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Abstract. In this paper, we introduce the concept of an ideal of a noncommutative dually
residuated lattice ordered monoid and we show that congruence relations and certain ideals
are in a one-to-one correspondence.
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1. Introduction

Commutative DR`-monoids (called DR`-semigroups) were introduced by K.L.

N. Swamy in [11] as a common generalization of commutative `-groups and Brouwe-
rian algebras. A noncommutative extension of DR`-semigroups is mentioned in [12],

but the present definition, due to [8], is more general. In fact, Swamy’s noncom-
mutative DR`-semigroup was considered as an algebra (A, +, 0,∨,∧,−), where “−”
agrees with “⇀”.

Definition. An algebra A = (A, +, 0,∨,∧, ⇀, ↽) is a dually residuated lattice
ordered monoid, or simply a DR`-monoid, iff

(1) (A, +, 0,∨,∧) is an `-monoid, that is, (A, +, 0) is a monoid, (A,∨,∧) is a lattice
and, for any x, y, s, t ∈ A, the following distributive laws are satisfied:

s + (x ∨ y) + t = (s + x + t) ∨ (s + y + t),

s + (x ∧ y) + t = (s + x + t) ∧ (s + y + t);

(2) for any x, y ∈ A, x ⇀ y is the least s ∈ A such that s + y > x, and x ↽ y is the
least t ∈ A such that y + t > x;
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(3) A fulfils the identities

((x ⇀ y) ∨ 0) + y 6 x ∨ y, y + ((x ↽ y) ∨ 0) 6 x ∨ y,

x ⇀ x > 0, x ↽ x > 0.

Note that the condition (2) is equivalent to the following system of identities
(see [10]):

(x ⇀ y) + y > x, y + (x ↽ y) > x,

x ⇀ y 6 (x ∨ z) ⇀ y, x ↽ y 6 (x ∨ z) ↽ y,

(x + y) ⇀ y 6 x, (y + x) ↽ y 6 x.

Also, Swamy indroduced the notion of an ideal of a commutative DR`-monoid

as a nonempty subset closed under “+” containing with any x also all y such that
y ∗ 0 6 x ∗ 0 (where a ∗ b = (a− b) ∨ (b− a) is the symmetric difference of a and b).

In addition, ideals and congruence relations are in a one-to-one correspondence; for
any ideal I of a commutative DR`-monoid A, the corresponding congruence relation

Θ(I) is defined by 〈x, y〉 ∈ Θ(I) iff x ∗ y ∈ I .
We generalize the notion of an ideal and, in an attempt to describe congruence

kernels of noncommutative DR`-monoids, we introduce normal ideals which in the
case that a DR`-monoid is an `-group coincide with `-ideals.

The concepts of distance functions and normal ideals are motivated by GMV -
algebras (pseudo MV -algebras) which are included among DR`-monoids (see [10]).

Recall that GMV -algebras were introduced by J. Rach̊unek in [10] (and inde-
pendently by G. Georgescu and A. Iorgulescu in [4] under the name pseudo MV -

algebras) to be a noncommutative generalization of MV -algebras. As shown in [10],
if (A,⊕,¬,∼, 0, 1) is a GMV -algebra with the additional binary operation “�” de-
fined by x�y = ∼ (¬x⊕¬y) and if we put x∨y = (¬x�y)⊕x, x∧y = (¬x⊕y)�x,
x ⇀ y = ¬y � x, and x ↽ y = x � ∼ y, then (A,⊕, 0,∨,∧, ⇀, ↽) is a bounded
DR`-monoid whose greatest element is 1.

2. Distance functions, absolute value

Definition. Let A be a DR`-monoid. We define the distance functions by

d1(x, y) := (x ⇀ y) ∨ (y ⇀ x),

d2(x, y) := (x ↽ y) ∨ (y ↽ x),

for any x, y ∈ A.
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Further, for each x ∈ A, |x| := d1(x, 0) is the absolute value of x, and x+ := x∨ 0
is the positive part of x.

Before stating some results concerning the above notions, it is useful to mention

basic properties of DR`-monoids.

Lemma 1 [8, Lemmas 1.1.7, 1.1.5, 1.1.8, 1.1.12]. In any DR`-monoid we have

(1) x ∨ y = (x ⇀ y)+ + y = y + (x ↽ y)+;
(2) x ⇀ x = x ↽ x = 0;
(3) x > y =⇒ x ⇀ z > y ⇀ z, x ↽ z > y ↽ z, z ⇀ x 6 z ⇀ y, and

z ↽ x 6 z ↽ y;

(4) x ⇀ (y + z) = (x ⇀ z) ⇀ y, x ↽ (y + z) = (x ↽ y) ↽ z.

