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0. Introduction

Functional equations find applications in biology, social sciences, engineering, etc.

as well as in many other branches of mathematics. A great number of such appli-
cations can be found in [1]. This has led to considerable interest in the study of

functional equations and has given rise to numerous articles and monographs on the
subject.

The present paper is devoted to the study of some complex vector functional
equations of higher order. To the best of our knowledge, up to now this kind of

complex vector functional equations has not been considered in literature, and we
think that their study will be of interest. For this reason we carried out our research

with the goal to shed light on this not sufficiently studied field of complex vector
functional equations. The results presented here supplement and generalize some of

our previous results [2], [3], [4].
Throughout this paper, V is an n-dimensional complex vector space. Vectors

from V will be denoted by Zi,Ui, and so on, and we also denote O = (0, 0, . . . , 0)T

and I = (1, 1, . . . , 1)T . If U,V ∈ V , with U = (u1, . . . , un)T and V = (v1, . . . , vn)T

with respect to some basis, we define UV = (u1v1, . . . , unvn)T .
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1. Higher order functional equation without parameters

In this section the following result will be proved.

Theorem 1.1. The general solution of the functional equation

2n−1∑

i=1

F (Z1,Zi+1,Zi+2 . . . ,Z2n+i−1) = O(1.1)

(Z2n+i−1 ≡ Zi, 2 6 i 6 2n− 1),

where

(1.2) F (Z1,Z2,Z3, . . . ,Z2n) =
n∏

k=1

f(Z2k−1,Z2k) (f : V 2 → V ; n > 1),

is given by

f(U,V) = g(U)h(V) − g(V)h(U), n = 2,(1.3)

f(U,V) = O, n > 2,(1.4)

where g, h : V → V are arbitrary functions.
��
������

. If we put Zk = U (1 6 k 6 2n), the equation (1.1) takes the form
f(U,U) ≡ O.
Now, we will distinguish two possibilities:

1◦. Let n = 2. In this case the equation (1.1) becomes

(1.5) f(Z1,Z2)f(Z3,Z4) + f(Z1,Z3)f(Z4,Z2) + f(Z1,Z4)f(Z2,Z3) = O.

Indeed, a straightforward calculation shows that the function (1.3) satisfies the func-

tional equation (1.1) for arbitrary functions g and h.
Conversely, we will prove that every solution of the functional equation (1.1) has

the form (1.3).
We denote any nonzero component of a nontrivial solution again by f : V 2 → � .

For such a component there exists at least one pair of constant complex vectors
(A,B) (A,B ∈ V ) such that f(A,B) 6= 0. By putting Z1 = A, Z2 = B, Z3 = U,
Z4 = V, the scalar equation (1.5) takes the form

(1.6) f(U,V) = −f(A,U)
f(A,B)

f(V,B)− f(A,V)
f(A,B)

f(B,U).
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If we substitute U = B and take into consideration the condition f(U,U) ≡ 0,
the equation (1.6) implies that

(1.7) f(B,V) = −f(V,B).

According to (1.7), the equation (1.6) takes the form

f(U,V) =
f(A,U)
f(A,B)

f(B,V)− f(A,V)
f(A,B)

f(B,U).

If we denote

g(U) =
f(A,U)
f(A,B)

, h(U) = f(B,U),

then we have

f(U,V) = g(U)h(V) − g(V)h(U).

This is the general solution of the equation (1.1) for n = 2.

2◦. Let n > 2. If we put Zk = U (k odd) and Zk = V (k even) and take into
consideration the property f(U,U) ≡ O, then (1.1) implies that

(1.8)
n−1∑

i=0

fn−i(U,V)f i(V,U) = O.

By the substitutions

Z1 = Z4 = U, Z2k−1 = U, Z2 = Z3 = V, Z2k = V (3 6 k 6 n)

the functional equation (1.1) reduces to

(1.9) fn−1(U,V)f(V,U) = O.

