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Abstract. In this note we deal with a question concerning monounary algebras which is
analogous to an open problem for partially ordered sets proposed by Duffus and Rival.
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1. Introduction

Duffus and Rival [1] studied a certain form of representability of partially ordered

sets. The representation under consideration was defined by means of retracts. In [1]
it was remarked that “the following important problem remains unsolved:

(∗) Does every partially ordered set have a representation {Pi : i ∈ I} such that
Pi for each i ∈ I is irreducible?”
(The detailed definitions of the notions of representation and irreducibility are

recalled in Section 2 below.)
We remark that a monounary algebra can be viewed as a particular case of a quasi-

ordered set. Namely, a monounary algebra is defined to be an algebraic structure
A = (A, f), where A is a non-empty set and f is a unary operation on A. To each

monounary algebra A there corresponds a quasi-ordered set Q = (A, 6), where the
relation 6 is defined as follows: if a, b ∈ A, then a 6 b, whenever fn(a) = b for

some n ∈ � ∪ {0}. Conversely, the quasi-ordered set Q = (A, 6) uniquely defines a
monounary algebra A = (A, f).
Retracts and retract irreducibility of monounary algebras were studied in the

author’s papers [2]–[7]. Let U be the class of all monounary algebras and let Uc be
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the class of all connected monounary algebras. For A ∈ U let R(A ) be the system
of all isomorphic copies of all retracts of A .

In the present paper we deal with a question analogous to (∗) concerning a
representation of a monounary algebra A in a class K for the case when K ∈
{U , Uc, R(A )}; let us denote this question by (∗∗). We prove that the answer
to (∗∗) is “No”.

2. On the question (∗∗)

We start by recalling some definition.

First we recall some definitions for partially ordered sets.

Let P be a partially ordered set and let R(P ) be the system of all partially ordered
sets Q such that Q is isomorphic to some retract of P . We say that P is irreducible,
if, whenever Pi ∈ R(P ) for i ∈ I and P ∈ R

(∏
i∈I

Pi

)
, then there is j ∈ I such

that P ∈ R(Pj). If P ∈ R
(∏

i∈I

Pi

)
and Pi ∈ R(P ) for each i ∈ I , then the system

{Pi : i ∈ I} is called a representation of P . (Cf. Duffus and Rival [1].)
We will use these definitions of representation and of irreducibility for monounary

algebras.

Let A = (A, f) ∈ U . A nonempty subset M of A is said to be a retract of A if

there is a mapping h of A ontoM such that h is an endomorphism of A and h(x) = x

for each x ∈ M . The mapping h is called a retraction endomorphism corresponding

to the retract M . Further, let R(A ) be the system of all monounary algebras B

such that B is isomorphic to (M, f) for some retract M of A .

Let K be a system of monounary algebras. In [4] there was introduced the
following definition: an element A of U is said to be retract irreducible in K , if,

whenever Bi ∈ K for i ∈ I and A ∈ R
(∏

i∈I

Bi

)
, then there is j ∈ I such that

A ∈ R(Bj).

In [2] and [3] there were described all A ∈ Uc which are retract irreducible in Uc

and in [4] all A ∈ Uc which are retract irreducible in U . Further, in [6] and [7]

there were found all A ∈ Uc such that A is retract irreducible in R(A ) (they were
denoted as irreducible in the sense of Duffus and Rival, or, shortly, DR-irreducible).

All A ∈ U which are retract irreducible in U were described in [5].

Analogously as for partially ordered sets we define the following notion. Let A ∈
U , K ⊆ U . A system {Bi : i ∈ I} ⊆ K will be called a representation of A in K ,

if A ∈ R
(∏

i∈I

Bi

)
.

158



We will consider the following question for a class K ⊆ U : (∗∗) Does every
monounary algebra A have a representation {Bi : i ∈ I} in K such that Bi for
each i ∈ I is retract irreducible in K ?
The aim of this paper is to prove

Theorem. There exists a connected monounary algebra A such that if K ∈
{U , Uc, R(A )}, then A possesses no representation {Bi : i ∈ I} of A in K such

that for each i ∈ I , Bi is retract irreducible in K .