Lemma 2. Suppose that all joins and meets on the left-hand side exist. Then
the following is valid:

(1) x +
∧

λ∈Λ

yλ =
∧

λ∈Λ

(x + yλ),
∧

λ∈Λ

yλ + x =
∧

λ∈Λ

(yλ + x);

(2) x ⇀
∧

λ∈Λ

yλ =
∨

λ∈Λ

(x ⇀ yλ), x ↽
∧

λ∈Λ

yλ =
∨

λ∈Λ

(x ↽ yλ);

(3)
∨

λ∈Λ

xλ ⇀ y =
∨

λ∈Λ

(xλ ⇀ y),
∨

λ∈Λ

xλ ↽ y =
∨

λ∈Λ

(xλ ↽ y);

(4) x ∨ ∧
λ∈Λ

yλ =
∧

λ∈Λ

(x ∨ yλ).

Remark. (2) and (3) extend [8, Lemma 1.1.9] for the arbitrary existing joins and
meets, respectively.

�	��
�
�

. (1) From yλ >

∧
λ∈Λ

yλ it follows that x+yλ > x+
∧

λ∈Λ

yλ, for any λ ∈ Λ.

Conversely, if there is z ∈ A with x + yλ > z, for all λ ∈ Λ, then yλ > z ↽ x, for
all λ ∈ Λ, and so

∧
λ∈Λ

yλ > z ↽ x, whence x +
∧

λ∈Λ

yλ > z, proving the first identity

in (1). The rest of (1), and (2) and (3) have a similar proof.

(4) Obviously, x ∨ ∧
λ∈Λ

yλ 6 x ∨ yλ for all λ ∈ Λ. Choose z ∈ A such that

z 6 x ∨ yλ = (x ⇀ yλ)+ + yλ for each λ ∈ Λ. Then yλ > z ↽ (x ⇀ yλ)+,
for all λ ∈ Λ, and therefore

∧
λ∈Λ

yλ > z ↽ (x ⇀
∧

λ∈Λ

yλ)+ which gives z 6 (x ⇀
∧

λ∈Λ

yλ)+ +
∧

λ∈Λ

yλ = x ∨ ∧
λ∈Λ

yλ. �

Corollary 3 [8, Theorem 1.1.23]. For any DR`-monoid A, the lattice L(A) =
(A,∨,∧) is distributive.
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Lemma 4 [8, Lemma 1.1.11]. For all x, y of any DR`-monoid, it holds

(x ⇀ y) ∨ (y ⇀ x) = (x ∨ y) ⇀ (x ∧ y),

(x ↽ y) ∨ (y ↽ x) = (x ∨ y) ↽ (x ∧ y).

�	��
�
�

. Using Lemma 2, (2) and (3), we obtain (x ∨ y) ⇀ (x ∧ y) = (x ⇀

y) ∨ (y ⇀ x) ∨ 0. However, (x ⇀ y) ∨ (y ⇀ x) > (x ⇀ (x ∨ y)) ∨ (y ⇀ (x ∨ y)) =
(x ∨ y) ⇀ (x ∨ y) = 0, again by Lemma 2. �

Lemma 5 [8, Lemma 1.1.15]. If x > y > z then

(x ⇀ y) + (y ⇀ z) = x ⇀ z and (y ↽ z) + (x ↽ y) = x ↽ z.

�	��
�
�

. If y > z then y ⇀ z > 0 and y = y ∨ z = (y ⇀ z)+ + z = (y ⇀ z) + z.

Hence x ⇀ y = x ⇀ ((y ⇀ z) + z) = (x ⇀ z) ⇀ (y ⇀ z). Similarly, x > y entails

x ⇀ z > y ⇀ z which yields x ⇀ z = ((x ⇀ z) ⇀ (y ⇀ z))+(y ⇀ z). Summarizing,
x ⇀ z = (x ⇀ y) + (y ⇀ z). �

Lemma 6 [8, Lemmas 1.1.5, 1.1.13]. The following holds in any DR`-monoid:

(1) 0 ⇀ x = 0 ↽ x,

(2) (x ⇀ y) + (y ⇀ z) > x ⇀ z,

(3) (y ↽ z) + (x ↽ y) > x ↽ z.

�	��
�
�

. (1) From (x + (0 ⇀ x)) + x = x + ((0 ⇀ x) + x) > x + 0 = x it follows

that x + (0 ⇀ x) > x ⇀ x = 0, whence 0 ⇀ x > 0 ↽ x. Similarly, 0 ↽ x > 0 ⇀ x.

(2) and similarly (3) (x ⇀ y) + (y ⇀ z) + z > (x ⇀ y) + y > x implies (x ⇀

y) + (y ⇀ z) > x ⇀ z. �

Applying (2) and (3), we immediately get

Lemma 7. In every DR`-monoid we have

(1) y ⇀ x > (z ⇀ x) ↽ (z ⇀ y),
(2) y ↽ x > (z ↽ x) ⇀ (z ↽ y),
(3) y ⇀ x > (y ⇀ z) ⇀ (x ⇀ z),
(4) y ↽ x > (y ↽ z) ↽ (x ↽ z).

