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Abstract. This paper concerns the global structure of planar systems. It is shown that
if a positively bounded system with two singular points has no closed orbits, the set of
all bounded solutions is compact and simply connected. Also it is shown that for such a
system the existence of connecting orbits is tightly related to the behavior of homoclinic
orbits. A necessary and sufficient condition for the existence of connecting orbits is given.
The number of connecting orbits is also discussed.
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1. Introduction

In this paper, we consider the differential equations:

(E)
dx1

dt
= X(x1, x2),

dx2

dt
= Y (x1, x2)

in the plane 
 2 , where X and Y are continuous, and assume that solutions of arbi-

trary initial value problems are unique. Suppose that the vector field V = (X, Y )
defines a flow f(p, t). Further assume that the system (E) has exactly two singular
points p1, p2 ∈ 
 2 , i.e., V (p1) = V (p2) = 0. For A ⊂ 
 2 and I ⊂ 
 , we denote A ·I =
{f(x, t) | x ∈ A, t ∈ I}, in particular x · t = f(x, t). For a subset C ⊂ 
 2 , C, ∂C and

Int C denote respectively the closure, the boundary and the interior of C. A set S is
invariant if S · 
 = S holds. Let Br = {x = (x1, x2) | d(x, O) =

√
x1

2 + x2
2 6 r} be

the closed disc with center O and radius r(> 0), where O is the origin of 
 2 .
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Definition 1. If there exists a point p ∈ 
 2 such that lim
t→−∞

p · t = p1 and

lim
t→+∞

p · t = p2, then the set p · 
 = f(p, 
 ) is called an orbit connecting p1 and p2

(sometimes called a heteroclinic orbit).

The existence of connecting orbits was first proposed by I.M. Gelfand [6] as an

important problem, it relates to the studies of shock-wave solutions [2], [3]. On the
other hand, as special invariant sets, such orbits are crucial objects of the global

structure of dynamical systems. A considerable number of papers have been written
in connection with this subject, recently the research is still going on (see [5], [8], [10],

[11], [12], [13] and their references). It is obvious that for the system (E) connecting
orbits and closed orbits circling a singular point do not coexist. Among those papers

(e.g., [8], [10], [11], [12]), another crucial condition for the existence of connecting
orbits is the absence of singular closed orbits.

Definition 2. The system (E) is called a positively bounded system, if for any
x ∈ 
 2 there exists an r = r(x) > 0 such that the positive semi-orbit O+(x) = x · 
 +

lies in the closed disc Br.

In [8] it was proved that for a positively bounded system (E), if there exist no

closed orbits and singular closed orbits (for definition see the next section), then the
system has a connecting orbit. In this paper, our purpose is to give a necessary and

sufficient condition for the existence of connecting orbits without the assumption of
absence of singular closed orbits, also the sufficiency strengthens the result of [8]. It

is shown that the existence of connecting orbits is tightly related to the behavior of
homoclinic orbits. Further, the number of connecting orbits is dicussed in the third

section. In the last section our result is applied to a concrete system with a singular
closed orbit.

2. Preliminaries

In this section we state some definitions and lemmas that will be used in the sequel.

Definition 2.1. A simple closed curve is called a singular closed orbit if it is the
union of alternating nonclosed whole orbits and singular points, and is contained in
the ω- (or α-)limit set of an orbit.

Definition 2.2. For a singular point p in 
 2 , an orbit O(x) = x · 
 (x 6= p) is
called a homoclinic orbit with respect to p provided that lim

t→−∞
x · t = lim

t→+∞
x · t = p.

Definition 2.3. If Y is a subset of 
 2 , the ω-limit set of Y is defined to be the
set ω(Y ) =

⋂
t>0

Y · [t,∞) (see [1]).
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Remark. For the definition of ω(Y ) in a more general setting and its basic
properties we refer to [1], [9]. In this paper we only need the following result:

Lemma 2.4 [1]. If Y · [0, +∞) = f(Y, [0, +∞)) is compact and Y is connected,

then ω(Y ) is a compact and connected set, furthemore it is the maximal invariant
set in Y · [0, +∞).

