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Abstract. We initiate the study of signed majority total domination in graphs. Let
G = (V, E) be a simple graph. For any real valued function f : V → � and S ⊆ V , let
f(S) =

∑
v∈S

f(v). A signed majority total dominating function is a function f : V → {−1, 1}

such that f(N(v)) > 1 for at least a half of the vertices v ∈ V . The signed majority total
domination number of a graph G is γ tmaj(G) = min{f(V ) : f is a signed majority total
dominating function on G}. We research some properties of the signed majority total
domination number of a graph G and obtain a few lower bounds of γ tmaj(G).

Keywords: signed majority total dominating function, signed majority total domination
number

MSC 2000 : 05C35

1. Introduction

LetG = (V, E) be a simple graph and v a vertex in V . The open neighborhood of v,
denoted by N(v), is the set of vertices adjacent to v, i.e., N(v) = {u ∈ V : uv ∈ E}.
The closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of v in G is
dG(v) = |N(v)|, a vertex v is called an even vertex if dG(v) is even. ∆(G) and δ(G)
denote the maximum degree and the minimum degree of the vertices of G. When
no ambiguity can occur, we often write simply d(v), δ, ∆ instead of dG(v), δ(G) and
∆(G), respectively. Let S ⊆ V , G[S] denote the subgraph of G induced by S.
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2. Definition of signed majority total domination

For any real-valued function f : V → � and S ⊆ V , let f(S) =
∑
v∈S

f(v).

The weight of f is defined as f(V ). A function f : V → {−1, 1} is said to
be a majority dominating function on G if f(N [v]) > 1 for at least half the
vertices v ∈ V . The majority domination number is γmaj(G) = min{f(V ) :
f is a majority dominating function on G}.
A signed total dominating function (STDF) of G is defined in [1] as a function

f : V → {−1, 1}, such that f(N(v)) > 1 for every v ∈ V . A STDF f is minimal

if no g < f is also a STDF on G. The signed total domination number γst(G) =
min{f(V ) : f is a STDF on G}.
In this paper we initiate the study of majority domination in graphs. A func-

tion f : V → {−1, 1} is said to be a signed majority total dominating function
(SMTDF) on G if f(N [v]) > 1 for at least a half of the vertices v ∈ V . The

signed majority total domination number of G denoted by γ t
maj(G), is equal to

min{f(V ) : f is a SMTDF on G}. A SMTDF f is minimal if no g < f is a SMTDF

on G.

To ensure existence of SMTDF, we henceforth restrict our attention to graphs
without isolated vertices.

The motivation for studying this variation of the signed majority total domination
number is rich and varied. For example, by assigning the value −1 or +1 to the
vertices of a graph we can model networks of people or organizations in which global

decisions must be made (e.g., positive or negative responses or preferences). We
assume that each individual has one vote and that each individual has an initial

opinion. We assign +1 to vertices (individuals) which have a positive opinion and
−1 to vertices which have a negative opinion. We also assume, however, that an
individual’s vote is affected by the opinions of neighboring individuals. In particular,
each individual gives equal weight to the opinions of the neighboring individuals

(thus individuals of high degree have greater ‘influence’). A voter votes ‘aye’ if there
are more vertices in its open neighborhood with positive opinion than those with

negative opinion, otherwise the vote is ‘nay’. We seek an assignment of opinions that
guarantee a majority decision, that is, for which at least a half of the vertices vote

aye. We call such an assignment of opinions a positive majority assignment. Among
all positive majority assignments of opinions, we are interested primarily in the

minimum number of vertices (individuals) who have a positive opinion. The signed
majority total domination number is the minimum possible sum of all opinions, −1
for a negative opinion, +1 for a positive opinion, in a positive majority assignment
of opinions. The signed majority total domination number represents, therefore, the
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minimum number of individuals which can have positive opinions and in voting so

force at least a half of individuals to vote aye.

Theorem 1. A signed majority total dominating function f of a graph G is

minimal only if for every vertex v ∈ V with f(v) = 1 there exists a vertex u ∈ N(v)
with f(N(u)) ∈ {1, 2}.
���������

. Let f be a minimal SMTDF and assume that there is a vertex v such
that f(v) = 1 and f(N(u)) /∈ {1, 2} for any u ∈ N(v). Define a new function g : V →
{−1, 1} by g(v) = −1 and g(w) = f(w) for all w 6= v. Then for all u ∈ N(v) either
f(N(u)) 6 0, in which case g(N(u)) = f(N(u))− 2 6 0− 2 = −2, or f(N(u)) > 3,
in which case g(N(u)) > 1. For w /∈ N(v) we have g(N(w)) = f(N(w)). Thus g is
a signed majority total dominating function. Since g < f , the minimality of f is

contradicted. �

3. Graphs with positive or negative signed majority total

domination numbers

Obviously, every signed total dominating function is also a signed majority total
dominating function. Thus we have the following result.

