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Abstract. Let G be a graph with n vertices, m edges and a vertex degree sequence
(d1, d2, . . . , dn), where d1 > d2 > . . . > dn. The spectral radius and the largest Laplacian
eigenvalue are denoted by %(G) and µ(G), respectively. We determine the graphs with

%(G) =
dn − 1
2

+

√
2m− ndn +

(dn + 1)2

4

and the graphs with dn > 1 and

µ(G) = dn +
1
2
+

s

n∑

i=1

di(di − dn) +
(
dn − 1

2

)2
.

We also present some sharp lower bounds for the Laplacian eigenvalues of a connected
graph.

Keywords: spectral radius, Laplacian eigenvalue, strongly regular graph
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1. Introduction

Let G = (V, E) be a simple finite undirected graph with a vertex set V and
an edge set E. Let δ(G) = δ be the minimal degree of vertices of G. Let A(G) be
the (0, 1) adjacency matrix of G and D(G) the diagonal matrix of vertex degrees. An
eigenvalue of G is an eigenvalue of A(G). The spectral radius %(G) of G is the largest
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eigenvalue of G. It turns out that the Laplacian matrix of G is L(G) = D(G)−A(G)
and L(G) is positive semidefinite and singular. A Laplacian eigenvalue of G is an
eigenvalue of L(G). Denote the Laplacian eigenvalues ofG by µ1(G) > µ2(G) > . . . >
µn−1(G) > µn(G) = 0. We also write µ(G) for µ1(G). It is well known [3] that
µn−1(G) > 0 if and only if G is connected.
Let G be a graph with n vertices, m edges and a vertex degree sequence

(d1, d2, . . . , dn), where d1 > d2 > . . . > dn. We determine the graphs with

%(G) =
dn − 1

2
+

√
2m− ndn +

(dn + 1)2

4

and the graphs with dn > 1 and

µ(G) = dn +
1
2

+

Ì

n∑

i=1

di(di − dn) +
(
dn −

1
2

)2

.

We also present some lower bounds for the Laplacian eigenvalues of a connected
graph.

2. Spectral radius

Recall that a bidegreed graph is a graph with two different vertex degrees. Hong,
Shu and Fang [6] proved

Theorem 1 [6]. Let G be a connected graph with n vertices and m edges and let
δ be the minimal degree of vertices of G. Then

%(G) 6 δ − 1
2

+

√
2m− nδ +

(δ + 1)2

4
,

and equality holds if and only if G is either a regular graph or a bidegreed graph in
which each vertex is of degree either δ or n− 1.

Recently, Nikiforov [10] proved the above inequality independently by a quite dif-
ferent method for a (not necessarily connected) graph, and mentioned that equality
holds for regular graphs, the maximally irregular n-vertex graph which is the com-
plement of Kn−k, and the disjoint union of Kp and Kn−p. Based on Theorem 1, we
can characterize the extreme case for not necessarily connected graphs.

Lemma 1 [6, 10]. For nonnegative integers p and q with 2q 6 p(p − 1) and
0 6 x 6 p− 1, the function f(x) = (x− 1)/2 +

√
2q − px + (1 + x)2/4 is decreasing

with respect to x.

782



Theorem 2. Let G be a graph with n vertices and m edges and let δ be the
minimal degree of vertices of G. Then

(1) %(G) 6 δ − 1
2

+

√
2m− nδ +

(δ + 1)2

4
,

and equality holds if and only if in one component of G each vertex is either of
degree δ or adjacent to all other vertices, and all other components are regular with
degree δ.

��������

. The case that G is connected is proved in [6]. Suppose G is not
connected. Then there is a component G1 of G such that %(G) = %(G1). Suppose
G1 has n1 vertices, m1 edges and a minimal vertex degree δ1. Let G2 be the graph
obtained from G by deleting the component G1. Suppose G2 has n2 vertices and
m2 edges. Then by Theorem 1,

%(G) = %(G1) 6 δ1 − 1
2

+

√
2m1 − n1δ1 +

(δ1 + 1)2

4
.

Note that δ1 > δ and 2m − nδ = (2m1 − n1δ) + (2m2 − n2δ) > 2m1 − n1δ. By
Lemma 1, we have

%(G) 6 δ − 1
2

+

√
2m1 − n1δ +

(δ + 1)2

4
6 δ − 1

2
+

√
2m− nδ +

(δ + 1)2

4
.