Lemma 2.5. For r > 0, let Br = {(x1, x2) | x2
1 + x2

2 6 r2}. If the system (E) is
positively bounded, then ω(Br) is compact and connected.
�
�������

. By Lemma 2.4 we only need to prove that there is a λ > 0 such that for
any point p ∈ Br the semi-orbit O+(p) = p· 
 + is contained in Bλ, i.e., Br ·[0, +∞) ⊂
Bλ. Otherwise, there exists a sequence {zn} in Br satisfying O+(zn) 6⊂ Bn for any
positive integer n. Since Br is compact, by passing to a subsequence we may suppose

that lim
n→∞

zn = z ∈ Br. Thus by the continuous dependence on initial conditions

it is easy to verify that the positive semi-orbit O+(z) is unbounded, which is a
contradiction. �

Proposition 2.6. Let the planar system (E) have a homoclinic orbit L with

respect to a singular point p and assume that there are no singular points in the

interior of the region DL surrounded by L ∪ {p}. Then any orbit passing through a
point in DL is homoclinic with respect to p.
�
�������

. Let x ∈ DL be a regular point. Since DL is an invariant and bounded

set, by the Poincaré-Bendixson theorem we get that the limit set ω(x) is a singular
point, or a closed orbit, or a connected set composed of some singular points and

some orbits whose positive semi-orbit and negative semi-orbit tend to a singular
point respectively. From the condition of the proposition, we know that the second

case never takes place, since any closed orbit circles at least a singular point. If the
last situation happens, let q ∈ ω(x) be a regular point and denote by J a transversal

at q of the flow defined by the system. Then the positive semi-orbit O+(x) crosses J

in the same direction successively at 0 < t1 < t2 < . . . and x · tn tends monotonously
to q along J . For the argument above we refer to [7, Chap. 7]. Thus a simple closed
curve consisting of the solution arc x · [tn, tn+1] and a segment of J between x · tn and
x · tn+1 surrounds a bounded region Z ⊂ DL. Hence a (negative or positive) semi-
orbit of the point x · tn or x · tn+1 lies in Z, also by the Poincaré-Bendixson theorem

it follows that there exists at least a singular point in Z, which is a contradiction.
Thus we conclude that ω(x) = {p}. Similarly α(x) = {p} holds, and now it follows
that the orbit O(x) is homoclinic. �

Remark. The result of Proposition 2.6 is true for any planar systems.
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Notation. In this paper, S always denotes the set of all bounded orbits. If L is a
homoclinic orbit with respect to p, let DL denote the region surrounded by L∪ {p}.

Definition 2.7. Let L1 and L2 be two homoclinic orbits with respect to the

same singular point p. We call L1 and L2 in the same class, if L1 ⊂ Int DL2 holds or
there exists another homoclinic orbit L with respect to p satisfying L1∪L2 ⊂ Int DL.
By a maximal elliptic sector (with respect to p) we mean the union of {p} and the
set consisting of all homoclinic orbits in the same class with respect to p.

3. Main results

Theorem 3.1. Suppose that the positively bounded system (E) has exactly two
singular points and there exist no closed orbits. Then the set of all bounded orbits

is simply connected and compact.
�
�������

. Let Br = {(x1, x2) | x2
1 + x2

2 6 r2, r > 0}. We take an r > 0 such
that both singular points lie in the interior of Br. Since the system has no closed
orbits, the ω-limit set of any point in 
 2 contains at least a singular point. Hence,

for any p ∈ 
 2 the positive semi-orbit O+(p) meets Br and ω(p) ∩ Br 6= ∅. Now
if the orbit O(p) is a bounded orbit, we assert that O(p) ⊂ Br · [0, +∞). In fact,
as in the argument above we also have α(p) ∩ Br 6= ∅ for the bounded orbit O(p).
Thus for any point p · t ∈ O(p) there exists a τ > 0 such that (p · t) · (−τ) ∈ Br; it

follows that p · t ∈ Br · τ ⊂ Br · [0, +∞), so O(p) ⊂ Br · [0, +∞) holds. Since ω(Br)
is the maximal invariant set in Br · [0, +∞), we get O(p) ⊂ ω(Br). On the other
hand, by Lemma 2.5 all the orbits in ω(Br) are bounded, thus ω(Br) is just the set
of all bounded orbits, and it is compact and connected. The simple connectedness is

directly derived from the fact that ω(Br) is the maximal invariant set in the simply
connected set Br · [0, +∞). In fact, any loop C in ω(Br) surrounds a bounded region
that is also contained in ω(Br), so C is contractible in ω(Br). �

Remark 3.2. The conclusion of Theorem 3.1 is still true if the positively bounded
system (E) has a finite number of singular points, or the set of singular points is
bounded.