Also, the following equality holds:

(1.10) fn−1(V,U)f(U,V) = O.

Now, if we put

Z1 = Z4 = Z6 = . . . = Z2r = Z2r+2 = U, Z2k−1 = U,

Z2 = Z3 = Z5 = . . . = Z2r−1 = Z2r+1 = V, Z2k = V

(r + 2 6 k 6 n; 1 6 r < n)
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the equation (1.1) becomes

(1.11) fn−r(U,V)fr(V,U) = O (1 6 r < n).

According to the equality (1.11), the equation (1.8) yields

f(U,V) = O (n > 2).

This completes the proof of Theorem 1.1.

2. Higher order functional equation with parameters

In this section we will generalize the results given in the previous section.

Theorem 2.1. The general solution of the functional equation

2n−1∑

i=1

aiF (Z1,Zi+1,Zi+2, . . . ,Z2n+i−1) = O(2.1)

(Z2n+i−1 ≡ Zi; 2 6 i 6 2n− 1),

where ai (1 6 i 6 2n− 1) are complex parameters not all of which are equal to zero,

(2.2) F (Z1,Z2, . . . ,Z2n) =
n∏

k=1

f(Z2k−1,Z2k) (f : V 2 → V ; n > 1),

is given by

f(U,V) = g(U)g(V) (n > 2) if
2n−1∑

i=1

ai = 0,(2.3)

f(U,V) = g(U)h(V) − g(V)h(U) (n = 2) if a1 = a2 = a3 (6= 0),(2.4)

f(U,V) = O in all other cases,(2.5)

where g, h : V → V are arbitrary functions.

��
������
. First, we will prove the theorem for the case n = 2. Then the functional

equation (2.1) becomes

(2.6) a1f(Z1,Z2)f(Z3,Z4) + a2f(Z1,Z3)f(Z4,Z2) + a3f(Z1,Z4)f(Z2,Z3) = O.
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By a cyclic permutation of the vectors Z2, Z3, Z4 in equation (2.6) we obtain

a1f(Z1,Z3)f(Z4,Z2) + a2f(Z1,Z4)f(Z2,Z3) + a3f(Z1,Z2)f(Z3,Z4) = O,(2.7)

a1f(Z1,Z4)f(Z2,Z3) + a2f(Z1,Z2)f(Z3,Z4) + a3f(Z1,Z3)f(Z4,Z2) = O.(2.8)

The system of equations (2.6), (2.7) and (2.8) has a nontrivial solution if and only if
the following condition is satisfied:

(2.9)

∣∣∣∣∣∣

a1 a2 a3

a3 a1 a2

a2 a3 a1

∣∣∣∣∣∣
= 0.

In all other cases the general solution of the functional equation (2.6) is

f(U,V) ≡ O.

From (2.9) it follows that

(2.10) (a1 + a2 + a3)[(a1 − a2)2 + (a2 − a3)2 + (a3 − a1)2] = 0.

We will investigate the following cases:

1◦. Let a1 + a2 + a3 = 0 and a1 = a2 (6= 0). Then the condition (2.9) is satisfied.
The equation (2.6) has the form

(2.11) f(Z1,Z2)f(Z3,Z4) + f(Z1,Z3)f(Z4,Z2) = 2f(Z1,Z4)f(Z2,Z3).

By a cyclic permutation of the vectors Z2, Z3, Z4 from this equation we find

(2.12) f(Z1,Z3)f(Z4,Z2) + f(Z1,Z4)f(Z2,Z3) = 2f(Z1,Z2)f(Z3,Z4).

If we eliminate the term f(Z1,Z2)f(Z3,Z4) from the equations (2.11) and (2.12),
we obtain the equation

(2.13) f(Z1,Z3)f(Z4,Z2) = f(Z1,Z4)f(Z2,Z3).

