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Abstract. If Y is a subset of the space R™ x R", we call a pair of continuous functions U, V'
Y -compatible, if they map the space R™ into itself and satisfy Uz -Vy > 0, for all (z,y) € Y
with z -y > 0. (Dot denotes inner product.) In this paper a nonlinear two point boundary
value problem for a second order ordinary differential n-dimensional system is investigated,
provided the boundary conditions are given via a pair of compatible mappings. By using
a truncation of the initial equation and restrictions of its domain, Brouwer’s fixed point
theorem is applied to the composition of the consequent mapping with some projections
and a one-parameter family of fixed points Pj is obtained. Then passing to the limits as §
tends to zero the so-obtained accumulation points are solutions of the problem.
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MSC 2000: 34C30, 34C99

1. INTRODUCTION

In this paper we combine continuity properties of the evolution of the second order
ordinary differential equation

(1.1) &= f(t,z,x), te[-o,1+0],

with Brouwer’s fixed point theorem to establish existence of a solution = satisfying
conditions of the form

(1.2) 2(0) = U(z(1)), #(0) = V(&(1)).

Here o is a positive real number, the function f satisfies the well known Hartman’s
condition and U, V are Y-compatible, in the sense that they satisfy Ux - Vy >
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0 for all (z,y) € Y with -y > 0, for a certain Y specified in the text. (Dot
denotes inner product.) For instance, if A is an invertible n X n matrix and B is
any positive multiple of the transpose of the inverse A~!, then the pair A, B is Y-
compatible, with Y being the whole space R™ x R”. The problem under investigation
has been inspired by the periodic problem concerning (1.1), for which the literature is
voluminous, as well as by the ones presented in [3], [9]. Notice that in [9] the existence
of a Sturm-Liouville boundary value problem is investigated, by transforming the
problem into the equivalent form Lz = Gz and then applying Leray-Schauder’s
continuation theorem. This represents one among the three approaches most widely
used in discussing existence of solutions of (1.1) satisfying additional conditions,
such as boundary value conditions, periodicity, cost functionals, etc. The second
is to examine the existence of a fixed point for an integral operator defined on the
family of functions which satisfy some additional conditions. In this case the well-
known shooting method is usually applied. And the third is to show that the set of
solutions contains an element satisfying the conditions. To follow the last approach
several methods have been developed, as, for example (in case of boundary value
conditions), methods based on upper and lower solutions, or degree theory arguments
(see, e.g., [7], [8] and the references therein), or Wazewski’s topological method (see,
e.g., [4]). In occasion we would like to refer to [4, p. 338], where by using Wazewski’s
method it was shown that if in (1.1) the function f satisfies Hartman’s condition for
all t > 0, x and y # 0, then there is a to > 0 such that x(¢) - 2(¢) is nonincreasing
for all ¢ > to, where x(t) is the solution of equation (1.1). In this paper we do use
Hartman’s condition and give more information on the solutions. Also methods based
on the application of fixed point theorems applied to the Poincaré-like mapping give
good results. For a two-point boundary value problem concerning a more general
differential equation in a Hilbert space discussed by the authors in [6] Schauder’s
fixed point theorem is used. Here we have to mention [3], where the existence of
a solution z of a similar problem is discussed with the functions U and V being
replaced by nonsingular n X n-square matrices Qg and @ such that the former
is orthogonal and the pair (Qo, Q) satisfies the inequalities = - QoQ; 'y < 0 and
z-(Qo+ Q7 )y <0 for all vectors z,y € R" with -y < 0. The proof of the results
are based on a technique of [1], where the degree theory is used.

Our purpose here is to provide sufficient conditions for the existence of solutions
of the problem (1.1)—(1.2). Furthermore, our method, which is analytical (Brouwer’s
fixed point theorem is used), permits us to get information on the location of the
solutions. Indeed, under quite natural conditions we are able to obtain C'' bounds
for the solutions.

We denote by I, and I the (so-called time-) intervals [—o,1 + o] and [0, 1] re-
spectively of the real line R. Also we let F, and E be the sets I, x R” x R" and
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I x R x R™, respectively. The Euclidean norm in the space R" is denoted by |- |
and the open ball centered at 0 and having radius » > 0 is denoted by B(0,r).
(We write A, int A and cl A, respectively, for the boundary, interior and closure of
a set A.) The graph space of the solutions of equation (1.1) is the space E, and
Brouwer’s fixed point theorem applies on subsets of the boundary of the set

N(r,q) :==clB(0,r) x c1 B(0,q)

for some positive constants r, g. Also for each 7 € I we let D,(r,q) be the t = 7

cross-section of the set
D(r,q) :==1 x N(r,q),

namely D, (r,q) is the set {7} x N(r,q). If x: I, — R™ is a function and Z is a
subset of the interval I, we use the symbol

G(z|2)

to denote the set
{(t,z(t), 2(t)): t € Z}.

