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Czechoslovak Mathematical Journal, 55 (130) (2005), 543–544

CORRECTION TO THE PAPER

“EXISTENCE OF SOLUTIONS FOR THE DIRICHLET PROBLEM

WITH SUPERLINEAR NONLINEARITIES”*
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,  Lódź

5. Example

Consider the problem

x′′(t) + Wx(t, x(t)) = 0 a.e. in [0, T ],(5.1)

x(0) = 0 = x(T )

where W (t, ·), t ∈ [0, T ], is a convex, Frechet continuously differentiable function,
W (·, x) is a measurable function for x ∈ � n ,Wx(·, 0) is continuous in [0, T ]. Moreover
W satisfies the following growth condition:

there exist 0 < β1, 0 < β2, q1 > 1, q > 2, k1 6 0 6 k2 such that for t ∈ [0, T ] and
x ∈ � n

k1 +
β1

q1
|x|q1 6 W (t, x) 6 β2

q
|x|q + k2.

In the notation of the paper we have L(t, x′) = 1
2 |x′|2 and V (t, x) = W (t, x). It is

easily seen that assumptions (H) and (H1) are satisfied. Therefore what we have to
do is to construct a nonempty set X defined in Section 1. To this effect let us take

any k > 0 and let X denote the same as in Section 1 with the new L and V . We
assume the hypotheses

(H1′) T 2
(
β

1
q−1
2

( q

q − 1

)
(k + k2 − k1) + 1

)q−1

6 k.

(H2) Wx(0, 0) 6= 0, or Wx(T, 0) 6= 0.

We shall show that the set

X̃ =
{
v ∈ X : 0 < ‖v‖L∞ 6 k, v′ ∈ A

}
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is the set X which we are looking for. That means: we must prove that for each

function x ∈ X̃ the function

(5.2) w : t →
∫ t

0

∫ s

0

Wx(τ, x(τ))dτ + at = w0(t) + at

belongs to X̃ for a = −T−1w0(T ). We easily observe that w ∈ A0,0 and w′ is abso-

lutely continuous. Note, that in view of our assumption on W we get the estimation

‖Wx(·, x(·))‖L∞ 6
(

β
1

q−1
2

( q

q − 1

)(
‖x(·)‖L∞ + k2 − k1

)
+ 1

)q−1

.

Therefore

‖w0‖L∞ 6 T 2

2

(
β

1
q−1
2

( q

q − 1

)(
‖x(·)‖L∞ + k2 − k1

)
+ 1

)q−1

.

Hence, as x ∈ X̃, we have

‖w0‖L∞ 6 T 2

2

(
β

1
q−1
2

( q

q − 1

)
(k + k2 − k1) + 1

)q−1

and, by (H1′), ‖w‖L∞ 6 ‖w0‖L∞ + |w0(T )| 6 k. Moreover, by (H2) w is not identi-
cally zero. Actually, if w(t) ≡ 0 for some x ∈ X thenWx(t, x(t)) = 0 for all t ∈ [0, T ].
Taking into account (H2), the latter equality is in contrary to boundary values of x
(x(0) = 0 and x(T ) = 0). Thus

(5.3) 0 < ‖w‖L∞ 6 k.

It is obvious that if we take k3 sufficiently large then
∫ T

0

W (t, z(t)) dt 6 1
4

∫ T

0

∣∣z′(t)
∣∣2 dt + k3

for all z satisfying (5.3). Therefore w ∈ X̃, and we can put X = X̃. It is also clear

that the set X = X̃ is nonempty. Thus all assumptions of Theorem 4.2 are satisfied,
so we come to the following theorem with L = 1

2 |x′|2.

Theorem 5.1. There exists a pair (x, p + dp) which is a solution to (5.1) such
that x 6= 0 and

J(x) = min
x∈X

J(x) = min
p∈Xd

max
d∈ � n

JD(p, d) = JD(p, dp).

The authors would like to thank to Prof. S. Walczak for pointing that the example

needs correction.

544


		webmaster@dml.cz
	2020-07-03T15:24:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