We denote any nonzero component of a nontrivial solution of the equation (2.11)
again by f : V 2 → � . For such a component there exists at least one pair of constant
complex vectors (A,B) (A,B ∈ V ) such that f(A,B) 6= 0.
By putting Z1 = A, Z2 = U, Z3 = V and Z4 = B, the equation (2.13) becomes

(2.14) f(A,B)f(U,V) = f(A,V)f(B,U).
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If we put U = B in the last equation, we have

f(B,V) =
f(B,B)
f(A,B)

f(A,V).

On the basis of this equality, the equation (2.14) becomes

(2.15) f(U,V) = g(U)g(V),

where we put √
f(B,B)

f(A,B)
f(A,U) = g(U).

Really, the function (2.15) is a solution of the equation (2.11).

2◦. Let a1 + a2 + a3 = 0 and a1 6= a2. Then the condition (2.9) is satisfied.
For a1 + a2 + a3 = 0, the equation (2.6) becomes

a1f(Z1,Z2)f(Z3,Z4) + a2f(Z1,Z3)f(Z4,Z2)(2.16)

= (a1 + a2)f(Z1,Z4)f(Z2,Z3).

If we suppose that a1 = 0, this allows us to divide by a2 6= 0 and then the
equation (2.16) reduces to the equation (2.13), whose general solution is the func-
tion (2.15).

Now, we will assume that a1 6= 0.
Let f(U,U) ≡ O. In this case, for any nonzero component of a nontrivial solution

of the equation (2.16) (denoted again by f) there exists at least one pair of constant
complex vectors (A,B) such that f(A,B) 6= 0. By putting Z1 = Z3 = A, Z2 =
Z4 = B, from the equation (2.16) we obtain

(2.17) (a1 + a2)f(B,A) = a1f(A,B).

For Z1 = U, Z2 = B, Z3 = Z4 = A, by virtue of the above relation (2.17), the
equation (2.16) reduces to the equation

(a1 − a2)f(A,B)f(U,A) = 0,

from which it follows that

(2.18) f(U,A) = 0.

By the substitutions Z1 = U, Z2 = V, Z3 = A, Z4 = B, the equation (2.16), on
the basis of the equality (2.18), yields

(2.19) f(U,V) ≡ 0.
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Let f(U,U) 6≡ O. In this case, for any component of the solution of the equa-
tion (2.16) (denoted again by f) for which f(U,U) 6≡ 0 there exists at least one
constant complex vector C such that f(C, C) 6= 0. If we put Z1 = Z2 = Z4 = C,
Z3 = U, from (2.16) we obtain

(2.20) f(C,U) = f(U, C).

For Z1 = Z2 = C, Z3 = U, Z4 = V, in view of (2.20) we can write the equation (2.16)
in the form

f(U,V) =
f(C,U)f(C,V)

f(C, C)
or

(2.21) f(U,V) = g(U)g(V),

with the notation f(C,U) =
√

f(C, C)g(U).
It is not hard to check that the function (2.21) is really a solution of the equa-

tion (2.16).

Since (2.21) includes the trivial solution (2.19) as well as solutions with zero com-
ponents, the general solution of the equation (2.16) is given by the formula (2.21).

3◦. Let a1 + a2 + a3 6= 0. In view of (2.10), either f(U,V) ≡ O or

(2.22) (a1 − a2)2 + (a2 − a3)2 + (a3 − a1)2 = 0.

Let us suppose that f(U,V) 6≡ O. Since a1, a2, a3 are complex numbers, the equal-
ity (2.22) does not directly imply

(2.23) a1 = a2 = a3.

Adding together the equations (2.6), (2.7) and (2.8), by virtue of the condition

a1 + a2 + a3 6= 0 we obtain the equation (1.5), which was solved in the previous
section. Its solution is given by formula (1.3). It remains to show that (2.23) holds.

According to (1.3), the solution of equation (1.5) satisfies

(2.24) f(U,V) = −f(V,U), f(U,U) ≡ O.

If we put Z1 = Z4 = U, Z2 = Z3 = V, from (2.6) we find

(2.25) (a2 − a1)f2(U,V) = O.

