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Abstract. Consider the forced higher-order nonlinear neutral functional differential equa-
tion

dn

dtn
[x(t) +C(t)x(t− τ )] +

m�
i=1

Qi(t)fi(x(t− σi)) = g(t), t > t0,

where n, m > 1 are integers, τ, σi ∈ � + = [0,∞), C, Qi, g ∈ C([t0,∞), � ), fi ∈ C( � , � ),
(i = 1, 2, . . . , m). Some sufficient conditions for the existence of a nonoscillatory solution of
above equation are obtained for general Qi(t) (i = 1, 2, . . . , m) and g(t) which means that
we allow oscillatory Qi(t) (i = 1, 2, . . . , m) and g(t). Our results improve essentially some
known results in the references.

Keywords: neutral differential equations, nonoscillatory solutions

MSC 2000 : 34K15, 34K11

1. Introduction

Consider the forced higher-order nonlinear neutral functional differential equation

(1)
dn

dtn
[x(t) + C(t)x(t − τ)] +

m∑

i=1

Qi(t)fi(x(t− σi)) = g(t), t > t0.

With respect to the equation (1), we shall throughout assume the following:
(i) n, m > 1 are integers, τ, σi ∈ � + = [0,∞) (i = 1, 2, . . . , m);

Project was supported by the Special Funds for Major State Basic Research Projects
(G19990328) and Hunan Natural Science Foundation of P.R. China (10371103).
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(ii) C, Qi, g ∈ C([t0,∞), � ), fi ∈ C( � , � ) (i = 1, 2, . . . , m).
Let r = max

16i6m
{τ, σi}. By a solution of the equation (1) we mean a function

x ∈ C([t1 − r,∞), � ), for some t1 > t0, such that x(t) + C(t)x(t − τ) is n-times
continuously differentiable on [t1,∞) and such that the equation (1) is satisfied for
t > t1.

Oscillation and non-oscillation of neutral functional differential equations has de-

veloped very rapidly in recent years. We refer the reader to [1]–[15] and the references
cited therein. Oscillatory and nonoscillatory behavior of solutions of the forced first
order neutral functional differential equation

(2)
d
dt

[x(t) + C(t)x(t − τ)] + Q1(t)f1(x(t − σ1)) = g(t), t > t0,

and of the second order neutral functional differential equation with positive and

negative coefficients

(3)
d2

dt2
[x(t) + cx(t− τ)] + Q1(t)x(t − σ1)−Q2(t)x(t − σ2) = 0, t > t0,

where c 6= ±1, Q1(t) > 0 and Q2(t) > 0, have been investigated in [8], [12]. Clearly,
equations (2) and (3) are special forms of the equation (1). Parhi and Rath [12],
Kulenovic and Hadziomerspahic [8] proved the following results by using Banach

contraction mapping principle.

Theorem A ([12], Theorems 2.6, 2.8 and 2.10). Assume that

H1) C(t) is in one of the following ranges:

0 6 C(t) < c1 < 1, 1 < c2 6 C(t) 6 c3, c4 6 C(t) 6 c5 < −1,

where ci (i = 1, . . . , 5) are positive real numbers.
H2) Q1(t) > 0, f1 ∈ C( � , � ) is nondecreasing, xf1(x) > 0 for any x 6= 0, and

f1 satisfies the Lipschitz condition on intervals of the type [a, b], 0 < a < b.

Further, assume that

∫ ∞

0

Q1(t) dt < ∞,

∫ ∞

0

|g(t)| dt < ∞.

Then the equation (2) has a nonoscillatory solution.
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Theorem B [8]. Assume that
H3) c 6= ±1,
H4) aQ1(t)−Q2(t) > 0, for every t > T and a > 0.
Further, assume that

∫ ∞

t0

Q1(t) dt < ∞,

∫ ∞

t0

Q2(t) dt < ∞.

Then the equation (3) has a nonoscillatory solution.