Suppose the equality holds in (1). Then all inequalities in the above argument
are equalities. In particular, 2m2 − n2δ = 0, which implies that G2 is regular with
vertex degree δ. We also have δ1 = δ and

%(G1) =
δ1 − 1

2
+

√
2m1 − n1δ1 +

(δ1 + 1)2

4
,

and hence by Theorem 1 we know that G1 is either a regular graph with a vertex
degree δ or n1 − 1 or a bidegreed graph in which each vertex is of a degree either δ

or n1 − 1. So if the equality holds in (1), then G1 is either a regular graph with a
vertex degree δ or n1 − 1 or a bidegreed graph in which each vertex is of a degree
either δ or n1 − 1 and G2 is a regular graph with the vertex degree δ.
Conversely, suppose one component of G, say, G1 is a graph with n1 vertices

and m1 edges, in which each vertex is either of a degree δ or n1 − 1, and all other
components are regular with the vertex degree δ. Since %(G) > δ and 2(m−m1) −
(n− n1)δ = 0, we have by Theorem 1

%(G) = %(G1) =
δ − 1

2
+

√
2m1 − n1δ +

(δ + 1)2

4

=
δ − 1

2
+

√
2m− nδ +

(δ + 1)2

4
.
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Remark. Equality in (1) holds if and only if G is a graph of one of the following
four types:
(i) a regular graph with the vertex degree δ;
(ii) the disjoint union of a complete graph with at least δ +2 vertices and a regular
graph with the vertex degree δ;

(iii) a bidegreed graph in which every vertex is either of a degree δ or n−1 (δ < n−1);
(iv) the disjoint union of a connected bidegreed graph in which every vertex is either

of the degree δ or adjacent to all other vertices, and a regular graph with the
vertex degree δ.

Let G be a graph with n vertices, m edges and let δ be the minimal degree of
vertices of G. Clearly δ > 0. If G has no isolated vertices, then δ > 1. By Lemma 1
and Theorem 1 we have

Corollary 1 [8]. Let G be a graph with n vertices and m edges. Then

%(G) 6 −1
2

+

√
2m +

1
4
,

and equality holds if and only if one component of G is a complete graph with
m edges, and all other components are isolated vertices.

Corollary 2 [5]. Let G be a graph with n vertices and m edges. If G has no
isolated vertices, then

%(G) 6
√

2m− n + 1,

and equality holds if and only if one component of G is a star or a complete graph
with at least 2 vertices, and all other components are K2’s.

3. Largest Laplacian eigenvalue

Recently Shu, Hong and Kai [9], using Theorem 1, provided an upper bound for
the largest Laplacian eigenvalue of a connected graph in terms of the vertex degree
sequence: Let G be a connected graph with a vertex degree sequence (d1, d2, . . . , dn),
where d1 > d2 > . . . > dn. Then

µ(G) 6 dn +
1
2

+

Ì

n∑

i=1

di(di − dn) +
(
dn −

1
2

)2

.
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They also pointed out that the equality holds if G is a regular bipartite graph. It is
mentioned in [1, p. 283] that the equality also holds if G is the star graph. Let LG

be the line graph of a graph G.

Lemma 2 [7, 9]. If G is a connected graph, then µ(G) 6 2+ %(LG), and equality
hols if and only if G is a bipartite graph.

For (not necessarily connected) graphs, we have

Theorem 3. Let G be a graph with a vertex degree sequence (d1, d2, . . . , dn),
where d1 > d2 > . . . > dn > 1. Then

(2) µ(G) 6 dn +
1
2

+

Ì

n∑

i=1

di(di − dn) +
(
dn −

1
2

)2

,

and equality holds if and only if G is a regular graph with at least one bipartite
component, or G is the disjoint union of a star graph and (possibly) K2’s.

��������

. First suppose that dn > 2. If G is connected, then by the proof
in [9, p. 128], we have (2), and equality holds in and only if G is a regular gipartite
graph. Suppose G is not connected. Then there is a component G1 of G such that
µ(G) = µ(G1). Suppose G1 has n1 vertices,m1 edges and a minimal vertex degree δ1.
Suppose LG has n′ vertices, m′ edges and a minimal vertex degree δ′, and LG1 has
n′1 vertices, m

′
1 edges and a minimal vertex degree δ′1. We have

n′ = m =
1
2

n∑

i=1

di, 2m′ =
n∑

i=1

di(di − 1) and δ′ > 2dn − 2.