Since f(U,V) 6≡ O, the equality (2.25) implies a1 = a2. Now, from the condi-
tion (2.22) we find (2.23), and we have (2.4). Thus the theorem is proved for n = 2.
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Now we pass to the proof of the theorem for n > 2.
First we will investigate the case

2n−1∑

i=1

ai 6= 0.

By putting Zi = U (1 6 i 6 2n), from the equation (2.1) we obtain the identity

(2.26) f(U,U) ≡ O.

Next, we assume a1 6= 0. We may assume this without loss of generality since if
a1 = 0, then there must be at least one ai 6= 0 (2 6 i 6 2n − 2), and by a cyclic
permutation of the vectors Z2,Z3, . . . ,Z2n we may achieve that the coefficient at the
term f(Z1,Z2)f(Z3,Z4) . . . f(Z2n−1, Z2n) be different from zero.
By introducing the substitutions

Z1 = Z3 = . . . = Z2n−1 = U and Z2 = Z4 = . . . = Z2n = V

and taking into consideration the identity (2.26), the equation (2.1) takes the form

(2.27)
n−1∑

i=0

a2i+1f
n−i(U,V)f i(V,U) = O.

For

Z3 = Z5 = . . . = Z2r+1 = V, Z4 = Z6 = . . . = Z2r+2 = U,

Z1 = Z2i−1 = U, Z2 = Z2i = V

(r + 2 6 i 6 n; 1 6 r < n)

the equation (2.1) yields

a1f
n−r(U,V)fr(V,U) = O (1 6 r < n)

so that from (2.27) we deduce f(U,V) ≡ O.
Now, we pass to the investigation of the case

2n−1∑

i=1

ai = 0.

If we assume f(U,U) ≡ O, then the general solution of the equation (2.1) is (2.5),

which may be proved as in the case
2n−1∑
i=1

ai 6= 0.
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If we assume that f(U,U) 6≡ O, then for each component of f (denoted again

by f) such that f(U,U) 6≡ 0 there exists at least one complex constant vector C such
that f(C, C) 6= 0.
There is at least one index r ∈ {1, 2, . . . , 2n− 1} such that

n−2∑

i=0

a2i+r 6= 0 where aj = aj−2n+1 (j > 2n− 1).

In fact, if such an index did not exist, then we would have the system of 2n−1 linear
homogeneous equations

n−2∑

i=0

a2i+r = 0 (1 6 r 6 2n− 1),

which has only the trivial solution

a1 = a2 = . . . = a2n−1 = 0,

but this contradicts the assumption that at least one of these parameters is distinct
from zero.

Now we assume that

(2.28)
n−2∑

i=0

a2i+1 6= 0.

We may assume this because the case when

n−2∑

i=0

a2i+1 = 0 and
n−2∑

i=0

a2i+r 6= 0 (r ∈ {2, 3, . . . , 2n− 1})

can be reduced to the case (2.28) by a cyclic permutation of the variables Z2,Z3, . . . ,

Z2n and a simple renumeration of the variables.
By putting

Z2n−1 = U, Z2n = V, Zi = C (1 6 i 6 2n− 2)

in (2.1), we obtain

n−2∑

i=0

a2i+1f
n−1(C, C)f(U,V) +

n−2∑

i=0

a2i+1f
n−2(C, C)f(C,U)f(V, C)(2.29)

+ a2n−1f
n−2(C, C)f(C,U)f(C,V) = 0.
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Since

a2n−1 = −
n−2∑

i=0

a2i+1 −
n−2∑

i=0

a2i+2,

according to the assumption (2.28), for V = C, the equation (2.29) implies f(C,U) =
f(U, C).
By introducing the notation f(C,U) = g(U)

√
f(C, C), from (2.29) we conclude

f(U,V) = g(U)g(V).