In this paper, by using Krasnoselskii’s and Schauder’s fixed point theorems and

some new techniques, we obtain some sufficient conditions for the existence of a
nonoscillatory solution of (1) for general Qi(t) (i = 1, 2, . . . , m) and g(t) which means
that we allow oscillatory Qi(t) (i = 1, 2, . . . , m) and g(t). In particular, our results
improve essentially Theorem A and B by removing the restrictive conditions H2) and

H4) and relaxing the hypotheses H1) and H3).

2. Main results

The following fixed point theorems will be used to prove the main results in this

section.

Lemma 1 [5] (Krasnoselskii’s Fixed Point Theorem). Let X be a Banach space,

let Ω be a bounded closed convex subset of X and let S1, S2 be maps of Ω into X

such that S1x + S2y ∈ Ω for every pair x, y ∈ Ω. If S1 is a contractive and S2 is

completely continuous, then the equation

S1x + S2x = x

has a solution in Ω.

Lemma 2 [5], [6] (Schauder’s Fixed Point Theorem). Let Ω be a closed, convex
and nonempty subset of a Banach space X . Let S : Ω → Ω be a continuous mapping
such that SΩ is a relatively compact subset of X . Then S has at least one fixed

point in Ω. That is, there exists an x ∈ Ω such that Sx = x.

We will consider the following cases:

−1 < c1 6 C(t) 6 0, −∞ < C(t) 6 c2 < −1, 0 6 C(t) 6 c3 < 1,

1 < c4 6 C(t) < ∞, C(t) ≡ 1, C(t) ≡ −1.

Our main results are the following six theorems.
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Theorem 1. Assume that −1 < c1 6 C(t) 6 0 and that
∫ ∞

t0

tn−1|Qi(t)| dt < ∞, i = 1, 2, . . . , m(4)

and
∫ ∞

t0

tn−1|g(t)| dt < ∞.(5)

Then (1) has a nonoscillatory bounded solution.
���������

. By (4) and (5), we choose a T > t0 sufficiently large such that

1
(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)|M1 + |g(s)|
)

ds 6 1 + c1

3
,

where M1 = max
2(1+c1)/36x64/3

{|fi(x)| : 1 6 i 6 m}.
Let C([t0,∞), � ) be the set of all continuous functions with the norm ‖x‖ =

sup
t>t0

|x(t)| < ∞. Then C([t0,∞), � ) is a Banach space. We define a closed, bounded
and convex subset Ω of C([t0,∞), � ) as follows:

Ω =
{
x = x(t) ∈ C([t0,∞), � ) :

2(1 + c1)
3

6 x(t) 6 4
3
, t > t0

}
.

Define two maps S1 and S2 : Ω → C([t0,∞), � ) as follows:

(S1x)(t) =

{
1 + c1 − C(t)x(t − τ), t > T,

(S1x)(T ), t0 6 t 6 T,

(S2x)(t) =





(−1)n+1

(n− 1)!

∫ ∞

t

(s− t)n−1

( m∑

i=1

Qi(s)fi(x(s − σi))− g(s)
)

ds, t > T,

(S2x)(T ), t0 6 t 6 T.

i) We shall show that for any x, y ∈ Ω, S1x + S2y ∈ Ω.
In fact, for every x, y ∈ Ω and t > T , we get

(S1x)(t) + (S2y)(t)

6 1 + c1 − C(t)x(t − τ)

+
1

(n− 1)!

∫ ∞

t

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(y(s− σi))|+ |g(s)|
)

ds

6 1 + c1 −
4
3
c1 +

1
(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)|M1 + |g(s)|
)

ds

6 1 + c1 −
4
3
c1 +

1 + c1

3
=

4
3
.
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Furthermore, we have

(S1x)(t) + (S2y)(t)

> 1 + c1 − C(t)x(t − τ) − 1
(n− 1)!

×
∫ ∞

t

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(y(s− σi))|+ |g(s)|
)

ds

> 1 + c1 −
1

(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)|M1 + |g(s)|
)

ds

> 1 + c1 −
1 + c1

3
=

2(1 + c1)
3

.