100



Proposition 8. The distance functions have the following properties:
(1) d1(x, y) = d1(y, x),
(2) d2(x, y) = d2(y, x),
(3) d1(x, 0) = d2(x, 0),
(4) d1(x, y) = (x ⇀ y)+ + (y ⇀ x)+,
(5) d2(x, y) = (y ↽ x)+ + (x ↽ y)+,
(6) d1(x, y) > 0 with d1(x, y) = 0 iff x = y,

(7) d2(x, y) > 0 with d2(x, y) = 0 iff x = y,

(8) d1(x, y) 6 d1(x, z) + d1(z, y) + d1(x, z),
(9) d1(x, y) 6 d1(z, y) + d1(x, z) + d1(z, y),
(10) d2(x, y) 6 d2(x, z) + d2(z, y) + d2(x, z),
(11) d2(x, y) 6 d2(z, y) + d2(x, z) + d2(z, y),
(12) d1(x, y) ∨ d1(s, t) > d1(x ∨ s, y ∨ t), d1(x ∧ s, y ∧ t),
(13) d2(x, y) ∨ d2(s, t) > d2(x ∨ s, y ∨ t), d2(x ∧ s, y ∧ t),
(14) d2(z ⇀ x, z ⇀ y) 6 d1(x, y),
(15) d1(z ↽ x, z ↽ y) 6 d2(x, y),
(16) d1(x ⇀ z, y ⇀ z) 6 d1(x, y),
(17) d2(x ↽ z, y ↽ z) 6 d2(x, y).
�	��
�
�


. Obviously, (1) and (2) hold; (3) follows by Lemma 6 (1). To check (4),
and similarly (5), we compute

d1(x, y) = (x ⇀ y) ∨ (y ⇀ x) = (x ∨ y) ⇀ (x ∧ y) by Lemma 4

= [(x ∨ y) ⇀ y] + [y ⇀ (x ∧ y)] by Lemma 5

= [(x ⇀ y) ∨ (y ⇀ y)] + [(y ⇀ x) ∨ (y ⇀ y)] by Lemma 2

= [(x ⇀ y) ∨ 0] + [(y ⇀ x) ∨ 0]

= (x ⇀ y)+ + (y ⇀ x)+.

Further, (6) follows from (4) and (7) from (5), respectively, since

d1(x, y) = (x ⇀ y)+ + (y ⇀ x)+ > 0.

It is clear that x = y entails d1(x, y) = 0. Conversely, if

d1(x, y) = (x ⇀ y)+ + (y ⇀ x)+ = 0

then (x ⇀ y)+ = (y ⇀ x)+ = 0. Hence x ⇀ y 6 0 and y ⇀ x 6 0, and so x 6 y and
y 6 x, thus x = y.
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Now, we will prove (8) (similarly (9), (10) and (11)):

d1(x, z) + d1(z, y) + d1(x, z)

= [(x ⇀ z) ∨ (z ⇀ x)] + [(z ⇀ y) ∨ (y ⇀ z)] + [(x ⇀ z) ∨ (z ⇀ x)]

= [(x ⇀ z) + (z ⇀ y) + (x ⇀ z)] ∨ [(x ⇀ z) + (z ⇀ y) + (z ⇀ x)]

∨ [(x ⇀ z) + (y ⇀ z) + (x ⇀ z)] ∨ [(x ⇀ z) + (y ⇀ z) + (z ⇀ x)]

∨ [(z ⇀ x) + (z ⇀ y) + (x ⇀ z)] ∨ [(z ⇀ x) + (z ⇀ y) + (z ⇀ x)]

∨ [(z ⇀ x) + (y ⇀ z) + (x ⇀ z)] ∨ [(z ⇀ x) + (y ⇀ z) + (z ⇀ x)]

> [(x ⇀ z) + (z ⇀ y) + (x ⇀ z)] ∨ [(x ⇀ z) + (z ⇀ y) + (z ⇀ x)]

∨ [(x ⇀ z) + (y ⇀ z) + (z ⇀ x)] ∨ [(z ⇀ x) + (y ⇀ z) + (z ⇀ x)]

= [((x ⇀ z) + (z ⇀ y)) + ((x ⇀ z) ∨ (z ⇀ x))]

∨ [((x ⇀ z) ∨ (z ⇀ x)) + ((y ⇀ z) + (z ⇀ y))]

(using (x ⇀ z) ∨ (z ⇀ x) > 0, by (4))

> [(x ⇀ z) + (z ⇀ y)] ∨ [(y ⇀ z) + (z ⇀ x)]

> (x ⇀ y) ∨ (y ⇀ x) = d1(x, y).

Let us verify (12):

d1(x, y) ∨ d1(s, t) = (x ⇀ y) ∨ (y ⇀ x) ∨ (s ⇀ t) ∨ (t ⇀ s)

= (x ⇀ y) ∨ (s ⇀ t) ∨ (y ⇀ x) ∨ (t ⇀ s)

> [x ⇀ (y ∨ t)] ∨ [s ⇀ (y ∨ t)] ∨ [y ⇀ (x ∨ s)] ∨ [t ⇀ (x ∨ s)]

(by Lemma 2)

= [(x ∨ s) ⇀ (y ∨ t)] ∨ [(y ∨ t) ⇀ (x ∨ s)] = d1(x ∨ s, y ∨ t).