Since in the case
2n−1∑
i=1

ai = 0 this function is really a solution of the equation (2.1),

this means that Theorem 2.1 is completely proved. �

3. Nonlinear operator functional equation

In this section a nonlinear operator functional equation of kth order will be solved.

Definition 3.1. Let Ψij be the operator which transposes (changes the places
of) the ith and jth argument of the function F , i.e.,

ΨijF (Z1, . . . ,Zi−1,Zi,Zi+1, . . . ,Zj−1,Zj ,Zj+1, . . . ,Zn)(3.1)

= F (Z1, . . . ,Zi−1,Zj ,Zi+1, . . . ,Zj−1,Zi,Zj+1, . . . ,Zn).

Theorem 3.1. The general solution of the functional equation

(3.2) aF (Z1,Z2, . . . ,Zkn)
kn∑

r=n+1

ΨnrF (Z1,Z2, . . . ,Zn−1,Zn,Zn+1, . . . ,Zkn),

where a is a complex parameter and

(3.3) F (Z1,Z2, . . . ,Zkn) =
k−1∏

i=0

f(Zni+1,Zni+2, . . . ,Zni+n)

(f : V n → V ; n > 2), has components given by

f(U1,U2, . . . ,Un) =

∣∣∣∣∣∣∣∣∣

H1(U1) H1(U2) . . . H1(Un)
H2(U1) H2(U2) . . . H2(Un)
...

Hn(U1) Hn(U2) . . . Hn(Un)

∣∣∣∣∣∣∣∣∣
if a = k − 1,(3.4)
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f(U1,U2, . . . ,Un) =





n∏
i=1

K(Ui)

or 0
if a = n(k − 1),(3.5)

f(U1,U2, . . . ,Un) ≡ 0 if a 6= r(k − 1) (1 6 r 6 n),(3.6)

where Hi (1 6 i 6 n), K are arbitrary functions in V .

For the proof of this theorem in the case a = k − 1 we need the following result.

Lemma 3.2. If f(Z1,Z2, . . . ,Zn) is a nonzero solution of the equation (3.2) for
a = k − 1 and Ai (1 6 i 6 n) are constant complex vectors such that

(3.7) f(A1,A2, . . . ,An) 6= 0,

then the equality

(3.8) f(U1, . . . ,Ui−1,An,Ui, . . . ,Un−2,An) ≡ 0

holds for any 1 6 i 6 n− 1.
��
������

. We will suppose that this is not true, i.e., there exist vectors Uν ∈ V ,
ν = 1, 2, . . . , n− 2, such that

(3.9) f(U1, . . . ,Ui−1,An,Ui, . . . ,Un−2,An) 6= 0.

By putting

Zν = Aν (1 6 ν 6 n),

Zrn+ν =





Uν (1 6 ν 6 i− 1),

An (ν = i or ν = n),

Uν−1 (i + 1 6 ν 6 n− 1)

for 1 6 r 6 k − 1, the equation (3.2) becomes

(k − 1)[f(U1, . . . ,Ui−1,An,Ui, . . . ,Un−2,An)]k−2(3.10)

× [f(A1,A2, . . . ,An−1,An)f(U1, . . . ,Ui−1,An,Ui, . . . ,Un−2,An)

+ f(A1,A2, . . . ,An−1,U1)f(An,U2, . . . ,Ui−1,An,Ui, . . . ,Un−2,An)

+ f(A1,A2, . . . ,An−1,U2)f(U1,An, . . . ,Ui−1,An,Ui, . . . ,Un−2,An)

+ f(A1,A2, . . . ,An−1,Un−2)f(U1, . . . ,Ui−1,An,Ui, . . . ,

Un−3,An,An)] = 0.
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According to the hypothesis (3.9), it follows from (3.10) that

f(A1,A2, . . . ,An−1,An)f(U1, . . . ,Ui−1,An,Ui, . . . ,Un−2,An)(3.11)

+ f(A1,A2, . . . ,An−1,U1)f(An,U2, . . . ,Ui−1,An,Ui, . . . ,Un−2,An)

+ f(A1,A2, . . . ,An−1,U2)f(U1,An, . . . ,Ui−1,An,Ui, . . . ,Un−2,An)

+ . . . + f(A1,A2, . . . ,An−1,Un−2)f(U1, . . . ,Ui−1,An,Ui, . . . ,

Un−3,An,An) = 0.