Hence,
2(1 + c1)

3
6 (S1x)(t) + (S2y)(t) 6 4

3
, for t > t0.

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
ii) We shall show that S1 is a contractive mapping on Ω.
In fact, for x, y ∈ Ω and t > T , we have

|(S1x)(t)− (S1y)(t)| 6 −C(t)|x(t − τ)− y(t− τ)| 6 −c1‖x− y‖.

This implies that
‖S1x− S1y‖ 6 −c1‖x− y‖.

Since 0 < −c1 < 1, we conclude that S1 is a contraction mapping on Ω.
iii) We now show that S2 is completely continuous.
First, we will show that S2 is continuous. Let xk = xk(t) ∈ Ω be such that

xk(t) → x(t) as k →∞. Because Ω is closed, x = x(t) ∈ Ω. For t > T , we have

|(S2xk)(t) − (S2x)(t)|

6 1
(n− 1)!

∫ ∞

t

sn−1

( m∑

i=1

|Qi(s)| |fi(xk(s− σi))− fi(x(s − σi))|
)

ds

6 1
(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)| |fi(xk(s− σi))− fi(x(s − σi))|
)

ds.

Since |fi(xk(t− σi)) − fi(x(t − σi))| → 0 as k → ∞ for i = 1, 2, . . . , m, by applying
the Lebesgue dominated convergence theorem, we conclude that lim

k→∞
‖(S2xk)(t) −

(S2x)(t)‖ = 0. This means that S2 is continuous.

Next, we show that S2Ω is relatively compact. It suffices to show that the family
of functions {S2x : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞).
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The uniform boundedness is obvious. For the equicontinuity, according to Levitan’s

result, we only need to show that, for any given ε > 0, [T,∞) can be decomposed
into finite subintervals in such a way that on each subinterval all functions of the
family have change of amplitude less than ε. By (4), for any ε > 0, take T ∗ > T

large enough so that

1
(n− 1)!

∫ ∞

T∗
sn−1

(
M1

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds <
ε

2
.

Then for x ∈ Ω, t2 > t1 > T ∗

|(S2x)(t2)− (S2x)(t1)|

6 1
(n− 1)!

∫ ∞

t2

sn−1

( m∑

i=1

|Qi(s)| |fi(x(s − σi))|+ |g(s)|
)

ds

+
1

(n− 1)!

∫ ∞

t1

sn−1

( m∑

i=1

|Qi(s)| |fi(x(s− σi))|+ |g(s)|
)

ds

6 1
(n− 1)!

∫ ∞

t2

sn−1

(
M1

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds

+
1

(n− 1)!

∫ ∞

t1

sn−1

(
M1

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds

<
ε

2
+

ε

2
= ε.

For x ∈ Ω and T 6 t1 < t2 6 T ∗

|(S2x)(t2)− (S2x)(t1)|

6 1
(n− 1)!

∫ t2

t1

sn−1

( m∑

i=1

|Qi(s)| |fi(x(s − σi))|+ |g(s)|
)

ds

6 1
(n− 1)!

∫ t2

t1

sn−1

(
M1

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds

6 1
(n− 1)!

max
T6s6T∗

{
sn−1

(
M1

m∑

i=1

|Qi(s)|+ |g(s)|
)}

(t2 − t1).

Thus there exists a δ > 0 such that

|(S2x)(t2)− (S2x)(t1)| < ε, if 0 < t2 − t1 < δ.

For any x ∈ Ω, t0 6 t1 < t2 6 T , it is easy to see that

|(S2x)(t2)− (S2x)(t1)| = 0 < ε.
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Therefore {S2x : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞), and
hence S2Ω is relatively compact. By Lemma 1 (Krasnoselskii’s fixed point theorem),
there is an x0 ∈ Ω such that S1x0 + S2x0 = x0. It is easy to see that x0(t) is a
nonoscillatory solution of the equation (1). The proof is complete. �

Theorem 2. Assume that −∞ < C(t) ≡ c2 < −1 and that (4) and (5) hold.
Then (1) has a nonoscillatory bounded solution.
���������

. By (4) and (5), we choose a T > t0 sufficiently large such that

− 1
c2(m− 1)!

