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Abstract. We investigate the structure and properties of TL-sub-semihypergroups, where
T is an arbitrary triangular norm on a given complete lattice L. We study its structure under
the direct product and with respect to the fundamental relation. In particular, we consider
L = [0, 1] and T = min, and investigate the connection between TL-sub-semihypergroups
and the probability space.
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1. Introduction

The theory of algebraic hyperstructures which is a generalization of the concept of
algebraic structures was first introduced by Marty [13]. Now they are widely studied

from the theoretical point of view and for their applications to many subjects of pure
and applied mathematics; for example, semihypergroups are the simplest algebraic

hyperstructures which possess the properties of closure and associativity. They are
very important in the theory of sequential machines, formal language, and in certain

applications. A comprehensive review of the theory of hyperstructures appears in [4]
and [18].

The theory of fuzzy sets was first introduced by Zadeh [20]. Since its inception,
the theory has developed in many directions and found applications in a wide variety

of fields. The study of fuzzy algebraic structures started with the introduction of
the concept of the fuzzy subgroupoid (the subgroup) of a groupoid (a group) in

the pioneering paper of Rosenfeld [16]. In [15], Negoita and Ralescu considered a
generalization of Rosenfeld’s definition in which the unit interval [0, 1] was replaced
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by an appropriate lattice structure. Since then many researchers have been engaged

in extending the concepts and results of abstract algebra to broader framework of
the fuzzy setting, for example see [1], [11], [12], [14], [19]. In 1979, Anthony and
Sherwood [2] redefined the fuzzy subgroup using the statistical triangular norm.

This notion was introduced by Schweizer and Sklar [17] in order to generalize the
ordinary triangle inequality in a metric space to the more general probabilistic metric

space.

In [8], the present author applied the fuzzy set theory in the theory of algebraic

hyperstructures and defined the concept of the fuzzy subhypergroup (and T -fuzzy
subhypergroup) of a hypergroup which is a generalization of the concept of the fuzzy

subgroup. This has been further investigated in [5], [6], [7], [9].

2. Preliminaries

Zadeh [20] introduced the concept of a fuzzy set. Rosenfeld [16] applied this

concept to the theory of groups. Let S be a semigroup and µ : S −→ [0, 1] a fuzzy
set, then µ is called a fuzzy subsemigroup if it satisfies min{µ(x), µ(y)} 6 µ(xy) for
all x, y ∈ S. Since then many papers concerning various fuzzy algebraic structures
have appeared in literature.

A triangular norm (cf. Schweizer and Sklar [17]) is a function T : [0, 1]× [0, 1] −→
[0, 1] satisfying for every x, y, z in [0, 1]:
i) T (x, y) = T (y, x) (commutative),
ii) T (x, y) 6 T (x, z) if y 6 z (monotone in the right factor),

iii) T (x, T (y, z)) = T (T (x, y), z) (associative),
iv) T (x, 1) = x (having 1 as a right identity).

These four axioms are independent in the sense that none of them can be deduced

from the other three. Obviously, the function min defined on [0, 1]× [0, 1] is a t-norm.
Other t-norms which are frequently encountered in the study of probabilistic spaces

are T m and prod defined by T m(a, b) = max{a + b− 1, 0}, prod(a, b) = ab for every
a, b ∈ [0, 1].
Since a triangular norm T is a generalization of the minimum function, Anthony

and Sherwood in [2] replaced the axiom min{µ(x), µ(y)} 6 µ(xy) occuring in the
definition of a fuzzy subgroup by the inequality T (µ(x), µ(y)) 6 µ(xy).
Goguen in [10] generalized the fuzzy subsets ofX to L-subsets, as functions fromX

to a lattice L. From now, in this paper L is a complete lattice (see [3]), i.e., there is
a partial order 6 on L such that, for any S ⊆ L, infimum of S and supremum of S

exist and they will be denoted by
∧

s∈S

{s} and ∨
s∈S

{s}, respectively. In particular, for
any elements a, b ∈ L, inf{a, b} and sup{a, b} will be denoted by a ∧ b and a ∨ b,
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respectively. Also, L is a distributive lattice with a least element 0 and a greatest
element 1. If a, b ∈ L, we write a > b if b 6 a, and a > b if a > b and a 6= b.
Now, we adopt the following definition of a triangular norm on a lattice. Note

that, as a lattice, the real interval [0, 1] is a complete lattice. A binary composition T

on the lattice (L, 6,∨,∧) which contains 0 and 1 is a triangular norm on L if the
four axioms of the above definition are satisfied for all x, y, z ∈ L. Let S and T be

triangular norms on L. If S(x, y) 6 T (x, y) for all x, y ∈ L, one writes S 6 T . The
meet ∧ is a triangular norm on L. Now, let IT = {x ∈ L | T (x, x) = x} which is the
set of all T -idempotent elements of L. Under the partial ordering induced by the
partial ordering 6 of L, IT is a complete lattice with join ∨ and meet T .