3. The class K = R(A )

In the following notation suppose that distinct symbols mean distinct elements.

3.1. Notation. For n ∈ � let

An = {jn : j ∈ {1, . . . , n}}.

Put

A = � ∪
⋃

n∈ �
An.

Further let

f(n) = n + 1 for each n ∈ � ,

f(jn) =

{
(j + 1)n for each n ∈ � , j ∈ {1, . . . , n− 1},
1 for each n ∈ � , j = n.

Denote A = (A, f) (cf. Fig. 1).
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Fig. 1
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Then we obviously have

3.2. Lemma. A is a connected monounary algebra.

3.3. Lemma. Let M be a retract of A . Then 1 ∈ M and card(f−1(1)∩M) > 2.
������� �

. It is obvious that if M is a retract of A , then � ⊆ M . Suppose that

card(f−1(1)∩M) 6 2. Then there is n ∈ � such that kk /∈ M for each k ∈ � , k > n.
Hence Ak ∩ M = ∅ for each k ∈ � , k > n. Let h be a retraction endomorphism

corresponding to M . Denote z = h(1n). Then

z ∈ M ⊆ � ∪ A1 ∪ . . . ∪ An−1,

thus

(1) fn(z) ∈ � − {1}.

Further, 1 ∈ M , hence

fn(z) = fn(h(1n)) = h(fn(1n)) = h(1) = 1,

a contradiction to (1). �

3.4. Corollary. If M is a retract of A , then (M, f) is not retract irreducible in
the class R(A ).
������� �

. According to [6, 2.9] and [7, 4.1], we obtain that if (M, f) is retract
irreducible in R(A ), then card f−1(x) < 2 for each x ∈ M . Hence 3.3 yields the

required assertion. �

3.5. Proposition. Let {Bi : i ∈ I} be a representation of A in the class R(A ).
Then Bi fails to be retract irreducible in R(A ) for each i ∈ I .
������� �

. Let i ∈ I . Then there exists a retract M of A such that

(1) Bi
∼= (M, f).

By 3.4 and (1), Bi is not retract irreducible in the class R(A ). �

4. The class K = Uc

Let A be as in Section 3 and suppose that the system {Bi : i ∈ I} ⊆ Uc is a
representation of A such that if i ∈ I , then Bi is retract irreducible in Uc. Then

[2, (R)] and [3, (R1)] imply
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4.1. Lemma. If i ∈ I , then one of the following conditions is satisfied:

(i) Bi is a cycle with pm elements, where p is a prime and m ∈ � ,
(ii) Bi

∼= ( � , f),
(iii) Bi contains a one element cycle {c} and if {a, b} ⊆ Bi with f(a) = f(b), then

either a=b or c ∈ {a, b}.

The system {Bi : i ∈ I} ⊆ Uc is a representation of A , thus there is a retract M

of
∏
i∈I

Bi such that A ∼= (M, f). Let ν be an isomorphism of A onto (M, f).

4.2. Lemma. If i ∈ I , then (ii) fails to hold.
������� �

. Let i ∈ I and suppose that (ii) is valid. Then Bi = {cn : n ∈ � } and
f(cn) = cn+1 for each n ∈ � , where ck 6= cl for each k, l ∈ � , k 6= l. Denote t = ν(1)
and, if n ∈ � , ν(1n) = bn. Then there is k ∈ � such that

(1) t(i) = ck.

(The symbol t(i) means the ith coordinate of the element t.)

We have
fk(1k) = 1,

thus
fk(bk) = fk(ν(1k)) = ν(fk(1k)) = ν(1) = t,

hence (1) implies

ck = t(i) = (fk(bk))(i) = fk(bk(i)),

i.e.,
bk(i) ∈ f−k(ck) = ∅,

a contradiction. �

4.3. Lemma. If n ∈ � , then there exist in ∈ I , mn ∈ � and a prime pn such

that

(a) pm1
1 < pm2

2 < . . .,

(b) Bin is a cycle with pmn
n elements.