Let En−2 = {1, 2, 3, . . . , n − 2}, and let Sr (0 < r 6 n − 2) be a subset of the
set En−2 which contains r elements. For r = n− 2 we have Sn−2 = En−2. Putting

in (3.2) Zν = An (1 6 ν 6 kn), we obtain

(3.12) f(An,An, . . . ,An) = 0.

Now, we suppose that

(3.13) f(V1, . . . ,Vi−1,An,Vi, . . . ,Vn−2,An) = 0

holds for each of the
(
n−2

r

)
sets Sr, where

(3.14) Vν =

{
An, ν ∈ Sr,

Yν , ν ∈ En−2 \ Sr.

Under this assumption we will show that

(3.15) f(W1, . . . ,Wi−1,An,Wi, . . . ,Wn−2,An) = 0

holds for each of the
(
n−2
r−1

)
sets Sr−1, where

(3.16) Wν =

{
An, ν ∈ Sr−1,

Yν , ν ∈ En−2 \ Sr−1.

Putting Uν = Wν (1 6 ν 6 n − 2) in (3.11), on the basis of the hypothesis (3.13)
we obtain

rf(A1,A2, . . . ,An−1,An)f(W1, . . . ,Wi−1,An,Wi, . . . ,Wn−2,An) = 0.

From this relation (r > 1) we conclude

f(W1, . . . ,Wi−1,An,Wi, . . . ,Wn−2,An) = 0.
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Consequently, by induction we have proved that

f(U1, . . . ,Ui−1,An,Ui, . . . ,Un−2,An) = 0

if exactly r (0 6 r 6 n− 2) elements among U1,U2, . . . ,Un−2 are equal to An.

For r = 0 we obtain

f(U1, . . . ,Ui−1,An,Ui, . . . ,Un−2,An) ≡ 0,

which contradicts the hypothesis (3.9). This completes the proof of the lemma. �

Remark 3.1. In particular, for i = 1 the identity (3.8) takes the form

f(An,U1, . . . ,Un−2,An) ≡ 0.

We shall use this identity in the proof of Theorem 3.1. A slight generalization with
the ith (instead of the first) argument of f equal to An was kindly suggested by the
referee. However, the fact that exactly the nth argument of f is equal toAn is intrin-

sically related to the equation (3.2). It cannot be generalized without generalizing
the equation as well.
��
������

of Theorem 3.1. We will prove Theorem 3.1 by induction.

For n = 2, the functional equation (3.2) takes the form

(k − 1)f(Z1,Z2)f(Z3,Z4) . . . f(Z2k−1,Z2k)(3.17)

= f(Z1,Z3)f(Z2,Z4) . . . f(Z2k−1,Z2k)

+ f(Z1,Z4)f(Z3,Z2) . . . f(Z2k−1,Z2k) + . . .

+ f(Z1,Z2k−1)f(Z3,Z4) . . . f(Z2,Z2k)

+ f(Z1,Z2k)f(Z3,Z4) . . . f(Z2k−1,Z2).

If we substitute Zi = U (1 6 i 6 2k), the above equation becomes

(3.18) f(U,U) ≡ O.

For any nonzero component of a nontrivial solution of the equation (3.17) (denoted
again by f) there exists at least one pair of constant complex vectors (A,B) such
that f(A,B) 6= 0.
Putting in the functional equation (3.17)

Z2i−1 = A (1 6 i 6 k), Z2j = B (2 6 j 6 k), Z2 = U,
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it takes the form

fk−1(A,B)[f(U,B) + f(B,U)] = 0,

from which it follows that

(3.19) f(U,B) = −f(B,U).