∫ ∞

T+τ

sn−1

( m∑

i=1

|Qi(s)|M2 + |g(s)|
)

ds 6 −c2 + 1
2

,

where M2 = max
−(c2+1)/26x6−2c2

{|fi(x)| : 1 6 i 6 m}.
Let C([t0,∞), � ) be the set as in the proof of Theorem 1. We define a closed,

bounded and convex subset Ω of C([t0,∞), � ) as follows:

Ω = {x = x(t) ∈ C([t0,∞), � ) : −c2 + 1
2

6 x(t) 6 −2c2, t > t0}.

Define two maps S1 and S2 : Ω → C([t0,∞), � ) as follows:

(S1x)(t) =




−c2 − 1− 1

C(t)
x(t + τ), t > T,

(S1x)(T ), t0 6 t 6 T,

(S2x)(t) =





(−1)n+1

C(t)(n − 1)!

∫ ∞

t+τ

(s− t− τ)n−1

( m∑

i=1

Qi(s)fi(x(s − σi))− g(s)
)

ds,

t > T,

(S2x)(T ), t0 6 t 6 T.

We shall show that for any x, y ∈ Ω, S1x + S2y ∈ Ω.
In fact, for every x, y ∈ Ω and t > T , we get

(S1x)(t) + (S2y)(t)

6 − c2 − 1− 1
C(t)

x(t + τ)

− 1
C(t)

1
(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1

( m∑

i=1

|Qi(s)| |fi(y(s− σi))|+ |g(s)|
)

) ds

6 − c2 − 1 + 2− 1
c2

1
(n− 1)!

∫ ∞

T+τ

sn−1

( m∑

i=1

|Qi(s)|M2 + |g(s)|
)

ds

6 − c2 + 1− c2 + 1
2

6 −2c2.
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Furthermore, we have

(S1x)(t) + (S2y)(t)

> − c2 − 1− 1
C(t)

x(t + τ)

+
1

C(t)
1

(n− 1)!

∫ ∞

t+τ

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(y(s− σi))|+ |g(s)|
)

ds

> − c2 − 1 +
1
c2

1
(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)|M2 + |g(s)|
)

ds

> − c2 − 1 +
c2 + 1

2
= −c2 + 1

2
.

Hence,

−c2 + 1
2

6 (S1x)(t) + (S2y)(t) 6 −2c2, for t > t0.

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
We shall show that S1 is a contractive mapping on Ω.
In fact, for x, y ∈ Ω and t > T , we have

|(S1x)(t) − (S1y)(t)| 6 − 1
C(t)

|x(t + τ)− y(t + τ)| 6 − 1
c2
‖x− y‖.

This implies that

‖S1x− S1y‖ 6 − 1
c2
‖x− y‖.

Since 0 < −1/c2 < 1, we conclude that S1 is a contractive mapping on Ω.
Proceeding similarly as in the proof of Theorem 1 we obtain that the mapping S2

is completely continuous. By Lemma 1, there is a x0 ∈ Ω such that S1x0+S2x0 = x0.

Clearly, x0 = x0(t) is a bounded nonoscillatory solution of the equation (1). This
completes the proof of Theorem 2. �

Theorem 3. Assume that 0 6 C(t) 6 c3 < 1 and that (4) and (5) hold. Then
(1) has a nonoscillatory bounded solution.

���������
. By (4) and (5), we choose a T > t0 sufficiently large such that

1
(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)|M3 + |g(s)|
)

ds 6 1− c3,

where M3 = max
2(1−c3)6x64

{fi(x) : 1 6 i 6 m}.
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Let C([t0,∞), � ) be the set as in the proof of Theorem 1. We define a closed,
bounded and convex subset Ω of C([t0,∞), � ) as follows:

Ω = {x = x(t) ∈ C([t0,∞), � ) : 2(1− c3) 6 x(t) 6 4, t > t0}.