Theorem 2. For any graph G we have γ t
maj(G) 6 γst(G).

Theorem 3. For any complete graph Kn (n > 2) we have

γ t
maj(Kn) =

{
3 for n odd,

0 for n even.

���������
. Let Kn = (V, E). Let f be a minimum SMTDF on Kn. Then there

exists at least one vertex v ∈ V , f(N(v)) > 1. Let P and M be the sets of vertices
inKn that are assigned the values+1 and −1 under f , respectively. Then |P |+|M | =
n and |P | − |M | = f(V ) = f(N(v)) + f(v) > 1− 1 = 0. It follows that |P | > dn/2e
and |M | 6 bn/2c. Hence γ t

maj(Kn) = |P | − |M | > dn/2e − bn/2c.
Case 1 : If n is even, then γ t

maj(Kn) > 0. Define g : V → {−1, 1} by

g(x) =

{
1 for n/2 vertices x in Kn,

−1 otherwise.

Then g is a SMTDF of Kn of zero weight. So γ t
maj(Kn) 6 0. Consequently,

γ t
maj(Kn) = 0.
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Case 2 : If n is odd, then γ t
maj(Kn) = |P | − |M | > 1, i.e., |P | > |M | + 1. Then

there exists one vertex u ∈ P such that f(N(u)) > 1. Thus |P | − |M | = f(V ) =
f(N(u)) + f(u) > 2 and |P | + |M | = n. It follows that |P | > d(n + 2)/2e and
|M | 6 b(n − 2)/2c. Hence γ t

maj(Kn) = |P | − |M | > d(n + 2)/2e − b(n − 2)/2c = 3.
Define g : V → {−1, 1} by

g(x) =

{
1 for d(n + 2)/2e vertices x in Kn,

−1 otherwise.

Then g is a SMTDF of Kn of weight 3. So γ t
maj(Kn) 6 3. Consequently,

γ t
maj(Kn) = 3. �

Theorem 4. For any complete bipartite graph Km,n (n > m > 1),

γ t
maj(Km,n) =

{
1− n for m odd,

2− n for m even.

���������
. Let f be a minimum SMTDF on Km,n. Let U and W be the partite

sets of Km,n with |U | = m and |W | = n. Let U+ and U− be the sets of vertices

in U that are assigned the value +1 and −1 under f , respectively. Let W + and W−

be defined analogously. Then γ t
maj(Km,n) = f(V ) = |U+| − |U−| + |W+| − |W−|.

If m = n, then, by relabelling the sets U and W if necessary, we may assume that
f(N(w)) > 1 for at least one vertex w in W . If m < n, then, since at least a half

of the open neighborhood sums under f are positive, it is evident that f(N(w)) > 1
for at least one vertex w in W . Hence, f(U) = f(N(w)) > 1.
We now show that W = W−, that is to say, each vertex of W is assigned the

value −1 under f . Assume the contrary, i.e., there exists at least one vertex v ∈ W +.

Let g : V → {−1, 1} be defined as follows: g(v) = −1 and g(u) = f(u) for u 6= v.
Then g(N(w)) = g(U) > 1 for each w ∈ W . Since |W | > |U |, it follows that g is a

SMTDF on Km,n of weight less than that of f , a contradiction. Therefore, we have
W = W−.

Since |U+| − |U−| = f(U) > 1 and m = |U+| + |U−|, it follows that |U+| >
d(m + 1)/2e and |U−| 6 b(m− 1)/2c. Hence, γ t

maj(Km,n) = |U+| − |U−|+ |W+| −
|W−| > d(m+1)/2e−b(m−1)/2c−n. However, if we assign to d(m+1)/2e vertices
of U the value +1, and to the remaining n + b(m − 1)/2c in Km,n the value −1,
then we produce a SMTDF of Km,n of weight d(m + 1)/2e − b(m − 1)/2c − n.

Thus γ t
maj(Km,n) 6 d(m + 1)/2e − b(m − 1)/2c − n. Consequently, γ t

maj(Km,n) =
d(m + 1)/2e − b(m− 1)/2c − n. �
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Corollary 1. For any positive integer k, there exists a complete bipartite graph G

with γ t
maj(G) 6 −k.