For Z2i−1 = A, Z2i = B (1 6 i 6 k − 1), Z2k−1 = U, Z2k = V, the functional
equation (3.17) by virtue of (3.19) yields

fk−1(A,B)f(U,V) = fk−2(A,B)[f(A,U)f(B,V) − f(A,V)f(B,U)].

If we introduce the notation

f(A,U)
f(A,B)

= H1(U), f(B,U) = H2(U),

we obtain that the function

f(U,V) =
∣∣∣∣
H1(U) H1(V)
H2(U) H2(V)

∣∣∣∣

is the general solution of the functional equation (3.2) for n = 2 because it includes
the trivial solution f(X,Y) = 0.
Now, we suppose that Theorem 3.1 holds for n−1, i.e., the general solution of the

functional equation

(k − 1)F (Z1,Z2, . . . ,Zk(n−1))(3.20)

=
k(n−1)∑

r=n

Ψn−1,rF (Z1,Z2, . . . ,Zn−1,Zn, . . . ,Zk(n−1)),

where

(3.21) F (Z1,Z2, . . . ,Zk(n−1)) =
k−1∏

i=0

f(Z(n−1)i+1,Z(n−1)i+2, . . . ,Z(n−1)i+n−1),

is given by

(3.22) f(U1,U2, . . . ,Un−1) =

∣∣∣∣∣∣∣∣∣

H1(U1) H1(U2) . . . H1(Un−1)
H2(U1) H2(U2) . . . H2(Un−1)
...

Hn−1(U1) Hn−1(U2) . . . Hn−1(Un−1)

∣∣∣∣∣∣∣∣∣
.
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Let f(A1,A2, . . . ,An) 6= 0 (here, as usual, f denotes a nonzero component of a

nontrivial solution). If we put

Zni+1 = An (0 6 i 6 k − 1),

f(An,Z2,Z3, . . . ,Zn) = g(Z2,Z3, . . . ,Zn) (f : V n → � , g : V n−1 → � ),

we obtain from (3.2) according to Lemma 3.2

(k − 1)g(Z2, . . . ,Zn−1,Zn)g(Zn+2,Zn+3, . . . ,Z2n) . . . g(Z(k−1)n+2, . . . ,Zkn)(3.23)

= g(Z2, . . . ,Zn−1,Zn+2)g(Zn,Zn+3, . . . ,Z2n) . . . g(Z(k−1)n+2, . . . ,Zkn)

+ g(Z2, . . . ,Zn−1,Zn+3)g(Zn+2,Zn,Zn+4, . . . ,Z2n) . . . g(Z(k−1)n+2, . . . ,Zkn)

+ . . .

+ g(Z2, . . . ,Zn−1,Zkn)g(Zn+2, . . . ,Z2n) . . . g(Z(k−1)n+2, . . . ,Zkn−1,Zn).

According to the induction hypothesis, we obtain that the general solution of the

equation (3.23) is given by

g(U1,U2, . . . ,Un−1) = f(An,U1,U2, . . . ,Un−1)(3.24)

=

∣∣∣∣∣∣∣∣∣

H1(U1) H1(U2) . . . H1(Un−1)
H2(U1) H2(U2) . . . H2(Un−1)
...

Hn−1(U1) Hn−1(U2) . . . Hn−1(Un−1)

∣∣∣∣∣∣∣∣∣
,

where Hi : V → � (1 6 i 6 n− 1) are arbitrary functions.
If we put in the equation (3.2)

Zi = Ai (1 6 i 6 n− 1), Zn = U1,

Znj+m = Am (1 6 j 6 k − 2; 1 6 m 6 n),

Z(k−1)n+1 = An, Z(k−1)n+r = Ur (2 6 r 6 n),

we obtain

f(A1,A2, . . . ,An−1,An)f(U1,U2, . . . ,Un)(3.25)

= f(A1, . . . ,An−1,U1)f(An,U2, . . . ,Un)

− f(A1, . . . ,An−1,U2)f(An,U1,U3, . . . ,Un)− . . .