Theorem 3.3. Suppose that the positively bounded system (E) has exactly two
singular points and also assume that there exist no closed orbits and homoclinic or-

bits. Then the set of all bounded orbits is composed of singular points and connecting

orbits.
�
�������

. Let S be the set of all bounded orbits. Then by Theorem 3.1 S is
compact. For any x ∈ S, suppose that x is not a singular point, and consider the

128



limit set ω(x). First we prove that ω(x) has at most one singular point. Otherwise,
since two different singular points separate, it follows from the connectedness of ω(x)
that there exists a regular point p in ω(x). Let J be a transversal of the flow at p and
let the positive semi-orbit O+(x) cross J successively at 0 < t1 < t2 < . . ., and x · tn
tend to q. Thus the simple closed curve consisting of the solution arc x · [tn, tn+1]
and a segment of J separates ω(x) from the negative semi-orbit O−(x). Now it
follows from the Poincaré-Bendixson theorem that there exists another singular point
in α(x), which is a contradiction since we find three singular points. Further, since
now there exists only one singular point in ω(x), we assert that there exist no regular
points in ω(x), otherwise ω(x) has a homoclinic orbit, which is contradictory to the
assumption of the theorem. Hence ω(x) is just a singular point, and so is α(x). Since
the system has no homoclinic orbits, O(x) is a connecting orbit and the theorem
follows.

Lemma 3.4. If the positively bounded system (E) has exactly two singular points,
then ω(x) has at most one singular point for any point x ∈ S.

�
�������
. Suppose that ω(x) has two singular points for x ∈ S. By a similar

argument as in the proof of Theorem 3.3, we can find the third singular point in α(x).
This is a contradiction. �

Lemma 3.5. Let the positively bounded system (E) have exactly two singular
points and no closed orbits. If for any regular point x ∈ S the omega limit set ω(x)
contains no homoclinic orbits, then ω(x) is a singular point.
�
�������

. Since S is compact and ω(x) ⊂ S, by the Poincaré-Bendixson theorem

we know that the limit set ω(x) is a singular point, or a closed orbit, or a connected
set composed of some singular points and some orbits whose positive semi-orbit
and negative semi-orbit tend to a singular point respectively. Now the second case

does not take place. If the third case happens, there is a regular point q ∈ ω(x).
By Lemma 3.4, ω(x) contains a unique singular point. It follows that there exist
homoclinic orbits in ω(x), which is contradictory to the assumption of the lemma.
So only the first case holds, i.e., ω(x) is a singular point. �

Remark 3.6. Obviously, a similar result of Lemma 3.5 for α(x) holds.

Theorem 3.7. Assume that the positively bounded system (E) has exactly two
singular points and no closed orbits. Then the system has a connecting orbit if and

only if for any homoclinic orbit L neither L ⊂ ω(x) nor L ⊂ α(x) (x ∈ S) holds,
i.e., L is not contained in a limit set of a point in S.
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�
�������
. Suppose that the system has a connecting orbit H between singular

points p1 and p2. Without loss of generality, let L be a homoclinic orbit with respect
to p1. Let L ⊂ ω(x) for some regular point x ∈ S (of course x 6∈ H) and let
J be a transversal at a regular point p on L. Then the positive semi-orbit O+(x)
crosses J successively at 0 < t1 < t2 < . . . and x · tn tends monotonously to q.
Since L∪H ∪{p1, p2} is an invariant and connected set, thus the simple closed curve
consisting of the solution arc x · [tn, tn+1] and a segment of L separates α(x) and
L ∪ H ∪ {p1, p2}. Now α(x) contains at least a singular point, hence we find three
singular points, which is a contradiction. A similar argument works for the case
L ⊂ α(x).
Sufficiency: Let each homoclinic orbit L be not contained in a limit set of a

point in S. Denote by Si the union of {pi} and all homoclinic orbits with respect
to pi, respectively, for i = 1, 2. Then we have S1 ∩ S2 = ∅ and S1 ∪ S2 ⊂ S. If
S \ (S1 ∪ S2) 6= ∅, by Lemma 3.5 and Remark 3.6 for any p ∈ S \ (S1 ∪ S2) the
orbit O(p) is a connecting orbit. If S = S1 ∪ S2, since S is compact and simply
connected, it follows that (S1 ∩ S2) ∪ (S1 ∩ S2) 6= ∅. Without loss of generality, we
assume p ∈ S1∩S2. Of course, this implies p ∈ S1∩∂S2 from S1∩S2 = ∅. Thus, since
∂S2 is an invariant set, it follows from p ∈ S1 that p1 ∈ ω(p) ∈ ∂S2. Next, because

