orientable fibration with the fiber X is TNCZ. We
construct an explicit example of a space X satisfying (†), while there exists
a nontrivial derivation of H∗(X ; Q) of negative degree. Since the Euler char-
acteristic of X is zero, it does not contradict the Halperin conjecture. This
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suggests to study general spaces satisfying (†), not only those fulfilling the as-
sumptions of the Halperin conjecture. They may often exist even in non-elliptic
spaces.

It is natural to propose the following problem

Problem. Find a necessary and sufficient condition for spaces or models satisfy-
ing (†).

2. Example

Let M(X) = (ΛV, d) be the Sullivan minimal model ([7]) of a simply connected
space X such that dim H∗(X ; Q) < ∞. Let Deri M(X) be the set of Q-derivations
of M(X) decreasing the degree by i with σ(xy) = σ(x)y + (−1)i·deg(x)xσ(y) for
x, y ∈ M(X). The boundary operator δ : Deri M(X) → Deri−1 M(X) is defined
by δ(σ) = d ◦ σ − (−1)iσ ◦ d for σ ∈ Deri M(X). We denote

⊕
i

Deri M(X) by

Der∗ M(X). In the following, Q{∗} means the Q-graded vector space of basis ∗ and
the symbol (p, q) means the derivation which sends p to q and other generators to
zero ([7, page 314]).

Let the Sullivan minimal model of the space X be given by

M(X) = (Λ(x, y, z, a, b, c), d)

with the degrees |x| = 2, |y| = 3, |z| = 3, |a| = 4, |b| = 5, |c| = 7 and the differentials
d(x) = d(y) = 0, d(z) = x2, d(a) = xy, d(b) = xa + yz, d(c) = a2 + 2yb [2, p. 439].

For the rational fibration ([3]) (Λ(x, y, z), d) → M(X) → (Λ(a, b, c), d) with d(a) =
d(b) = 0 and d(c) = a2, the cohomologies of fiber and base are finite dimensional. So

dim H∗(X ; Q) < ∞. The non-zero rank of H i(X ; Q) is 1 for i = 0, 2, 3, 11, 12, 14 and
2 for i = 7. The generators of a Q-algebra are S = {x, y, e = [ya], f = [xb− za], g =
[x2c−xab+ yzb], h = [3xyc+a3]}. It is a Poincaré duality algebra and the products
of elements of S are all trivial except for xh, yg and ef in H14(X ; Q). Note that
X is realized by a 14-dimensional manifold ([7, Theorem 13.2]).

Let Der+ H∗(X ; Q) be the set of derivations decreasing the degrees of H∗(X ; Q),
namely the negative derivations. We see that there is a non-zero derivation (g, y) in
Der8 H∗(X ; Q). Thus Der+ H∗(X ; Q) 6= 0.

998



Lemma 2.1. H+(DerM(X)) = Q{(c, x), (c, 1)} as a vector space.
���������

. Since δ : Der1 M(X) → Der0 M(X) is given by

δ(y, x) = (a, x2) + (b, xz) + 2(c, xb)

δ(a, z) = (a, x2) + (b, xz) + 2(c, za)

δ(z, x) = −(b, xy)

δ(a, y) = (b, xy) + 2(c, ya)

δ(b, a) = (b, xy)− 2(c, ya)

δ(b, x2) = −2(c, x2y)

δ(c, xa) = (c, x2y)

δ(c, x3) = 0,

we have Ker δ = Q{α1 = 2(z, x) + (a, y) + (b, a), β1 = (b, x2) + 2(c, xa), (c, x3)}.
Since δ : Der2 M(X) → Der1 M(X) is given by

δ(x, 1) = −2(z, x)− (a, y)− (b, a) = −α1

δ(a, x) = −(b, x2)− 2(c, xa) = −β1

δ(c, xz) = (c, x3)

δ(b, z) = (b, x2)− 2(c, yz)

δ(c, b) = (c, xa) + (c, yz)

δ(b, y) = 0

δ(c, xy) = 0,

we have H1(Der M(X)) = 0 and Ker δ = Q{α2 = (a, x) + (b, z) + 2(c, b), (b, y),
(c, xy)}. Since δ : Der3 M(X) → Der2 M(X) is given by

δ(y, 1) = (a, x) + (b, z) + 2(c, b) = α2

δ(z, 1) = (b, y)

δ(b, x) = −2(c, xy)

δ(c, a) = (c, xy)

δ(c, x2) = 0,

we have H2(Der M(X)) = 0 and Ker δ = Q{α3 = (b, x) + 2(c, a), (c, x2)}. Since
δ : Der4 M(X) → Der3 M(X) is given by

δ(a, 1) = −(b, x)− 2(c, a) = −α3

δ(c, z) = (c, x2)

δ(c, y) = 0,
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we have H3(Der M(X)) = 0 and Ker δ = Q{(c, y)}. Since δ : Der5 M(X) →
Der4 M(X) is given by

δ(b, 1) = −2(c, y)

δ(c, x) = 0,

we have H4(Der M(X)) = 0 and Ker δ = Q{(c, x)}. We have H5(Der M(X)) =
Q{(c, x)} since Der6 M(X) = 0. Finally, since δ : Der7 M(X) → Der6 M(X) is given
by δ(c, 1) = 0, we have

H+(Der M(X)) = Q{(c, x), (c, 1)}

as a vector space. �

Theorem 2.2. The manifold X satisfies (†).
���������

. By Lemma 2.1, the KS-extension ([3]) of an orientable fibration X
i→

E → B,

(A∗(B), dB) → (A∗(B)⊗ ΛV, D) i∗→ M(X) = (ΛV, d)

is equivalent ([6]) to that given by D(v) = d(v) for v = x, y, z, a, b and D(c) =
d(c)+xb6+b8 for some dB-cocycle bk ∈ Ak(B), the k-dimensional rational polynomial
forms of B ([7]). We see that H∗(E; Q) = H∗(A∗(B) ⊗ ΛV, D) contains as a part
the generators of the Q-algebra

{x, y, e, f, g = g − xzb6 − zb8, h = h− 3zyb6 − 3ab8}.

Then i∗ : H∗(E; Q) → H∗(X ; Q) is identity for x, y, e, f , and i∗(g) = g, i∗(h) = h.
Thus i∗ is surjective. �

Remark 1. Even if M(X̃) is isomorphic to M(X) as a differential (not graded)
algebra, it need not satisfy (†). For example, let X̃ be a space such that the degrees
of generators of M(X̃) are given by |x| = 4, |y| = 3, |z| = 7, |a| = 6, |b| = 9, |c| = 11
and d(x) = d(y) = 0, d(z) = x2, d(a) = xy, d(b) = xa + yz, d(c) = a2 + 2yb. Then
(z, y) ∈ H4(Der M(X̃)) and there is a fibration with a base 5-dimensinal sphere
X̃ → E → S5 whose KS-extension is given by D(v) = d(v) for v = x, y, a, b, c and
D(z) = d(z) + y · s for the fundamental class s of S5. Since D(f) = −ysa = −e · s,
it is not TNCZ.

Remark 2. Let m : H+(Der M(X)) → Der+ H∗(X ; Q) be the natural graded Lie
algebra homomorphism. I. Belegradek and V. Kapovitch searched in [1] examples
that Im(m) = 0 but Der+ H∗(X ; Q) 6= 0. Our example is a response to it. The
auther does not know whether or not the condition “Im(m) = 0” is sufficient for (†)
in general (not only over a sphere).
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