Theorem 5. For any path Pn (n > 2) we have

γ t
maj(Pn) =

{
−1 for n odd,

0 for n even.

���������
. Let Pn : v1, v2, . . . vn be a path on n vertices, and let f be a mini-

mum SMTDF on Pn. Let Cf = {v ∈ Pn : f(N(v)) > 1}, P = {v ∈ Pn : f(v) = 1}
and M = {v ∈ Pn : f(v) = −1}, then |Cf | > dn/2e. Since |N(v)| ∈ {1, 2} for any
v ∈ Cf , we have N(v) ⊆ P . It follows that |P | > bn/2c and |M | 6 dn/2e. Hence,
γ t
maj(Pn) > bn/2c − dn/2e.
On the other hand, define a function g : V → {−1, 1} by

g(vi) =

{
−1 for i odd,

1 for i even.

Then g is a SMTDF of Pn of weight bn/2c−dn/2e. So γ t
maj(Pn) 6 bn/2c−dn/2e.

Consequently, γ t
maj(Pn) = bn/2c − dn/2e. The result now follows. �

Theorem 6. For any cycle Cn (n > 3) we have

γ t
maj(Cn) =

{
3 for n odd,

0 for n even.

���������
. Let Cn : v1, v2, . . . vn be a cycle on n vertices and f a minimum SMTDF

on Cn. Let Cf = {v ∈ Cn : f(N(v)) > 1}, P = {v ∈ Cn : f(v) = 1} and M = {v ∈
Cn : f(v) = −1}. If n is even, then similarly to the proof of Theorem 5 we have

γ t
maj(Cn) = 0. Therefore, in the following proof we assume that n is odd. Then
|Cf | > (n + 1)/2. Since |N(v)| = 2 for every v ∈ Cf , we have N(v) ⊆ P . It follows

that |P | > (n + 1)/2 and |M | 6 (n− 1)/2. Then there exists at least one vertex in
P ∩ Cf , i.e., there exist at least three consecutive vertices in Cn[P ].
Case 1 : M = ∅.
In this case, P = n > 3, |M | = 0. So γ t

maj(Cn) = |P | − |M | = n > 3.
Case 2 : Every vertex is an isolated vertex in Cn[M ].
Since there exist at least three consecutive vertices in Cn[P ], we have |P | > 3 +

(n− 3)/2 = (n + 3)/2. Thus |M | 6 (n− 3)/2. So γ t
maj(Cn) = |P | − |M | > 3.

Case 3 : There exist some vertices which are not the isolated vertices in Cn[M ].
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Without loss of generality, we can assume that f(v1) = f(v2) = . . . = f(vk) = −1,
f(vk+1) = f(vn) = 1 (k > 2). Let U = Cn − {v1, v2, . . . , vk}. Then Cf ⊆ U .
Note that

∑
v∈P

dCn[U ](v) > 2|Cf | > 2 × (n + 1)/2 = n + 1. Since dCn[U ](vk+1) =

dCn[U ](vn) = 1, we have |P | > 2 + (n− 1)/2 = (n + 3)/2. Thus |M | 6 (n− 3)/2. So
γ t
maj(Cn) = |P | − |M | > 3.
On the other hand, define a function g : V → {−1, 1} by

g(vi) =

{
1 for i = 2 or i odd,

−1 for i > 4 and i even.

Then g is a SMTDF of Cn of weight 3. So γ t
maj(Cn) 6 3. Consequently,

γ t
maj(Cn) = 3. The result now follows. �

In general, γ t
maj and γmaj are not comparable. On the one hand, γ t

maj(Km,n) =
1−n < γmaj(Km,n) = 3−n for m odd (1 < m 6 n), on the other hand, γ t

maj(Kn) =
3 > γmaj(Kn) = 1 for n odd.
For m an integer, let P (m, γ t

maj) be the smallest order of a connected graph with
signed majority total domination number equal to m.

Theorem 7. For m > 0 an integer, P (−m, γ t
maj) = m + 2.

���������
. Let G = (V, E) be a connected graph with γ t

maj(G) = −m, and consider
a minimum SMTDF f on G. P and M be the sets of vertices in G that are assigned

the values +1 and −1 under f , respectively. Then −m = f(V ) = |P | − |M |, so
|M | = |P | + m. Obviously, |P | > 1, thus |V | = |P | + |M | = 2|P | + m > m + 2.
On the other hand, by Theorem 2, we note that star K1,m+1 is a connected graph
of order m + 2 with signed majority total domination number equal to −m. So

P (−m, γ t
maj) 6 m + 2. Consequently, P (−m, γ t

maj) = m + 2. �

4. Lower bounds on signed majority total domination number

Theorem 8. For any graph G of order n and maximum ∆, minimum degree
δ > 1,

γ t
maj(G) > δ − 2∆ + 1

∆ + δ
n.