In the sequel we assume that equation (1.1) admits unique solutions and, if z is
the solution passing through a point P € E, which is defined at least on a maximal
(open) interval of the form (ap,Bp) =: Jp, we shall denote it by x(¢; P), t € Jp.

Let 7, ¢ be positive real numbers and consider the set D(r,q). A point (7,&,n) =:
P € 9D(r,q) is a point of egress (with respect to (1.1) and D(r,q)), if there is a
number ¢ > 0 such that

G(z(; P)|(r —e,7)) Cint D(r, q).
Furthermore, if for some & > 0 we have
G(z(; P)|(r,7+¢)) € E; — D(r,q),

then we say that P is a point of strict egress, (see, e.g., [3]). By the basic theorem of
existence of solutions it follows that any point of the set D1(r, ¢) is a point of strict
egress. The sets of all egress and all strict egress points of the set D(r, q) are usually
denoted by D(r,q)¢ and D(r,q)%¢, respectively.

A point (1,&,m) =: P € D(r,q)¢ is a consequent point of Py := (70,%0,M0), if
70 < 7, x(1; Py) = P and

G(z(-; Py)|(m0,7)) C int D(r, q).
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It is clear that if such a point P exists, then it is unique. The consequent point of Py
is denoted by C(Pp) and the so defined mapping C: Py — C(P,) is the consequent
mapping.

Now we borrow from [5] the following result (after making the necessary adapta-
tions):

Lemma 1.1. If P is an interior point of D, (r,q) and the solution z(-; P) egresses
strictly from D(r,q), then the consequent mapping C' is continuous at P.

A point (7,&,7n) =: P on the boundary of the set D(r, ¢) is a point of ingress (with
respect to (1.1)), if there is a number € > 0 such that

G(z(; P)|(T —¢&,7)) € E; —clD(r,q).
Furthermore, if for some £ > 0 we have
G(x(:; P)|(7,7 4 €)) € int D(r, q),

then we say that P is a point of strict ingress. Again, by the theorem of existence
of solutions it follows that any point of the set Dy(r,q) is a point of strict ingress.

2. THE MAIN RESULTS
Consider a continuous function f: E, — R" satisfying the following conditions:

(f1) Tt guarantees uniqueness of the solutions of equation (1.1).
(f2) The function

g(r,q) ==sup{|f(t,z,y)|: t €I, |z| <7, |y <q}, r,¢>0

is 0(q?) as ¢ — +oo0, for each r > 0 fixed.
(f3) There is a real number R > 0 such that

AR < g(R,q),
for all ¢ > 0 and moreover Hartman’s condition
€ - f(t,l',y) + |y|2 >0

holds for all (¢,x,y) € E, with -y =0 and |z| = R.
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Lemma 2.1. If the above conditions are satisfied, then the following assertions
hold:
(a) The infimum i of the set A(R) of all real numbers k > 0 with the property
that, if ¢ > k, then ¢> > 4Rg(R, q) is a finite real number.
We let K be any fixed real number greater than ip.
(b) If P := (0,&,n) is a point such that the solution x(-; P) defined on Jp containing
the interval I satisfies
|z(t; P)| < R, teJp,
then
|z(t; P)| < Kgr, te€Jp.

Proof. (a) Assume that the set A(R) is empty. Then there is a sequence (g)

tending to +oo such that

g(R, qr) S 1
q,% 4R’

contradicting (£2).
(b) We let J be a compact subinterval of Jp containing I and set

q :=sup{|z(t; P)|: t € Jp}.

Also we define
s:=2t, y(s):=z(t;P), te Jp.

Then ¢ is finite and the new function y satisfies the equation

4jj(s) = f(%,y(s),Qy’(s)), se{2t: tep)=2Jp.

Therefore we have

and

for all s € 2Jp, where R < v because of (f3). Now, since the interval 2.Jp has length
at least equal to 2, we apply Lemma 2 of [2, p. 139] to conclude that

l9(s)|” < Rg(R,q)

for all s € 2Jp. This implies that ¢?> < 4Rg(R, q) and, so, from (a) we get ¢ < ig <
Kpg. This implies statement (b).
Next we let
Hp:=Kgp+g(R,Kp).