Define two maps S1 and S2 : Ω → C([t0,∞), � ) as follows:

(S1x)(t) =

{
3 + c3 − C(t)x(t − τ), t > T,

(S1x)(T ), t0 6 t 6 T,

(S2x)(t) =





(−1)n+1

(n− 1)!

∫ ∞

t

(s− t)n−1

( m∑

i=1

Qi(s)fi(x(s − σi))− g(s)
)

ds, t > T,

(S2x)(T ), t0 6 t 6 T.

We shall show that for any x, y ∈ Ω, S1x + S2y ∈ Ω.
In fact, for every x, y ∈ Ω and t > T , we get

(S1x)(t) + (S2y)(t)

6 3 + c3 − C(t)x(t − τ)

+
1

(n− 1)!

∫ ∞

t

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(y(s− σi))|+ |g(s)|
)

ds

6 3 + c3 +
1

(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)|M3 + |g(s)|
)

ds

6 3 + c3 + 1− c3 = 4.

Furthermore, we have

(S1x)(t) + (S2y)(t)

> 3 + c3 − C(t)x(t − τ)

− 1
(n− 1)!

∫ ∞

t

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(y(s− σi)) + |g(s)|
)

ds

> 3 + c3 − 4c3 −
1

(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)|M3 + |g(s)|
)

ds

> 3 + c3 − 4c3 − (1− c3) = 2(1− c3).

Hence,

2(1− c3) 6 (S1x)(t) + (S2y)(t) 6 4, for t > t0.

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
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Proceeding similarly as in the proof of Theorem 1 we obtain that the mapping S1

is a contractive mapping on Ω and the mapping S2 is completely continuous. By
Lemma 1, there is an x0 ∈ Ω such that S1x0 + S2x0 = x0. Clearly, x0 = x0(t) is
a bounded nonoscillatory solution of the equation (1). This completes the proof of

Theorem 3. �

Theorem 4. Assume that 1 < c4 ≡ C(t) < ∞ and that (4) and (5) hold. Then
(1) has a nonoscillatory bounded solution.
���������

. By (4) and (5), we choose a T > t0 sufficiently large such that

1
c4(n− 1)!

∫ ∞

T+τ

sn−1

( m∑

i=1

|Qi(s)|M4 + |g(s)|
)

ds 6 c4 − 1,

where M4 = max
2(c4−1)6x64c4

{fi(x) : i = 1, 2, . . . , m}.
Let C([t0,∞), � ) be the set as in the proof of Theorem 1. We define a closed,

bounded and convex subset Ω of C([t0,∞), � ) as follows:

Ω = {x = x(t) ∈ C([t0,∞), � ) : 2(c4 − 1) 6 x(t) 6 4c4, t > t0}.

Define two maps S1 and S2 : Ω → C([t0,∞), � ) as follows:

(S1x)(t) =





3c4 + 1− 1
C(t)

x(t + τ), t > T,

(S1x)(T ), t0 6 t 6 T,

(S2x)(t) =





(−1)n+1

C(t)(n − 1)!

∫ ∞

t+τ

(s− t− τ)n−1

×
( m∑

i=1

Qi(s)fi(x(s− σi))− g(s)
)

ds, t > T,

(S2x)(T ), t0 6 t 6 T.

We shall show that for any x, y ∈ Ω, S1x + S2y ∈ Ω.
In fact, for every x, y ∈ Ω and t > T , we get

(S1x)(t) + (S2y)(t)

6 3c4 + 1− 1
C(t)

x(t + τ)

+
1

C(t)
1

(n− 1)!

∫ ∞

t+τ

(s− t− τ)n−1

( m∑

i=1

|Qi(s)| |fi(y(s− σi))|+ |g(s)|
)

ds

6 3c4 + 1 +
1
c4

1
(n− 1)!

∫ ∞

T+τ

sn−1

( m∑

i=1

(|Qi(s)|M4 + |g(s)|
)

ds

6 3c4 + 1 + (c4 − 1) = 4c4.
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Furthermore, we have

(S1x)(t) + (S2y)(t)

> 3c4 + 1− 1
C(t)

x(t + τ)

− 1
C(t)

1
(n− 1)!