The rest of (12) and (13) is analogous. Finally, (14)–(17) are consequences of
Lemma 7. �

Proposition 9. The following holds in any DR`-monoid:

(1) |x| > 0 with |x| = 0 iff x = 0,
(2) |x| = x iff x > 0,
(3) |x + y| 6 |x|+ |y|+ |x|, |x + y| 6 |y|+ |x|+ |y|,
(4) |x ∨ y| 6 |x| ∨ |y|.
�	��
�
�


. (1) follows immediately by Proposition 8 (6), (7); (4) is a consequence
of Proposition 8 (12).

(2) If x > 0 then x > 0 > 0 ⇀ x, whence |x| = x ∨ (0 ⇀ x) = x. Obviously,
x = |x| entails x > 0.
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(3) Since

d1(x + y, y) = [(x + y) ⇀ y] ∨ [y ⇀ (x + y)]

= [(x + y) ⇀ y] ∨ [(y ⇀ y) ⇀ x]

= [(x + y) ⇀ y] ∨ (0 ⇀ x)

6 x ∨ (0 ⇀ x) = |x|,

it follows that

|x + y| = d1(x + y, 0) 6 d1(x + y, y) + d1(y, 0) + d1(x + y, y) 6 |x|+ |y|+ |x|.

�

3. Ideals

Definition. Let A be a DR`-monoid. A subset I ⊆ A is said to be an ideal of A

if the following conditions are fulfilled:

(I1) 0 ∈ I ;
(I2) if x, y ∈ I then x + y ∈ I ;

(I3) if x ∈ I, y ∈ A and |y| 6 |x| then y ∈ I .

It can be easily seen that the intersection of any family of ideals of A is still an

ideal. For any M ⊆ A, the smallest ideal containing M , i.e., the intersection of all
ideals I such that M ⊆ I , is called the ideal generated by M . It will be denoted

by I(M).

Proposition 10. Let A be a DR`-monoid. Then for any ∅ 6= M ⊆ A, for any

a ∈ A, and for any ideal J we have

(1) I(M) = {x ∈ A ; |x| 6 |a1|+ . . . + |an| for some a1, . . . , an ∈ M, n > 1};
(2) I(a) = {x ∈ A ; |x| 6 n|a| for some n > 1};
(3) I(J∪{a}) =

{
x ∈ A ; |x| 6

k∑
i=1

(ai+ni|a|), for some a1, . . . , ak ∈ J, n1, . . . , nk >

0, k > 1
}
.

�	��
�
�

. (1) Suppose that x, y ∈ I(M), i.e., |x| 6 |a1| + . . . + |an|, |y| 6

|b1|+ . . . + |bm| for some a1, . . . , an, b1, . . . , bm ∈ M and n, m > 1. Then

|x + y| 6 |x|+ |y|+ |x|
6 |a1|+ . . . + |an|+ |b1|+ . . . + |bm|+ |a1|+ . . . + |an|.
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Hence x + y ∈ I(M). It is easy to see that |y| 6 |x|, x ∈ I(M), implies y ∈ I(M).
Thus I(M) is an ideal. Finally, if I is an ideal such that M ⊆ I then I(M) ⊆ I .
(2) and (3) follow by (1); note only that ai ∈ J iff |ai| ∈ J since J is an ideal. �

Lemma 11. For each 0 6 x, y, z ∈ A, it holds x ∧ (y + z) 6 (x ∧ y) + (x ∧ z).
�	��
�
�


. We compute (x ∧ y) + (x ∧ z) = (x + x) ∧ (x + z) ∧ (y + x) ∧ (y + z) >
x ∧ x ∧ x ∧ (y + z) = x ∧ (y + z). �

Proposition 12. If A is a DR`-monoid then for all x, y ∈ A we have

I(x) ∩ I(y) = I(|x| ∧ |y|) and I(x) ∨ I(y) = I(|x| ∨ |y|) = I(|x|+ |y|).
�	��
�
�


. Since ‖x‖ = |x| it is obvious that I(x) = I(|x|). Further, |x| ∧ |y| 6
|x|, |y| implies |x| ∧ |y| ∈ I(x) ∩ I(y). Thus I(|x| ∧ |y|) ⊆ I(x) ∩ I(y). Conversely,
z ∈ I(x) ∩ I(y) iff |z| 6 n|x| and |z| 6 m|y| for some n, m ∈ � . Hence |z| 6
n|x| ∧ m|y| 6 nm(|x| ∧ |y|), by Lemma 11. Therefore, z ∈ I(|x| ∧ |y|), and so
I(x) ∩ I(y) ⊆ I(|x| ∧ |y|).
It is easy to see that I(x) ∨ I(y) ⊆ I(|x| ∨ |y|) ⊆ I(|x| + |y|). Suppose that J is

an ideal such that I(x), I(y) ⊆ J and z ∈ I(|x| + |y|). Then |z| 6 n(|x| + |y|)
for some n ∈ � . But |x|, |y| ∈ J , thus |x| + |y| ∈ J and z ∈ J . This yields
I(x) ∨ I(y) = I(|x| ∨ |y|) = I(|x|+ |y|). �

Theorem 13. If A is a DR`-monoid then any ideal I is a convex subalgebra

in A. Conversely, if C is a convex subalgebra of A such that, for each x ∈ A, |x| ∈ C

iff x ∈ C, then C is an ideal of A.
�	��
�
�


. If x, y ∈ I then, by Proposition 8,

|d1(x, y)| = d1(x, y) 6 d1(0, y) + d1(x, 0) + d1(0, y) = |y|+ |x|+ |y| ∈ I.

Hence d1(x, y) ∈ I . Further,

|x ⇀ y| = (x ⇀ y) ∨ (0 ⇀ (x ⇀ y)) 6 (x ⇀ y) ∨ (y ⇀ x) = d1(x, y) ∈ I

since y ⇀ x > 0 ⇀ (x ⇀ y). Thus x ⇀ y ∈ I . Similarly, d2(x, y) ∈ I , |x ↽ y| 6
d2(x, y) ∈ I and hence x ↽ y ∈ I .
To prove that I is a convex subset, suppose a, b ∈ I and a∧ b 6 x 6 a∨ b for some

x ∈ A. Then

|x| = x ∨ (0 ⇀ x) 6 (a ∨ b) ∨ (0 ⇀ (a ∧ b)) = a ∨ b ∨ (0 ⇀ a) ∨ (0 ⇀ b)

= a ∨ (0 ⇀ a) ∨ b ∨ (0 ⇀ b) = |a| ∨ |b| 6 |a|+ |b| ∈ I.

Hence x ∈ I .
The proof of the second statement is straightforward. �
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As argued at the beginning of this section, it is obvious that the set of all ideals

of an arbitrary DR`-monoid, ordered by set inclusion, is a complete lattice.

Theorem 14. For any DR`-monoid A, the lattice Id(A) of all its ideals is
algebraic and Brouwerian.
�	��
�
�


. It suffices to show that Id(A) is distributive and algebraic. (It is well-
known that every algebraic distributive lattice satisfies the join infinite distributive
identity and any such a lattice is Brouwerian.)
Let I, J, K ∈ Id(A) and suppose that x ∈ I ∩ (J ∨K). Then |x| 6 a1 + . . . + an,

for some 0 6 a1, . . . , an ∈ J ∪K. Hence |x| = |x| ∧ (a1 + . . .+an) 6 (|x| ∧a1)+ . . .+
(|x| ∧ an). But |x| ∧ ai ∈ (I ∩ J) ∪ (I ∩K) ⊆ (I ∩ J) ∨ (I ∩K), for all i = 1, . . . , n,

and so I ∩ (J ∨K) ⊆ (I ∩ J) ∨ (I ∩K), proving the distributivity of Id(A).
Let ∅ 6= M ⊆ A. For any x ∈ A, x ∈ I(M) iff there are a1, . . . , an ∈ M such that

|x| 6 |a1|+ . . . + |an|. Hence x ∈ I({a1, . . . , an}) and therefore

I(M) =
⋃
{I(X) ; X ⊆ M, |X | < ℵ0}.

Thus M 7→ I(M) is an algebraic closure operator and, consequently, Id(A) is an
algebraic lattice. �

The following result describes relative pseudocomplements in the lattice Id(A).

Proposition 15. For any ideals J , K of A, the relative pseudocomplement of J

with respect to K is given by

J ∗K = {x ∈ A ; |x| ∧ |a| ∈ K for any a ∈ J}.

�	��
�
�

. Let us denote by H the set on the right-hand side. First, we will prove

that H is an ideal. (I1) 0 ∈ H , because |0| ∧ |a| = 0 ∈ K for all a ∈ J . (I2) If

x, y ∈ H then, for each a ∈ J ,

|x + y| ∧ |a| 6 (|x|+ |y|+ |x|) ∧ |a| 6 (|x| ∧ |a|) + (|y| ∧ |a|) + (|x| ∧ |a|) ∈ K;

so that x + y ∈ H . (I3) If x ∈ H and |y| 6 |x| then |y| ∧ |a| 6 |x| ∧ |a| ∈ K, for any

a ∈ J , whence y ∈ H .
Now, we have to prove that H = J ∗ K. If x ∈ J ∩ H then |x| ∧ |x| ∈ K, thus

x ∈ K and therefore J ∩H ⊆ K. In addition, from

J ∗K =
∨
{I ∈ Id(A) ; I ∩ J ⊆ K}

it follows that H ⊆ J ∗K. Conversely, if x ∈ J ∗K then, for each a ∈ J , |x| ∧ |a| ∈
J ∩ (J ∗K) ⊆ K since |x| ∧ |a| 6 |a| ∈ J and |x| ∧ |a| 6 |x| ∈ J ∗K. Hence x ∈ H .
So H = J ∗K. �
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The pseudocomplement of an ideal I is I∗ := I ∗ {0}.