We consider L-subsets of X in the sense of Goguen [10]. Accordingly, an L-subset
of X is a mapping of X into L. If L is the unit interval [0, 1] of real numbers,
these are the usual fuzzy subsets of X . For a non-empty set X , let F L(X) = {µ |
µ is an L-subset of X}. Let µ, λ, µi (i ∈ I) be in F L(X). Then the inclusion µ ⊆ λ,

the intersection µ ∩ λ and the union µ ∪ λ are defined in F L(X) as follows: for all
x ∈ X , µ ⊆ λ ⇐⇒ µ(x) 6 λ(x); (µ ∩ λ)(x) = µ(x) ∧ λ(x); (µ ∪ λ)(x) = µ(x) ∨ λ(x).
One defines an arbitrary intersection and an arbitrary union in F L(X) as follows:

(⋂

i∈I

µi

)
(x) =

∧
{µi(x) | i ∈ I},

(⋃

i∈I

µi

)
(x) =

∨
{µi(x) | i ∈ I}.

Let f be a mapping from a set X into a set Y , and let µ ∈ F L(X) and λ ∈ F L(Y ).
Then the fuzzy subsets f(µ) and f−1(λ) are defined by

f(µ)(y) =





∨

x∈f−1(y)

{µ(x)} if f−1(y) 6= ∅,

0 otherwise
for all y ∈ Y

and f−1(λ)(x) = λ(f(x)) for all x ∈ X .

3. Semihypergroups and the fundamental relation

By a hypergroupoid we mean a non-empty set H together with a map ◦ : H ×
H −→ P∗(H) = P(H) − ∅ called a hyperoperation. The image of the pair (x, y)
is denoted by x ◦ y. If A, B ⊆ H then we define A ◦ B =

⋃{a ◦ b | a ∈ A, b ∈ B}.
Notation, x◦B is used for {x}◦B and A◦x for A◦{x}. Generally, the singleton {x}
is identified with its member x. A hypergroupoid (H, ◦) is called a semihypergroup if
x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H . A motivating example is the following: Let

S be a semigroup andK any subsemigroup of S. Then S/K = {xK | x ∈ S} becomes
a semihypergroup where the hyperoperation is defined in the usual manner by x◦y =
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{z | z ∈ x ·y} where x = xK. The associativity condition on a semihypergroup (H, ◦)
implies associativity for sets, that is, (A ◦B) ◦C = A ◦ (B ◦ C) for all A, B, C ⊆ H .
By a sub-semihypergroup of H we mean a non-empty subset K of H such that
K ◦ K ⊆ K. Suppose (H1, ◦) and (H2, ∗) are two semihypergroups. A function
f : H1 −→ H2 is called an inclusion homomorphism if all x, y ∈ H1 satisfy the
condition f(x◦y) ⊆ f(x)∗f(y); f is a strong homomorphism if f(x◦y) = f(x)∗f(y).
A strong homomorphism is called isomorphism if it is bijective.

The most powerful tool for obtainning a stricter structure from a given one is

the quotient out procedure. To use this method in ordinary algebraic domains one
needs special equivalence relations. Let (H, ◦) be a semihypergroup. We define a
relation β∗ as the smallest equivalence relation on H such that the quotientH/β∗ is a
semigroup. In this case β∗ is called the fundamental equivalence relation and H/β∗,

the set of all equivalence classes, is called the fundamental semigroup. This relation
was studied by Corsini [4] concerning hypergroups and by Vougiouklis concerning

weak hyperstructures [18]. The product � in H/β∗ is defined as follows: Suppose
β∗(a) is the equivalence class containing a ∈ H , then the product � on H/β∗ is