S2 is composed of maximal elliptic sectors and there exist at most a finite number of
elliptic sectors with respect to a Jordan curve circling the singular point p2 (see [7,

p. 164]), we obtain {p1, p2} ⊂ ∂S′2, where S′2 is a maximal elliptic sector with respect
to p2. Now by the definition of S ′2, there exists a point p ∈ ∂S ′2 such that O(p) is a
connecting orbit. This is contradictory to S = S1 ∪ S2. Hence S = S1 ∪ S2 does not
hold. So the proof is complete. �

Corollary 3.8 [8]. If there exist no closed orbits and singular closed orbits for
the positively bounded system (E) with just two singular points, then the system

has a connecting orbit.
�
�������

. Since a homoclinic orbit lying in a limit set of a point in S is a singular

closed orbit, the result follows directly from Theorem 3.7. �

Theorem 3.9. Let the planar system (E) have exactly two singular points. If
there exist no homoclinic orbits, then the possible numbers of connecting orbits are

one and uncountable.
�
�������

. Suppose that there exist two connecting orbits O(p) and O(q) be-
tween p1 and p2. Then O(p) ∪ O(q) ∪ {p1, p2} constitutes a simple closed curve
surrounding a bounded region W . Since p1 and p2 lie in the boundary of W , there

exist no singular points and closed orbits in Int W . Choose a point z ∈ Int W ar-
bitrarily. By Lemma 3.4 ω(z) contains a singular point. Since the system has no
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homoclinic orbits, ω(z) is a singular point, and so is α(z). Thus the orbit O(z) must
be a connecting orbit. Hence all the orbits in Int W are connecting orbits. �

Remark 3.10. Theorem 3.9 remains true for any planar systems, because we
may restrict our discussion to the invariant and bounded set W . Moreover, by
Theorem 3.9 if the system (E) has two or more (finite) connecting orbits, then there
exists at least a homoclinic orbit. On the other hand, if the system admits homoclinic

orbits, we think that the number of connecting orbits can be any positive integer.
In the following we give a system with two connecting orbits. A system with an

uncountable number of connecting orbits will be given in the next section. Examples
of systems with a unique connecting orbit are trivial.

Example 3.11. To give an example with two connecting orbits, we consider the
well-known Liénard system [4, p. 33]:

(3.1) ẋ = y −
(1

3
x3 − 3

2
x2

)
, ẏ = −x3.

In the phase-portrait of (3.1) (see [4, p. 34]) there is a maximal elliptic sector S

consisting of all homoclinic orbits with respect to O = (0, 0). Define a smooth
function ϕ : 
 2 → 
 satisfying ϕ(x, y) > 0 and ϕ(x, y) = 0 only at a point p in the

interior of S. Then the following system is a positively bounded system with two
singular points p and O:

(3.2) ẋ =
[
y −

(1
3
x3 − 3

2
x2

)]
· ϕ(x, y), ẏ = −x3 · ϕ(x, y).

Now the homoclinic orbit passing through p of (3.1) becomes two connecting orbits

and a singular point p of (3.2), and the other orbits of (3.1) remain unchanged.

4. An example

Consider the following planar system in polar coordinates:

(4.1) ṙ = r(1− r), θ̇ = sin2 θ

2
+ (r − 1 + |r − 1|).

This system has exactly two singular points O = (0, 0) and p = (1, 0). The circle
C = {(r, θ) | r = 1} is an invariant set, which is composed of a unique homoclinic
orbit L and a singular point p. Obviously the system (4.1) is positively bounded, and

for any point x outside the disc B1 = {(r, θ) | r 6 1} we have ω(x) = C. Thus C is
a singular closed orbit, the results of [8], [12] do not work. However, the segment
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Op = {(r, θ) | 0 6 r 6 1, θ = 0} is also invariant, and it is easy to see that for any
x ∈ Int B1 the relation L ⊂ ω(x) or L ⊂ α(x) does not hold. Otherwise, we may
suppose that L ⊂ ω(x) for some x in the interior of B1 \Op. Let J be a transversal
at a regular point q ∈ L. Then the positive semi-orbit O+(x) crosses J successively

at 0 < t1 < t2 < . . . and x · tn tends to q. Thus a simple closed curve consisting of
the solution arc x · [tn, tn+1] and a segment of J surrounds a bounded region D. By

the Poincaré-Bendixson theorem it follows that there exists at least a singular point
in D, which is a contradiction since the system has only two singular points O and p.

On the other hand, it is straightforward that L is not contained in the limit set of a
point lying in Op or the boundary of B1. Thus L is not contained in a limit set of a

point in B1. From Theorem 3.7 we conclude that the system has a connecting orbit.
In fact, each orbit passing through a point in Int B1 \ {O} is a connecting orbit.
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suggestions, which really improved the quality of this paper.
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