Corollary 16. I∗ = {x ∈ A ; |x| ∧ |a| = 0 for each a ∈ I}.

Let A be a DR`-monoid and I ∈ Id(A). Let us define two binary relations on A

by
〈x, y〉 ∈ Θ1(I) ⇐⇒ d1(x, y) ∈ I,

〈x, y〉 ∈ Θ2(I) ⇐⇒ d2(x, y) ∈ I,

for each x, y ∈ A.

Lemma 17. For any ideal I , Θ1(I) and Θ2(I) are equivalence relations.
�	��
�
�


. It is obvious that Θ1(I) is reflexive and symmetric. The transitivity
follows from Proposition 8. Indeed, if 〈x, y〉, 〈y, z〉 ∈ Θ1(I) then d1(x, z) 6 d1(x, y)+
d1(y, z) + d1(x, y) ∈ I , hence d1(x, z) ∈ I . Similarly for Θ2(I). �

Theorem 18. For any ideal I of A, the relationsΘ1(I) and Θ2(I) are congruence
relations on the lattice L(A). Moreover, I = [0]Θ1(I) = [0]Θ2(I).

�	��
�
�

. Let 〈x, y〉, 〈s, t〉 ∈ Θ1(I), i.e., d1(x, y), d1(s, t) ∈ I . Then, by Proposi-

tion 8,

d1(x ∨ s, y ∨ t) 6 d1(x, y) ∨ d1(s, t) 6 d1(x, y) + d1(s, t) ∈ I,

d1(x ∧ s, y ∧ t) 6 d1(x, y) ∨ d1(s, t) 6 d1(x, y) + d1(s, t) ∈ I.

Hence 〈x ∨ s, y ∨ t〉, 〈x ∧ s, y ∧ t〉 ∈ Θ1(I). Similarly for Θ2(I).
For each x ∈ A, x ∈ [0]Θ1(I) iff 〈x, 0〉 ∈ Θ1(I) iff d1(x, 0) = |x| ∈ I iff x ∈ I . �

Theorem 19. Let I be an ideal of a DR`-monoid A. Then L(A)/Θ1(I) is a
distributive lattice whose partial order relation is defined by

[x]Θ1(I) 6 [y]Θ1(I) ⇐⇒ (x ⇀ y)+ ∈ I.

Similarly, L(A)/Θ2(I) is a distributive lattice in which

[x]Θ2(I) 6 [y]Θ2(I) ⇐⇒ (x ↽ y)+ ∈ I.

�	��
�
�

. Since L(A) is a distributive lattice, by Corollary 3, so is L(A)/Θ1(I).

Further, for each x, y ∈ A, [x]Θ1(I) 6 [y]Θ1(I) iff [x]Θ1(I) ∨ [y]Θ1(I) = [x ∨ y]Θ1(I) =
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[y]Θ1(I) iff 〈x ∨ y, y〉 ∈ Θ1(I) iff d1(x ∨ y, y) ∈ I iff (x ⇀ y)+ ∈ I . Indeed, since

d1(x ∨ y, y) = [((x ∨ y) ⇀ y) ∨ 0] + [(y ⇀ (x ∨ y)) ∨ 0]

= [(x ⇀ y) ∨ (y ⇀ y) ∨ 0] + 0

= (x ⇀ y) ∨ 0 = (x ⇀ y)+.

The proof of the other statement is analogous. �

4. Normal ideals

Definition. An ideal I is said to be normal if it satisfies the following condition,
for each x, y ∈ A:

(x ⇀ y)+ ∈ I ⇐⇒ (x ↽ y)+ ∈ I.

The set of all normal ideals of a DR`-monoid A will be denoted by N(A). For an
ideal I , we denote I+ = {x ∈ I ; x > 0}.

Proposition 20. For any I ∈ Id(A), the following conditions are equivalent:
(i) I ∈ N(A);
(ii) x + I+ = I+ + x, for any x ∈ A.
�	��
�
�


. (i) ⇒ (ii) Let x ∈ A, h ∈ I+ and set y = h+x ∈ I+ +x. It is clear that
y > x and, consequently, y = x∨ y = (y ⇀ x)+ +x = x+(y ↽ x)+. From h+x > y

it follows that h > y ⇀ x > 0, since y > x. Hence (y ⇀ x)+ = y ⇀ x ∈ I+. But
I ∈ N(A), so that (y ↽ x)+ ∈ I+. Thus y ∈ x + I+. Similarly, x + I+ ⊆ I+ + x.

(ii) ⇒ (i) If (y ⇀ x)+ ∈ I then x ∨ y = (y ⇀ x)+ + x = x + h for some h ∈ I+.
Therefore y 6 x + h, which yields (y ↽ x)+ 6 ((x + h) ↽ x)+ 6 h ∨ 0 = h ∈ I+.
Thus (y ↽ x)+ ∈ I . The converse is analogous. �

Lemma 21. If J and K are normal ideals of a DR`-monoid A then

J ∨K = {x ∈ A ; |x| 6 a + b for some a ∈ J+, b ∈ K+}.