β∗(a)�β∗(b) = β∗(c) for all c ∈ β∗(a) ·β∗(b). Let us denote by U the set of all finite
products of elements of H and define a relation β on H as follows: xβy iff {x, y} ⊆ u

for some u ∈ U . Let us denote by β the transitive closure of β. Then we can rewrite
the definition of β on H as follows: aβb if and only if there exist z1, z2, . . . , zn+1 ∈ H

with z1 = a, zn+1 = b and u1, . . . , un ∈ U such that {zi, zi+1} ⊆ ui (i = 1, . . . , n).
According to [18], one can prove that the fundamental relation β∗ is the transitive

closure of the relation β. If we consider the semihypergroup H = {x, y, z, t} where
x ◦ x = {y, z} and a ◦ b = {y, t} for all (a, b) ∈ H ×H with (a, b) 6= (x, x), then it is
easy to see that zβ∗t but not zβt.

Suppose that (H1, ·) and (H2, ∗) are two semihypergroups. We know (H1×H2, ◦)
is a semihypergroup where (x1, y1) ◦ (x2, y2) = {(x, y) | x ∈ x1 · x2, y ∈ y1 ∗ y2}.
If β∗1 , β∗2 and β∗ are fundamental equivalence relations on H1, H2 and H1 × H2,
respectively, then it is easy to see that (x1, y1)β∗(x2, y2) if and only if x1β

∗
1 , y1β

∗
2y2

for all (xi, yi) ∈ H1 ×H2 (i = 1, 2). Also we have (H1 ×H2)/β∗ ∼= H1/β∗1 ×H2/β∗2 .

4. TL-sub-semihypergroups

Definition 4.1. Let T be a triangular norm on a complete lattice (L, 6,∨,∧).
An L-subset µ ∈ F L(H) of the semihypergroup H is a TL-sub-semihypergroup of H
if the following axioms hold:

1) Im(µ) ⊆ IT ,

2) T (µ(x), µ(y)) 6
∧

α∈x◦y
µ(α) for all x, y ∈ H .
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Theorem 4.2. Let T be a triangular norm on the complete lattice (L, 6,∨,∧)
and let µ be an L-subset of H such that Im(µ) ⊆ IT and b =

∨
Im(µ). Then the

following two statements are equivalent:

i) µ is a TL-sub-semihypergroup of H ,

ii) µ−1[a, b] is a sub-semihypergroup of H whenever a ∈ IT and 0 < a 6 b.

�
�������
. (i) =⇒ (ii) Suppose a ∈ IT and 0 < a 6 b. If x, y ∈ µ−1[a, b], then∧

α∈x◦y
µ(α) > T (µ(x), µ(y)) > T (a, a) = a, which implies x ◦ y ⊆ µ−1[a, b], and so

µ−1[a, b] is a sub-semihypergroup of H .
(ii) =⇒ (i) Let x, y ∈ H . Since Im(µ) ⊆ IT , both µ(x) and µ(y) are in IT . We

have

T (T (µ(x), µ(y)), T (µ(x), µ(y))) = T (T (µ(x), T (µ(y), µ(x))), µ(y))

= T (T (µ(x), T (µ(x), µ(y))), µ(y))

= T (T (µ(x), µ(x)), T (µ(y), µ(y)))

= T (µ(x), µ(y)),

and so T (µ(x), µ(y)) ∈ IT . Assume that a = T (µ(x), µ(y)). If a = 0 then
T (µ(x), µ(y)) = 0 6

∧
α∈x◦y

µ(α). So, let 0 < a = T (µ(x), µ(y)) 6 µ(x) ∧ µ(y) 6

µ(x) 6 b. Hence x, y ∈ µ−1[a, b], which implies x ◦ y ⊆ µ−1[a, b]. Therefore
T (µ(x), µ(y)) 6

∧
α∈x◦y

µ(α). �

Corollary 4.3. Let A ⊆ H . Then the characteristic function χA is a TL-sub-

semihypergroup of H if and only if A is a sub-semihypergroup of H .

Corollary 4.4. Let T be a triangular norm on the complete lattice (L, 6,∨,∧),
and let {µi}i∈I be a family of TL-sub-semihypergroups of H . Then

⋂
i∈I

µi is a TL-

sub-semihypergroup of H .

Corollary 4.5. Let f : H1 −→ H2 be a strong homomorphism, µ any TL-sub-

semihypergroup of H1 and λ any TL-sub-semihypergroup of H2. Then f(µ) and
f−1(λ) are TL-sub-semihypergroup of H2 and H1, respectively.