Note that δ′1 > δ′ > 2dn − 2 and 2m′ − n′δ′ > 2m′
1 − n′1δ

′. By Theorem 1 and
Lemmas 1 and 2,

µ(G) = µ(G1) 6 2 + %(LG1)

6 2 +
δ′1 − 1

2
+

√
2m′

1 − n′1δ
′
1 +

(δ′1 + 1)2

4

6 2 +
δ′ − 1

2
+

√
2m′

1 − n′1δ
′ +

(δ′ + 1)2

4

6 2 +
δ′ − 1

2
+

√
2m′ − n′δ′ +

(δ′ + 1)2

4

6 dn +
1
2

+

Ì

n∑

i=1

di(di − dn) +
(
dn −

1
2

)2

.
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This proves (2).

Suppose the equality holds in (2). Then all inequalities in the above argument are
equalities. In particular, we have

δ′ = 2dn − 2 and 2(m′ −m′
1)− (n′ − n′1)δ

′ = 0.

So any component of LG except LG1 is regular with the vertex degree δ′, and hence
any component H of G except G1 is either a regular graph with the vertex degree dn

or a semi-regular bipartite graph. If H is a semi-regular bipartite graph with p1

independent vertices of degree r1 and p2 independent vertices of degree r2, then
r1 +r2 = 2dn, which implies r1 = r2 = dn since r1, r2 > dn. Hence any component H
of G except G1 is a regular graph with the vertex degree dn. Note that µ(G) =
µ(G1) 6 2 + %(LG1). We also have δ′1 = δ′ = 2dn − 2, which implies the minimal
vertex degree of G1 is dn. Let (d11, d12, . . . , d1n1) be the vertex degree sequence of G1

with d11 > d12 > . . . > d1n1 = dn. Then

µ(G1) = d1n1 +
1
2

+

Ì

n1∑

i=1

d1i(d1i − d1n1) +
(
d1n1 −

1
2

)2

.

It follows that G1 is a regular bipartite graph with the vertex degree dn. Hence G is
regular with the vertex degree dn and a bipartite component G1.

Conversely, suppose G is a regular graph with at least one bipartite component.
Then di = dn = r for all i. For any non-bipartite component H of G, the smallest
eigenvalue of H is > −r, and hence µ(H) < 2r. For any bipartite component G1

of G, µ(G) = 2r. Hence

µ(G) = 2r = dn +
1
2

+

Ì

n∑

i=1

di(di − dn) +
(
dn −

1
2

)2

.

Now suppose that dn = 1 and µ(G) = µ(G1) where G1 is a component of G with
vertex degree sequence (d11, d12, . . . , d1n1), where d11 > d12 > . . . d1n1 . Let m′

1 be
the number of edges of LG1 . Then by Corollary 1,

(3) %(LG1) > −1
2

+

r

2m′
1 +

1
4
,
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and equality holds if and only if one component of LG1 is a complete graph. Note

that 2m′
1 =

n1∑
j=1

d1j(d1j − 1), (dn = 1). Then by Lemma 2,

µ(G) = µ(G1) 6 2 + %(LG1)(4)

6 3
2

+

√
2m′

1 +
1
4

=
3
2

+

Ì

n1∑

j=1

d1j(d1j − 1) +
1
4

6 3
2

+

Ì

n∑

i=1

di(di − 1) +
1
4

= dn +
1
2

+

Ì

n∑

i=1

di(di − dn) + (dn −
1
2
)2.

This proves (2) if dn = 1.
Suppose the equality holds in (2) and dn = 1. Then all inequalities in (3) and

(4) are equalities. Hence G1 is bipartite, LG1 is a complete graph, and the minimal
vertex degree of any component of G is 1. If G is connected, then clearly G is the
star graph. If G is not connected, then one component of G is a star graph, and all
other components are K2’s.
Conversely, it can be easily checked that if one component of G is a star graph,

and all other components (if exist) are K2’s, then the equality holds in (2).
�

4. The k-th Laplacian eigenvalues with k > 2

Various lower bounds for µk (1 6 k 6 n− 1) of a graph G have been established,
some in terms of the order, the degree sequence or the number of spannning trees
of G (see [4], [11]). In the following we suppose that G is a connected graph with
n vertices and m edges. Zhang and Li [11] have recently obtained a lower bound
for µ1(G) in terms of n and m in the form

µ1(G) > 1
n− 1

(
2m +

√
2(n2 − n− 2m)m

n(n− 2)

)
,

where equality holds if and only if G = Kn.
We present lower bounds for µk(G) (2 6 k 6 n− 1) in terms of n and m.
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Lemma 3 [11]. Let G be a graph with n vertices, m edges and a vertex degree
sequence (d1, d2, . . . , dn). Then

n∑

i=1

d2
i 6 nm2

n− 1
,

where equality holds if and only if G = K1,n−1.