���������
. Let f be a minimum SMTDF on G. Let P and M be the sets of

vertices in G that are assigned the values +1 and −1 under f , respectively. Let

P = P∆ ∪ Pδ ∪ PΘ where P∆ and Pδ are sets of all vertices of P with degree
equal to ∆ and δ, respectively, and PΘ contains all other vertices in P , if any.
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Let M = M∆ ∪ Mδ ∪ MΘ whereP∆, Pδ and PΘ are defined similarly. Further, for

i ∈ {∆, δ, Θ}, let Vi be defined by Vi = Pi ∪Mi. Thus n = |V∆|+ |Vδ |+ |VΘ|.
Since for at least a half of the vertices v ∈ V , f(N(v)) > 1, we have

∑

v∈V

f(N(v)) > dn/2e −∆(n− dn/2e) = (∆ + 1)dn/2e −∆n > (1−∆)n/2.

The sum
∑

v∈V

f(N(v)) counts the value f(v) exactly d(v)-times for each vertex v ∈ V ,

i.e.,
∑

v∈V

f(N(v)) =
∑

v∈V

f(v)d(v). Thus,
∑

v∈V

f(v)d(v) > (1 − ∆)n/2. Breaking the

sum up into the six summations and replacing f(v) with the corresponding value
of 1 or −1 yields
∑

v∈P∆

d(v) +
∑

v∈Pδ

d(v) +
∑

v∈PΘ

d(v)−
∑

v∈M∆

d(v)−
∑

v∈Mδ

d(v)−
∑

v∈MΘ

d(v) > (1−∆)n/2.

We know that d(v) = ∆ for all v in P∆ or M∆, and d(v) = δ for all v in Pδ or Mδ.

For any vertex v in either PΘ or MΘ, δ + 1 6 d(v) 6 ∆− 1. Therefore, we have

∆|P∆|+ δ|Pδ |+ (∆− 1)|PΘ| −∆|M∆| − δ|Mδ| − (δ + 1)|MΘ| > (1−∆)n/2.

For i ∈ {∆, δ, Θ}, we replace |Pi| with |Vi| − |Mi| in the above inequality. Therefore,
we have

∆|V∆|+ δ|Vδ |+ (∆− 1)|VΘ| > (1−∆)n/2 + 2∆|M∆|+ 2δ|Mδ|+ (∆ + δ)|MΘ|.

It follows that

(3∆− 1)n/2 > 2∆|M∆|+ 2δ|Mδ|+ (∆ + δ)|MΘ|+ (∆− δ)|Vδ |+ |VΘ|
= 2∆|M∆|+ 2δ|Mδ|+ (∆ + δ)|MΘ|+ (∆− δ)(|Pδ |+ |Mδ|)

+ (|PΘ|+ |MΘ|)
= 2∆|M∆|+ (∆ + δ)|Mδ |+ (∆ + δ + 1)|MΘ|+ (∆− δ)|Pδ |+ |PΘ|
> (∆ + δ)|M∆|+ (∆ + δ)|Mδ|+ (∆ + δ)|MΘ| = (∆ + δ)|M |.

Therefore,

|M | 6 3∆− 1
2(∆ + δ)

n.

So

γ t
maj(G) = |P | − |M | = n− 2|M | > n− 3∆− 1

∆ + δ
n =

δ − 2∆ + 1
∆ + δ

n.

�

Similarly we have the following result.
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Theorem 9. If a graph G has no isolated vertices and every vertex in G is even

vertex, then

γ t
maj(G) > δ − 2∆ + 2

∆ + δ
n.

Theorem 10. If G is a k-regular graph of order n, then γ t
maj(G) > (1− k)n/(2k)

if k is odd, γ t
maj(G) > (2− k)n/(2k) if k is even, and these bounds are sharp.

���������
. If k is odd, by Theorem 8, we have γ t

maj(G) > (1 − k)n/(2k). If k is
even, by Theorem 9, we have γ t

maj(G) > (2− k)n/(2k).
That the bounds are sharp may be seen by considering a complete regular bipartite

graph G = Kk,k. Obviously, if k is odd, γ t
maj(G) = −k + ((k + 1)/2− (k − 1)/2) =

1− k = (1− k)n/(2k); if k is even, γ t
maj(G) = −k + (k/2 + 1)− (k/2− 1) = 2− k =

(2− k)n/(2k). �
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