Definition 4.6. Let H1, H2 be semihypergroups and let µ, λ be TL-subsemi-

hypergroups of H1, H2, respectively. The product of µ, λ is defined to be the TL-
subset µ× λ of H1 ×H2 with (µ× λ)(x, y) = T (µ(x), λ(x)) for all (x, y) ∈ H1 ×H2.
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Corollary 4.7. In the above definition, µ × λ is a TL-subsemihypergroup of

H1 ×H2.

�
�������
. Let (x1, x2), (y1, y2) ∈ H1 ×H2. For every (α1, α2) ∈ (x1, x2) ◦ (y1, y2)

we have

(µ× λ)(α1, α2) = T (µ(α1), λ(α2))

> T (T (µ(x1), µ(y1)), T (λ(x2), λ(y2))

= T (T (T (µ(x1), µ(y1)), λ(x2), λ(y2)))

= T (T (λ(x2), T (µ(x1), µ(y1)), λ(y2)))

= T (T (T (λ(x2), µ(x1)), µ(y1), λ(y2)))

= T (λ(y2), T (µ(y1), T (λ(x2), µ(x1)))

= T (T (µ(x1), λ(x2)), T (µ(y1), λ(y2))

= T ((µ× λ)(x1, x2), (µ× λ)(y1, y2)).

Taking the infimum in the complete lattice (L, 6,∨,∧) over all (α1, α2) ∈ (x1, x2) ◦
(y1, y2) we get

∧

(α1,α2)∈(x1,x2)◦(y1,y2)

(µ× λ)(α1, α2) > T ((µ× λ)(x1, x2), (µ× λ)(y1, y2)).

�

Definition 4.8. Let H be a semihypergroup and µ an L-subset of H . The
L-subset µβ∗ on H/β∗ is defined as follows:

µβ∗ : H/β∗ −→ L,

µβ∗(β∗(x)) =
∨

α∈β∗(x)

{µ(a)}.

Theorem 4.9. LetH be a semihypergroup and µ a TL-sub-semihypergroup ofH .

Then µβ∗ is a TL-subsemigroup of H/β∗.

�
�������
. We regard H/β∗ as a semihypergroup (since every semigroup is a

semihypergroup). Since the canonical map ϕ : H −→ H/β∗ is an epimorphism, the

proof is completed by using Corollary 4.5. �
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Theorem 4.10. Let H1 and H2 be two semihypergroups, β∗1 , β
∗
2 and β∗ funda-

mental equivalence relations on H1, H2 and H1×H2, respectively. Let T be a trian-

gular norm on the complete lattice (L, 6,∨,∧). If µ, λ are TL-sub-semihypergroups

of H1, H2, respectively, then (µ× λ)β∗ = µβ∗1 × λβ∗2 .

�
�������
. Using Corollary 4.7, we conclude that µ×λ is a TL-sub-semihypergroup

of H1×H2. Then by Theorem 4.9, (µ×λ)β∗ is a TL-subsemigroup of (H1×H2)/β∗.

Now, let x ∈ H1 and y ∈ H2. Then

(µ× λ)β∗(β∗(x, y)) = ∨ {µ× λ(a, b) | (a, b) ∈ β∗(x, y)}
= ∨ {T (µ(a), λ(b)) | (a, b) ∈ β∗(x, y)}
= ∨ {T (µ(a), λ(b)) | a ∈ β∗1(x), b ∈ β∗2 (y)}
= T (∨{µ(a) | a ∈ β∗1 (x)},∨{λ(b) | b ∈ β∗2(y)})
= T (µβ∗1 (β∗(x), λβ∗2 (β∗2 (y))

= (µβ∗1 × λβ∗2 (β∗1 (x), β∗2 (y)).

�

5. Probabilistic fuzzy semihypergroups

Throughout this section, we consider L = [0, 1].

Definition 5.1. Let µ be a fuzzy set. For every t ∈ [0, 1], the set µt = {x ∈ H |
µ(x) > t} is called the level subset of µ.

Corollary 5.2. Let H be a semihypergroup and µ a fuzzy subset of H . Then

µ is a fuzzy sub-semihypergroup of H if and only if for any t ∈ [0, 1], µt (6= ∅) is a
sub-semihypergroup of H .

In the theory of probability we start with (Ω, A , P ), where Ω is the set of elemen-
tary events and A a σ-algebra of subsets of Ω called events. A probability on A is

defined as a countable additive and nonnegative function P such that P (Ω) = 1.