∫ ∞

t+τ

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(y(s− σi))|+ |g(s)|
)

ds

> 3c4 + 1− 4− 1
c4

1
(n− 1)!

∫ ∞

T

sn−1

( m∑

i=1

|Qi(s)|M4 + |g(s)|
)

ds

> 3c4 − 3− (c4 − 1) = 2(c4 − 1).

Hence,

2(c4 − 1) 6 S1x(t) + S2y(t) 6 4c4, for t > t0.

Thus we have proved that S1x + S2y ∈ Ω for any x, y ∈ Ω.
Proceeding similarly as in the proof of Theorem 1 we obtain that the mapping S1

is a contractive mapping on Ω and the mapping S2 is completely continuous. By

Lemma 1, there is an x0 ∈ Ω such that S1x0 + S2x0 = x0. Clearly, x0 = x0(t) is
a bounded nonoscillatory solution of the equation (1). This completes the proof of

Theorem 4. �

Theorem 5. Assume that C(t) ≡ 1 and that (4) and (5) hold. Then (1) has a
nonoscillatory bounded solution.
���������

. By (4) and (5), we choose a T > t0 sufficiently large such that

1
(n− 1)!

∫ ∞

T+τ

sn−1

( m∑

i=1

|Qi(s)|M5 + |g(s)|
)

ds 6 1,

where M5 = max
26x64

{fi(x) : 1 6 i 6 m}.
We define a closed, bounded and convex subset Ω of C([t0,∞), � ) as follows:

Ω = {x = x(t) ∈ C([t0,∞), � ) : 2 6 x(t) 6 4, t > t0}.

Define a mapping S : Ω → C([t0,∞), � ) as follows:

(Sx)(t) =





3 +
(−1)n+1

(n− 1)!

∞∑

j=1

∫ t+2jτ

t+(2j−1)τ

(s− t)n−1

×
( m∑

i=1

Qi(s)fi(x(s− σi))− g(s)
)

ds, t > T,

(Sx)(T ), t0 6 t 6 T.
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We shall show that SΩ ⊂ Ω.
In fact, for every x ∈ Ω and t > T , we get

(Sx)(t) 6 3 +
1

(n− 1)!

×
∞∑

j=1

∫ t+2jτ

t+(2j−1)τ

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(x(s− σi))|+ |g(s)|
)

ds

6 3 +
1

(n− 1)!

∞∑

j=1

∫ t+2jτ

t+(2j−1)τ

sn−1

( m∑

i=1

|Qi(s)|M5 + |g(s)|
)

ds 6 4.

Furthermore, we have

(Sx)(t) > 3− 1
(n− 1)!

×
∞∑

j=1

∫ t+2jτ

t+(2j−1)τ

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(x(s− σi))|+ |g(s)|
)

ds

> 3− 1
(n− 1)!

∞∑

j=1

∫ t+2jτ

t+(2j−1)τ

sn−1

( m∑

i=1

|Qi(s)|M5 + |g(s)|
)

ds > 2.

Hence, SΩ ⊂ Ω.
Proceeding similarly as in the proof of Theorem 1 we obtain that the mapping S

is completely continuous. By Lemma 2, there is an x0 ∈ Ω such that Sx0 = x0, that

is

x0(t) =





3 +
(−1)n+1

(n− 1)!

∞∑

j=1

∫ t+2jτ

t+(2j−1)τ

(s− t)n−1

×
( m∑

i=1

Qi(s)fi(x(t− σi))− g(s)
)

ds, t > T,

x0(T ), t0 6 t 6 T.

It follows that

x(t) + x(t− τ) = 6 +
(−1)n+1

(n− 1)!

×
∫ ∞

t

(s− t)n−1

( m∑

i=1

Qi(t)fi(x(t − σi)))− g(t)
)

ds, t > T.