Our main results are given in the following theorem:
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Theorem 2.1. Assume that f is a function satisfying the conditions (f1)—(f3)
and consider a direct product function W := U ® V, where

(a) U maps the closed ball ¢l B(0, R) into itself continuously, it is invertible, it has
no fixed point on the boundary of the ball B(0, R) and there is a éy € (0, R)
such that for all § € (0,dy) the inequality |U(u)| < R — 0 holds for all w with
lul| < R —6;

(b) V maps the closed ball cl B(0, Kg) into itself continuously, and there is a dy €
(0, KRr) such that for all § € (0,dv) the inequality |V (v)| < Kr — ¢ holds for
all v with |v| < Hg — §;

(¢) the pair U,V is Y-compatible, where Y := {(z,y): =,y € R, |z| = R, |y|] <
Hp} (see the introduction).

Then there is a solution x(-; Py) of the problem (1.1)—(1.2) for a certain point
Py € Do(R, KR) defined at least on the interval I. Moreover, this solution satisfies
the inequality |x(t; Py)| < R for all t € I, thus, by Lemma 2.1, |&(t; Py)| < Kg.

Proof. Consider a function f(¢,z,y), (t,x,y) € E, as above and define a new
function
F: E, —R"

by

F(t,x,y) := f(t,min{l, %}x,min {1, E—T}y)

for all (¢t,z,y) € E,. On the set D(R, Kg) the function F is identically equal to f
and satisfies the inequality

(2.1) [F(t,z,y)| < g(R, KR)
for all (¢,z,y) € E,. We formulate the ordinary differential equation
(2.2) i=F(t i), te kB,

From (2.1) it follows that solutions of (2.2) with initial values in Do(R, Kg) are
defined on the whole interval I, and are unique. Moreover, any solution x of the
differential equation (2.2) with G(z|I) in D(R, Kg) is also a solution of the original
equation (1.1).

Let ¢ > 0 be a sufficiently small fixed number with § < min{dy,dyv } and consider
a point Py := (0,£,m) in Do(R — 0, Kr — ) C Do(R,Hg). As we have remarked
earlier, such a point is a strict ingress point of the set D(R, Hg). Since D(R, Hg)
is a compact subset of F,, by the extendability property of the solution z(-; Pp)
there is a time s > 0 such that the point P := (s, z(s; Py), Z(s; Py)) is a egress point
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of the set D(R, Hg) and thus it belongs to the boundary. We can assume that
s is the smallest time with this property. It is clear that s > 0, since in a small
neighborhood J of 0 the set G(z(+; Py)|J) lies in the interior of I, x N(R, Hr). Then
we must have

G(z|(0,s)) Cint D(R, Hg),

and either

(2.3) lo(s; Po)l < R, |&(s; Po)| = H,
or

(2.4) |x(s; Po)| = R, |2(s;Py)| < Hg.

We claim that the point P is a strict egress point of the set D(R, Hg), thus the
consequent mapping is well defined and (by Lemma 1.1) it is continuous at Py. This
fact is obvious in case s = 1, so we discuss the case s < 1.

Assume that the relations (2.3) hold. From inequality (2.1) and equation (2.2) it
follows that for each ¢ € [0, s] we have

[#(t)] < g(R, Kr),

hence
|2(s)] < [#(0)] + sg(R, Kr) < Kr + sg(R, Kr) < Hg,

a contradiction. Recall that ©(0) = n € c1B(0, Kr — J). Therefore only the rela-
tions (2.4) hold. Define the function

1
mpy () = 5l o) = R, tel,,

and observe that mp,(s) = 0. It is clear that, if mp,(s) > 0, then P € D(R, Hgr)*°.
Assume that mp,(s) = 0, hence z(s; Py) - #(s; Py) = 0. Then (£3) implies that

1np, (s) = x(s; Po) - f(s,2(s; Po), &(s; Po)) + |d(s; Po)|* > 0,

which guarantees that P € D(R, Hg)®*¢. Our claim is proved.
Next consider the continuous functions J, @, M defined by

J(u,v) :=(0,u,v), Q(t,u,v):= (u,v),

and

R—éu HR—é)
R Hp

M (u,v) := (
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for all u,v € R™ and t € I. For the direct product function W := U ® V observe that

‘U(R;5x(s; (0,,5,77)))‘ <R_6

and

‘V<HRH; 51’7(3; (0,5777)))‘ < Kp—0.

Consequently, the composition

T=WoMoQoColJ

maps the generalized interval V5 := N(R — 0, Kr — 0) into itself continuously. Now
we apply Brouwer’s fixed point theorem and get the existence of a point

(us,vs) € Vs
such that
(2.5) U (E= (5 0, s, 5))) = s
and
(2.6) V<HRH; 65@(8; (0, us, Ua))) = Vs

for some s5 € I. Assume that s; < 1. Then
(2.7) |z(ss; (0, us,vs))| = R.