Definition 5.3. Let H be a semihypergroup, let (Ω, A , P ) be a probability
space, and let R : Ω −→ P(H) be a random set. If for any ω ∈ Ω, R(ω) is a
sub-semihypergroup of H , then the falling shadow S of the random set R, i.e.,

S(x) = P (ω | x ∈ R(ω)), is called a π-fuzzy sub-semihypergroup of H .
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Proposition 5.4. Let S be a π-fuzzy sub-semihypergroup of semihypergroup

(H, ◦). Then inf{S(z) | z ∈ x ◦ y)} > T m(S(x), S(y)) for all x, y ∈ H .

�
�������
. We know R(ω) is a sub-semihypergroup. Now, let x ∈ R(ω) and

y ∈ R(ω), then x ◦ y ⊆ R(ω). So for every z ∈ x ◦ y we have {ω | z ∈ R(ω)} ⊇ {ω |
x ∈ R(ω)} ∩ {ω | y ∈ R(ω)}. Then

S(z) = P (ω | z ∈ R(ω))

> P ({ω | x ∈ R(ω)} ∩ {ω | y ∈ R(ω)})
> P (ω | x ∈ R(ω)) + P (ω | y ∈ R(ω))− P (ω | x ∈ R(ω) or y ∈ R(ω))

> S(x) + S(y)− 1.

Hence inf{S(z) | z ∈ g(x, y)} > T m(S(x), S(y)). �

Theorem 5.5. i) Let H denote the set of all sub-semihypergroups of H . For

each x ∈ H , write Hx = {A | A ∈ H , x ∈ A}. Let (H , σ) be a measurable space
where σ is a σ-algebra that contains {Hx | x ∈ H}, and P a probability measure

on (H , σ). We define µ : H −→ [0, 1] as follows: µ(x) = P (Hx) for x ∈ H . Then

µ is a T m-fuzzy sub-semihypergroup of H .

ii) Suppose that there exists A ∈ σ such that A is a chain with respect to the set

inclusion and P (A ) = 1. Then µ is a fuzzy sub-semihypergroup of H .

�
�������
. i) Suppose x, y ∈ H , then Hz ⊇ Hx ∪Hy for all z ∈ x ◦ y, and so

µ(z) = P (Hz) > P (Hx ∩Hy) > max{P (Hx) + P (Hy)− 1, 0} = T m(µ(x), µ(y)).

Therefore inf{µ(z) | z ∈ x ◦ y} > T m(µ(x), µ(y)).
ii) Since P is a probability measure and P (A ) = 1 we have P (Hx ∩A ) = P (Hx)

for all x ∈ H . Therefore for every z ∈ x ◦ y we have

µ(z) = P (Hz) > P (Hx ∩Hy) = P ((Hx ∩A ) ∩ (Hy ∩A )).

Since A with the set inclusion forms a chain, it follows that either Hx∩A ⊆ Hy∩A

or Hy ∩A ⊆ Hx ∩A . Therefore

µ(z) > min{P (Hx ∩A ), P (Hy ∩A )} = min{µ(x), µ(y)}

and so inf{µ(z) | z ∈ x ◦ y)} > min{µ(x), µ(y)}. �
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Theorem 5.6. Let H be a semihypergroup and µ a fuzzy sub-semihypergroup

of H . Then there exists a probability space (Ω, A , P ) such that for some A ∈ A ,

µ(x) = P (A).
�
�������

. Suppose Ω = H , the set of all sub-semihypergroups of H . We
know ([0, 1]), σ, m) is a probability space, where σ is the σ-algebra consisting of
all Borel subsets of [0, 1] and m is the usual Lebesgue measure on the measur-

able space ([0, 1], σ). Suppose R : [0, 1] −→ H given by t 7−→ µt (µt is a level
sub-semihypergroup of H , Definition 5.1) is a random set. Let A = {A | A ∈
H , R−1(A) ∈ σ} and P = m◦R−1. It is easy to see that (H , A , P ) is a probability
space. If we put Hx = {A | A ∈ H , x ∈ A} then for x ∈ H we have µt ∈ Hx for

all t ∈ [0, µ(x)] and µs 6∈ Hx for all s ∈ (µ(x), 1]. So R−1(Hx) = [0, µ(x)] and hence
Hx ∈ A . Now we get P (Hx) = m ◦R−1(Hx) = m([0, µ(x)]) = µ(x). �
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