Clearly, x0 = x0(t) is a bounded nonoscillatory solution of the equation (1). This
completes the proof of Theorem 5. �

Remark 1. For the special case n = 1 or n = 2, Theorems 1–5 improve essentially
Theorem A and B by removing the restrictive conditions H2) and H4) and relaxing
the hypotheses H1) and H3).
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Remark 2. For the special case C(t) ≡ −1, it is also possible that the equation (1)
has no nonoscillatory solution in spite of the fact that (4) and (5) hold. For example,
consider the neutral differential equation

(6)
dn

dtn
(x(t) − x(t− τ)) +

1
tα

x(t− σ) = 0,

where n is an odd integer, τ > 0, σ > 0, n < α < n + 1. Clearly, (4) and (5) hold.
But, by Theorem 3.2 in [13], the equation (6) has no nonoscillatory solution.

Theorem 6. Assume that C(t) ≡ −1 and that

∫ ∞

t0

tn|Qi(t)| dt < ∞, i = 1, 2, . . . , m(7)

and
∫ ∞

t0

tn|g(t)| dt < ∞.(8)

Then (1) has a nonoscillatory bounded solution.

���������
. By a known result [5, Theorem 3.2.6], (7) and (8) are equivalent to

∞∑

j=0

∫ ∞

t0+jτ

tn−1|Qi(t)| dt < ∞, i = 1, 2, . . . , m(9)

and

∞∑

j=0

∫ ∞

t0+jτ

tn−1|g(t)| dt < ∞,(10)

respectively. We choose a sufficiently large T > t0 such that

1
(n− 1)!

∞∑

j=1

∫ ∞

T+jτ

sn−1

( m∑

i=1

|Qi(s)|M6 + |g(s)|
)

ds 6 1,

where M6 = max
06x61

{fi(x) : 1 6 i 6 m}.
We define a closed, bounded and convex subset Ω of C([t0,∞), � ) as follows:

Ω = {x = x(t) ∈ C([t0,∞), � ) : 2 6 x(t) 6 4, t > t0}.
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Define a mapping S : Ω → C([t0,∞), � ) as follows:

(Sx)(t) =





3 +
(−1)n

(n− 1)!

∞∑

j=1

∫ ∞

t+jτ

(s− t)n−1

×
( m∑

i=1

Qi(s)fi(x(s − σi))− g(s)
)

ds, t > T,

(Sx)(T ), t0 6 t 6 T.

We shall show that SΩ ⊂ Ω. In fact, for every x ∈ Ω and t > T , we get

(Sx)(t) 6 3 +
1

(n− 1)!

∞∑

j=1

∫ ∞

t+jτ

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(x(s− σi))|+ |g(s)|
)

ds

6 3 +
1

(n− 1)!

∞∑

j=1

∫ ∞

T+jτ

sn−1

( m∑

i=1

|Qi(s)|M6 + |g(s)|
)

ds 6 4.

Furthermore, we have

(Sx)(t) > 3− 1
(n− 1)!

∞∑

j=1

∫ ∞

t+jτ

(s− t)n−1

( m∑

i=1

|Qi(s)| |fi(x(s− σi))|+ |g(s)|
)

ds

> 3− 1
(n− 1)!

∞∑

j=1

∫ ∞

T+jτ

sn−1

( m∑

i=1

|Qi(s)|M6 + |g(s)|
)

ds > 2.

Hence, SΩ ⊂ Ω.
We now show that S is continuous. Let xk = xk(t) ∈ Ω be such that xk(t) → x(t)

as k →∞. Because Ω is closed, x = x(t) ∈ Ω. For t > T , we have

|(Sxk)(t)− (Sx)(t)|

6 1
(n− 1)!

∞∑

j=1

∫ ∞

T+jτ

sn−1

( m∑

i=1

|Qi(s)| |fi(xk(s− σi))− fi(x(s− σi))|
)

ds.