In addition, J ∨K is a normal ideal of A.
�	��
�
�


. Let us denote the set on the right-hand side by M . (I1) and (I3) are

obviously satisfied. To prove (I2), let x, y ∈ M , i.e., |x| 6 a+b and |y| 6 c+d for some
a, c ∈ J+ and b, d ∈ K+. Then |x+y| 6 |x|+ |y|+ |x| 6 a+ b+ c+d+a+ b = a′+ b′

for some a′ ∈ J+, b′ ∈ K+, by Proposition 20. Consequently, M ∈ Id(A). Finally, it
is easy to see that any ideal H such that J, K ⊆ H contains M .
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If (x ⇀ y)+ ∈ J ∨ K then (x ⇀ y)+ 6 a + b for some a ∈ J+, b ∈ K+. Hence

a + b > x ⇀ y iff a + b + y > x. Since J, K ∈ N(A), there exist a′ ∈ J+ and b′ ∈ K+

such that a+ b+y = y +a′ + b′. Therefore y +a′+ b′ > x iff a′+ b′ > x ↽ y, whence
a′ + b′ > (x ↽ y)+ and (x ↽ y)+ ∈ J ∨K, proving that J ∨K is a normal ideal. �

Proposition 22. Let A be a DR`-monoid. Then N(A) is a complete sublattice
of Id(A).
�	��
�
�


. Let {Iλ}λ∈Λ be a family of normal ideals. Obviously,
⋂

λ∈Λ

Iλ is a normal

ideal. Let us assume (x ⇀ y)+ ∈ ∨
λ∈Λ

Iλ, for some x, y ∈ A; then (x ⇀ y)+ ∈ ∨
λ∈Λ0

Iλ,

for some finite subset Λ0 of Λ. Hence (x ↽ y)+ ∈ ∨
λ∈Λ0

Iλ since it is a normal ideal.

Thus (x ↽ y)+ ∈ ∨
λ∈Λ

Iλ. The converse is analogous. �

Proposition 23. Let A and B be DR`-monoids and ϕ : A → B a homomor-

phism. Then ϕ−1(0) = {x ∈ A ; ϕ(x) = 0} is a normal ideal of A.
�	��
�
�


. Clearly, the conditions (I1) and (I2) hold. Suppose ϕ(x) = 0 and
|y| 6 |x|. Then ϕ(|x|) = ϕ(x ∨ (0 ⇀ x)) = ϕ(x) ∨ (0 ⇀ ϕ(x)) = 0 and, consequently,
ϕ(|y|) = 0. Hence ϕ(y ∨ (0 ⇀ y)) = ϕ(y) ∨ (0 ⇀ ϕ(y)) = 0, which gives ϕ(y) = 0.
Thus, ϕ−1(0) is an ideal in A.

Finally, (x ⇀ y)+ ∈ ϕ−1(0) iff ϕ((x ⇀ y) ∨ 0) = (ϕ(x) ⇀ ϕ(y)) ∨ 0 = 0. Hence
0 > ϕ(x) ⇀ ϕ(y) iff ϕ(y) > ϕ(x) iff 0 > ϕ(x) ↽ ϕ(y). Therefore 0 = (ϕ(x) ↽

ϕ(y)) ∨ 0 = ϕ((x ↽ y) ∨ 0), thus (x ↽ y)+ ∈ ϕ−1(0). �

Proposition 24. If I ∈ N(A) then, for all x, y ∈ A, d1(x, y) ∈ I iff d2(x, y) ∈ I .
�	��
�
�


. If d1(x, y) = (x ⇀ y)+ + (y ⇀ x)+ ∈ I then (x ⇀ y)+, (y ⇀ x)+ ∈ I .

Since I is a normal ideal, this implies (x ↽ y)+, (y ↽ x)+ ∈ I . Hence d2(x, y) =
(x ↽ y)+ + (y ↽ x)+ ∈ I . �

Corollary 25. If I is a normal ideal then Θ1(I) = Θ2(I); it will be denoted
by Θ(I).

Lemma 26. Let I ∈ N(A). If 〈x, y〉 ∈ Θ(I) then, for each z ∈ A,

〈x ⇀ z, y ⇀ z〉 ∈ Θ(I), 〈x ↽ z, y ↽ z〉 ∈ Θ(I),

〈z ⇀ x, z ⇀ y〉 ∈ Θ(I), 〈z ↽ x, z ↽ y〉 ∈ Θ(I).

�	��
�
�

. This follows from Proposition 8 (14)–(17). �
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Theorem 27. If I is a normal ideal of aDR`-monoidA then Θ(I) is a congruence
relation on A. In addition, [0]Θ = I .
�	��
�
�


. Let 〈x, y〉 ∈ Θ(I) and 〈s, t〉 ∈ Θ(I). Then (x ⇀ y)+, (s ⇀ t)+ ∈ I .