The following lemma is well known [2].

Lemma 4. A connected graph with two distinct eigenvalues is complete, a regular
connected graph with three distinct eigenvalues is strongly regular.

Theorem 4. Let G be a connected graph with n vertices and m edges. Write
M(G) = min{(nm− 4m + 2n− 2)m, 2(n2 − n− 2m)m}. Then for 2 6 k 6 n− 1 we
have

(5) µk(G) > 1
n− 1

(
2m−

√
k − 1
n− k

M(G)
)

,

and equality holds for some k with 2 6 k 6 n− 1 if and only if G = Kn.

��������

. Write µk for µk(G) and L for L(G). Let Tr(B) be the trace of a square

matrix B. Denote Nk =
n−1∑
i=k

µi. Note that
n−1∑
i=1

µi =
n∑

i=1

di = 2m. We have

Tr(L2) =
k−1∑

i=1

µ2
i +

n−1∑

i=k

µ2
i > 1

k − 1

(k−1∑

i=1

µi

)2

+
1

n− k

(n−1∑

i=k

µi

)2

(6)

=
(2m−Nk)2

k − 1
+

N2
k

n− k
.

Hence

Nk > 1
n− 1

(
2m(n− k)−

√
(n− k)(k − 1)((n− 1) Tr(L2)− 4m2)

)
.

Since Nk 6 (n− k)µk, we have

(7) µk > 1
n− 1

(
2m−

√
k − 1
n− k

((n− 1) Tr(L2)− 4m2)
)

.

By Lemma 3,

(n− 1) Tr(L2)− 4m2 = (n− 1)
n∑

i=1

di(di + 1)− 4m2 6 (nm− 4m + 2n− 2)m.
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By virtue of the inequality di 6 n− 1 for 1 6 i 6 n we obtain

(n− 1) Tr(L2)− 4m2 6 (n− 1)
n∑

i=1

din− 4m2 = 2(n2 − n− 2m)m.

Hence

(n− 1) Tr(L2)− 4m2 6 M(G)

and (5) follows from (7).
Suppose that the equality in (5) holds for some k0 with 2 6 k0 6 n − 1. Then

(n − 1) Tr(L2) − 4m2 = M(G), and hence
n∑

i=1

d2
i = nm2/(n − 1) or di = n − 1 for

1 6 i 6 n. In the former case, we have G = K1,n−1 by Lemma 3, and hence µk0 = 1,
which is impossible. In the latter case, we have G = Kn.
If G = Kn, then M(G) = 0 and hence the equality in (5) holds for each k with

2 6 k 6 n− 1. �

Note that the bound in (6) is trivial if 2m 6
√

(k − 1)/(n− k)M(G). For a regular
graph we give a finer lower bound for µk(G).

Theorem 5. Let G be a connected regular graph with n vertices and a vertex
degree δ. Then for 2 6 k 6 n− 1 we have

(8) µk(G) > 1
n− 1

(
nδ −

√
k − 1
n− k

nδ(n− δ − 1)

)
,

where equality holds for some k with 2 6 k 6 n − 1 if and only if G is Kn or a
strongly regular graph.

��������

. Note that (n − 1) Tr(L(G)2) − 4m2 = (n − 1)nδ(δ + 1) − n2δ2 =
nd(n− δ − 1). (8) follows from (7).
Suppose that equality in (8) holds for some k0 with 2 6 k0 6 n − 1. Then the

equality in (6) holds for k = k0. It follows that G has only two or three distinct
Laplacian eigenvalues and hence has only two or three distinct eigenvalues. By
Lemma 4, G is Kn or a strongly regular graph.
Conversely, if G = Kn, then equality in (8) holds for each k with 2 6 k 6 n− 1;

if G is a strongly regular graph, then G has three distinct eigenvalues δ, % and σ

(δ > % > σ) with multiplicities 1, r and s, and hence G has three distinct Laplacian
eigenvalues δ − σ, δ − % and 0 with multiplicities s, r and 1, which implies that (6),
(7) and hence (8) become equalities for k = s + 1. �
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