������� �
. By 4.2, if i ∈ I , then Bi contains a cycle. If the cardinalities of these

cycles are bounded, then each connected component of
∏
i∈I

Bi contains a cycle, thus

each subalgebra of
∏
i∈I

Bi contains a cycle, hence (M, f) and A , too, contain a cycle,

which is a contradiction. Therefore the assertion is valid according to 4.1 and 4.2.
�
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4.4. Lemma. There exist distinct elements bn ∈ ∏
i∈I

Bi for n ∈ � such that
f(bn+1) = bn for each n ∈ � .
������� �

. Assume that, for each n ∈ � , Bin is as in 4.3. By 4.2, if i ∈ I , then

Bi contains a cycle; take an arbitrary element

b1 ∈
∏

i∈I

Bi

such that b1(i) belongs to the cycle of Bi. By induction, if k ∈ � , k > 1 and bj is

defined for each j ∈ � , j < k, then let bk be the (unique) element of
∏
i∈I

Bi such that

bk(i) belongs to the cycle of Bi,(1)

f(bk(i)) = bk−1(i).(2)

Then obviously f(bn+1) = bn for each n ∈ � .
Suppose that there are k, l ∈ � , k < l such that bk = bl. In view of 4.3 (a) there

exists n ∈ � such that
(3) l− k < pmn

n .

We have

bk = f l−k(bl) = f l−k(bk),

thus

(4) bk(in) = (f l−k(bk))(in) = f l−k(bk(in)).

The element bk(in) belongs to Bin , i.e., to a cycle with pmn
n ‘ elements, therefore (3)

and (4) yield a contradiction. �

4.5. Corollary. No retract of
∏
i∈I

Bi is isomorphic to A .

������� �
. For n ∈ N let bn be as in 4.4. If Q is a retract of

∏
i∈I

Bi and ϕ is a

corresponding retraction endomorphism, then either
(a) ϕ(b1) belongs to a cycle, or
(b) there are distinct elements qn ∈ Q for n ∈ � such that ϕ(bn) = qn for each

n ∈ � .
Let Q be a retract of

∏
i∈I

Bi, (Q, f) ∼= A . Then (a) fails to hold. If (b) is valid,

then, for each n ∈ � ,
f(qn+1) = f(ϕ(bn+1)) = ϕ(f(bn+1)) = ϕ(bn) = qn,

which is again a contradiction to the definition of A . �
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As a corollary we obtain

4.6. Proposition. A possesses no representation {Bi : i ∈ I} of A in Uc such

that each Bi for i ∈ I is retract irreducible in Uc.

5. The class K = U

LetA be as in the previous sections and suppose that the system {Bi : i ∈ I} ⊆ U

is a representation of A such that if i ∈ I , then Bi is retract irreducible in U . In
view of [5, Thm. 4.5] we obtain

5.1. Lemma. If i ∈ I , then one of the following conditions is satisfied:

(i) Bi contains a cycle with pm elements, where p is a prime and m ∈ � ,
(ii) Bi

∼= ( � , f),
(iii) Bi contains a one element cycle {c} and if {a, b} ⊆ Bi with f(a) = f(b), then

either a=b or c ∈ {a, b}.

Analogously as above the following assertions can be proved:

5.2. Lemma. If i ∈ I , then (ii) fails to hold.

5.3. Lemma. If n ∈ � , then there exist in ∈ I , mn ∈ � and a prime pn such

that

(a) pm1
1 < pm2

2 < . . .,

(b) Bin contains a cycle with pmn
n elements.

5.4. Lemma. There exist distinct elements bn ∈ ∏
i∈I

Bi for n ∈ � such that
f(bn+1) = bn for each n ∈ � .

5.5. Lemma. No retract of
∏
i∈I

Bi is isomorphic to A .

5.6. Proposition. A possesses no representation {Bi : i ∈ I} of A in U such

that Bi for each i ∈ I is retract irreducible in U .
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