Since |fi(xk(t − σi)) − fi(x(t − σi))| → 0 as k → ∞ for i = 1, 2, . . .m, by applying

the Lebesgue dominated convergence theorem, we conclude that lim
k→∞

‖(Sxk)(t) −
(Sx)(t)‖ = 0. This means that S is continuous.
In the following, we show that SΩ is relatively compact. By (9) and (10), for any

ε > 0, take T ∗ > T large enough so that

1
(n− 1)!

∞∑

j=1

∫ ∞

T∗+jτ

sn−1

(
M6

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds <
ε

2
.

250



Then for x ∈ Ω, t2 > t1 > T ∗

|(Sx)(t2)− (Sx)(t1)|

6 1
(n− 1)!

∞∑

j=1

∫ ∞

t2+jτ

sn−1

( m∑

i=1

|Qi(s)| |fi(x(s− σi))|+ |g(s)|
)

ds

+
1

(n− 1)!

∞∑

j=1

∫ ∞

t1+jτ

sn−1

( m∑

i=1

|Qi(s)| |fi(x(s− σi))|+ |g(s)|
)

ds

6 1
(n− 1)!

∞∑

j=1

∫ ∞

t2+jτ

sn−1

(
M6

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds

+
1

(n− 1)!

∞∑

j=1

∫ ∞

t1+jτ

sn−1

(
M6

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds

<
ε

2
+

ε

2
= ε.

For T 6 t1 < t2 6 T ∗, we choose a sufficiently large J ∈ � + such that T +jτ > T ∗

if j > J . For x ∈ Ω

|(Sx)(t2)− (Sx)(t1)|

6 1
(n− 1)!

∞∑

j=1

∫ t2+jτ

t1+jτ

sn−1

( m∑

i=1

|Qi(s)| |fi(x(s− σi))|+ |g(s)|
)

ds

6 1
(n− 1)!

[ J∑

j=1

∫ t2+jτ

t1+jτ

sn−1

(
M6

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds

+
∞∑

j=J+1

∫ t2+jτ

t1+jτ

sn−1

(
M6

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds

]

6 1
(n− 1)!

[
max

T+τ6s6T∗+(J−1)τ

{
sn−1

(
M6

m∑

i=1

|Qi(s)|+ |g(s)|
)}

J(t2 − t1)

+
∞∑

j=1

∫ ∞

T∗+jτ

sn−1

(
M6

m∑

i=1

|Qi(s)|+ |g(s)|
)

ds

]
.

Thus there exists a δ > 0 such that

|(Sx)(t2)− (Sx)(t1)| < ε, if 0 < t2 − t1 < δ.

For any x ∈ Ω, t0 6 t1 < t2 6 T , it is easy to see that

|(Sx)(t2)− (Sx)(t1)| = 0 < ε.
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Therefore {Sx : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞), and
hence SΩ is relatively compact. By Lemma 2 (Schauder’s fixed point theorem),
there is an x0 ∈ Ω such that Sx0 = x0. That is,

x0(t) =





3 +
(−1)n

(n− 1)!

∞∑

j=1

∫ ∞

t+jτ

(s− t)n−1

×
( m∑

i=1

Qi(s)fi(x0(s− σi)) − g(s)
)

ds, t > T,

x0(T ), t0 6 t 6 T.

It follows that

x(t)−x(t− τ) =
(−1)n+1

(n− 1)!

∫ ∞

t

(s− t)n−1

( m∑

i=1

Qi(t)fi(x(t−σi)))− g(t)
)

ds, t > T.

Clearly, x0 = x0(t) is a bounded nonoscillatory solution of the equation (1). This
completes the proof of Theorem 6. �

Remark 3. Only minor adjustments are necessary to discuss the neutral func-
tional differential equation

dn

dtn
[x(t) + C(t)x(t − τ)] + F (t, x(σ1(t)), . . . , x(σm(t))) = g(t), t > t0

where F : [t0,∞) × � × . . . × � → � is continuous and bounded, σi(t) → ∞ (i =
1, 2, . . . , m) as t →∞, and m > 1 is an integer. We omit the details.

Acknowledgment. The author thanks the referee for useful comments and sug-
gestions.
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