Suppose that this relation holds for a sequence of §’s converging to zero. Then, since
the interval [0,1] and the product N (R, Hr) are compact sets, it follows from the
continuity of z(¢, P) and &(t, P) on the initial point P, uniformly for all ¢, that there
is a time s’ € [0,1] and a pair (u,v) € N(R, Hg) such that

(2.8) U(x(s';(0,u,v))) =u
and
V(2(s'); (0,u,v)) = v.

If s =0, then z(s’;(0,u,v)) = u and (2.8) gives that u is a fixed point of U on
the boundary of the ball B(0, R), contradicting our hypothesis. Thus we must have
s’ > 0. If |u| < R, then it follows, from (a) that

R = |z(s"; (0,u,0))| = U™ (u)| < sup |[UT ()] < Jul <R,

lu/|<ul
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a contradiction. Let us, finally, assume that |u| = R. Since
G(z(+; (0, us,vs))|(0,85)) Cint D(R, Hg),
from continuity we get
(2.9) G(x(5(0,u,)|[0,5']) € D(R, Hpg).
On the other hand, we have
(555 (0, us, vs)) - #(ss3 (0, us,v5)) 2 0

and so z(s’; (0,u,v)) - z(s’; (0,u,v)) > 0. Hence by the compatibility of the functions
U,V we get
u-v=U(z(s;(0,u,v))) - V(2(s'; (0,u,v))) = 0.

This inequality combined with the condition (f3) means that the point (u,v) is a
strict egress point, so (2.9) cannot be true.

The previous arguments show that in (2.7) we have s = 1 for all small ¢’s. Now,
from (2.5), (2.6), the compactness of the set Do(R, Kg), the continuity of the func-
tion W and the continuity of the solutions with respect to the initial values, it follows
that there exists a point (0,u,v) € Do(R, Kr) such that (u,v) satisfies the relation

(U (2(15 0, u, ))), V(&(1; (0, u, v)))) = (u, v),

which is the same as (1.2). Also, for each ¢ the solution z(:; (0, us,vs)) of equa-
tion (2.2) egresses strictly from D(R, Hg) at s = 1. Thus we have

|z(t; (0, us,vs))| < R

for all ¢t € I. Therefore
lz(t; (0,u,v))| < R

for all ¢t € I and so, from Lemma 2.1,
|Z(t; (0,u,v))| < Kg

for all ¢ € I. Hence |v| < K and, so, z(+; (0, u, v)) is also a solution of equation (1.1).
The proof of the theorem is complete. O
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Some Applications
(a) Consider Van der Pol’s equation

i+ F(z)t +G(z) =0,
where the continuous functions F'; G are such that

limsupr~! sup |G(x)| >4

rodooJal<r

and
lim sup zG(z) < 0.

|#]—+o0

Also consider two functions U, V defined by U(z) := —x and V(z) := ¢(z), where
¢ is a bounded continuous real valued function such that zp(x) < 0 for all large |z|.
In this case the function g(r, q) is defined by

g(r,q) = Fi(r)q + G1(r),

where
Fi(r) =: sup |F(z)|
|z|<r
and

Gi(r) =: sup |G(x)].

lz|<r

Choose a certain R > 0 with G1(R) > 4R, RG(R) < 0 and £Rp(+R) < 0. In this
case our theorem above applies where K is any number such that

Kr > 2RFi(R) + 2R\/F2(R) + G1(R)

and it guarantees the existence of a solution x of Van der Pol’s equation such that

(b) Consider the differential equation
(2.10) &= Ax+ |27 (z - 2)b(t), t€]0,1]

where 0 < v < 1, the matrix A is strictly positive definite with |A| =: a > 4 and the
vector valued continuous function b(-) has sup-norm equal to |b|. Assume that we are
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interested in solutions of equation (2.10) satisfying the boundary conditions (1.2),
where the functions U, V are defined by

and
U(u) :=—u, |u]=p
for some p > % and also
V(v) := —kuv,
where e is the vector (1,0,...,0) and k is any positive real number such that

k< K[K +aR+ |b|RK'™] ™1

with R := 2p and
K = [4(a + |b])RHV =),

In this case the function g is given by

g9(r,q) == ar +rlblg"*7.

Thus the conditions (f1)—(f2) are satisfied. Also observe that, whenever ¢ > K, then

q®> > 4Rg(R, q), so we can set K := K.

The conclusion is that there is a (nonzero) solution z defined on [0, 1] such that
!El(O) + .1‘1(1) =0

and

2;(0) +2;(1) =0

for all indices j = 2,3,...,n, as well as

#(0) + ki(1) = 0.
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