Obviously, x 6 x∨ y = (x ⇀ y)+ + y and s 6 s∨ t = (s ⇀ t)+ + t. Hence, it follows
that

x + s 6 (x ⇀ y)+ + y + (s ⇀ t)+ + t

= (x ⇀ y)+ + (y + (s ⇀ t)+) + t

= (x ⇀ y)+ + (h + y) + t

= ((x ⇀ y)+ + h) + (y + t)

for some h ∈ I+ such that y+(s ⇀ t)+ = h+y. However, ((x ⇀ y)+ +h)+(y+ t) >
x + s iff (x ⇀ y)+ + h > (x + s) ⇀ (y + t). Therefore, ((x + s) ⇀ (y + t))+ 6 ((x ⇀

y)+ + h)+ = (x ⇀ y)+ + h ∈ I . So ((x + s) ⇀ (y + t))+ ∈ I . We can similarly show
that ((y + t) ⇀ (x + s))+ ∈ I . Hence, we conclude that d1(x + s, y + t) = ((x + s) ⇀

(y + t))+ + ((y + t) ⇀ (x + s))+ ∈ I and 〈x + s, y + t〉 ∈ Θ(I).
By Lemma 26, 〈x ⇀ s, y ⇀ s〉 ∈ Θ(I) and 〈y ⇀ s, y ⇀ t〉 ∈ Θ(I). This yields

〈x ⇀ s, y ⇀ t〉 ∈ Θ(I). Similarly, 〈x ↽ s, y ↽ t〉 ∈ Θ(I).
The rest follows by Theorem 18. �

Theorem 28. If Θ is a congruence on A then [0]Θ = {x ∈ A ; 〈x, 0〉 ∈ Θ} is a
normal ideal in A. Moreover, Θ = Θ([0]Θ).
�	��
�
�


. The first part follows by Proposition 23. Further, we claim that

〈x, y〉 ∈ Θ ⇐⇒ 〈d1(x, y), 0〉 ∈ Θ,(C)

or equivalently,

〈x, y〉 ∈ Θ ⇐⇒ 〈d2(x, y), 0〉 ∈ Θ.

Indeed, if 〈x, y〉 ∈ Θ then 〈x ⇀ y, 0〉 ∈ Θ and 〈y ⇀ x, 0〉 ∈ Θ, whence
〈d1(x, y), 0〉 = 〈(x ⇀ y) ∨ (y ⇀ x), 0〉 ∈ Θ. Conversely, 〈d1(x, y), 0〉 ∈ Θ iff
d1(x, y) ∈ [0]Θ which implies (x ⇀ y)+, (y ⇀ x)+ ∈ [0]Θ. This gives

x ∨ y = (x ⇀ y)+ + y ≡ 0 + y = y (Θ),

x ∨ y = (y ⇀ x)+ + x ≡ 0 + x = x (Θ).

Thus, by the transitivity, 〈x, y〉 ∈ Θ.
Now, Θ = Θ([0]Θ) is an immediate consequence of (C). �
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Corollary 29. In any DR`-monoid, there is a one-to-one correspondence be-

tween congruences and normal ideals.

5. Deductive systems

It was proved in [8] that the variety of DR`-monoids is weakly regular, that is,

[0]Φ = [0]Ψ entails Φ = Ψ, for any congruences Φ, Ψ on an arbitrary DR`-monoid.
Hence it follows that congruence kernels of DR`-monoids can also be described by
means of so-called deductive systems (see [6]).

Definition. Let A be a DR`-monoid and D ⊆ A. Then D is said to be a
deductive system if the following conditions are fulfilled:

(D1) 0 ∈ D;

(D2) if x ∈ D and d1(x, y) ∈ D then y ∈ D;

(D3) if x ∈ D then d1(x, 0) ∈ D.

A deductive system D is called compatible iff the following holds:

If d1(x, y) ∈ D and d1(s, t) ∈ D, for x, y, s, t ∈ A, then d1(f(x, s), f(y, t)) ∈ D,

for each f ∈ {+,∨,∧, ⇀, ↽}.

The following result is only a special case of [6, Theorems 1, 2] and it generalizes

the analogous property of GMV -algebras ([7, Theorems 2.8, 2.9]).

Theorem 30. Let A be a DR`-monoid, D ⊆ A. Let us define a binary rela-

tion ΘD via

〈x, y〉 ∈ ΘD ⇐⇒ d1(x, y) ∈ D,

for every x, y ∈ A. If D is a compatible deductive system then ΘD is a congruence

on A such that [0]ΘD = D. Conversely, if Θ is a congruence relation on A then [0]Θ
is a compatible deductive system and Θ[0]Θ = Θ.

Therefore by Theorems 27 and 28 we immediately obtain

Corollary 31. If A is a DR`-monoid and D ⊆ A then the following conditions

are equivalent:

(i) D is a normal ideal;

(ii) D is a compatible deductive system;

(iii) D = [0]Θ for some congruence relation Θ on A.
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