− f(A1, . . . ,An−1,Un)f(An,U2, . . . ,Un−1,U1).

On the basis of the equality (3.24) we obtain

f(An, . . . ,Ui−1,Ui,Ui+1, . . . ,Uj−1,Uj ,Uj+1, . . . ,Un−1)(3.26)

= −f(An, . . . ,Ui−1,Uj ,Ui+1, . . . ,Uj−1,Ui,Uj+1, . . . ,Un−1)

(1 6 i < j 6 n− 1).
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By using the equalities (3.24), (3.25) and (3.26) along with the notation

f(A1,A2, . . . ,An−1,U)
f(A1, . . . ,An)

= Hn(U),

we obtain that f(U1,U2, . . . ,Un) has the form (3.4).
It remains still to show that every function of the form (3.4) is really a solution of

the equation (3.2). For this purpose, we consider the determinant

D(j) =

���������������������

H1(Z1) H2(Z1) . . . Hn(Z1) 0 0 . . . 0

H1(Z2) H2(Z2) . . . Hn(Z2) 0 0 . . . 0
...

H1(Zn−1) H2(Zn−1) . . . Hn(Zn−1) 0 0 . . . 0

H1(Zn) H2(Zn) . . . Hn(Zn) H1(Zn) H2(Zn) . . . Hn(Zn)

H1(Znj+1) H2(Znj+1) . . . Hn(Znj+1) H1(Znj+1) H2(Znj+1) . . . Hn(Znj+1)
...

H1(Znj+n) H2(Znj+n) . . . Hn(Znj+n) H1(Znj+n) H2(Znj+n) . . . Hn(Znj+n)

���������������������

for 1 6 j 6 k − 1. Applying the Laplace Theorem to the first n − 1 rows of D(j),
we see that each of the corresponding minors has two identical columns, hence it
vanishes. Consequently,

(3.27) D(j) = 0.

According to (3.27), we conclude that the following identity holds:

(3.28)
k−1∑

j=1

D(j)
k−1∏

i=1
i6=j

∣∣∣∣∣∣∣∣∣

H1(Zni+1) H1(Zni+2) . . . H1(Zni+n)
H2(Zni+1) H2(Zni+2) . . . H2(Zni+n)

...

Hn(Zni+1) Hn(Zni+2) . . . Hn(Zni+n)

∣∣∣∣∣∣∣∣∣
= 0.

Applying further the Laplace Theorem to the first n rows of D(j), simple manip-
ulations show that the function (3.4) is really a solution of the equation (3.2). This

completes the proof of Theorem 3.1 for a = k − 1.
Now we pass to the proof of Theorem 3.2 for a = n(k − 1).
First, we suppose that f(U,U, . . . ,U) 6≡ O. Henceforth we denote by f any com-

ponent of the function f : V n → V for which f(U,U, . . . ,U) 6≡ 0. For such a compo-
nent there exists at least one constant complex vector C for which f(C, C, . . . , C) 6= 0.
If we put Zn+i = U and substitute the rest of the variables by C, from (3.2) we

obtain

(3.29) f(C, . . . , C,U, C, . . . , C) = f(C, C, . . . , C,U).
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By putting Zn+i = U, Zn+j = V (j > i) and substituting the rest of the variables
by C, from the equation (3.2) by virtue of (3.29) we obtain

(3.30) f(C, . . . , C,U, . . . ,V, . . . , C) =
f(C, C, . . . , C,U)f(C, C, . . . , C,V)

f(C, C, . . . , C)
.

We assume that

(3.31) f(C, . . . ,U1, . . . , C,U2, . . . , C, . . . ,Uk, C, . . . , C) =
∏k

i=1 f(C, C, . . . , C,Ui)
fk−1(C, C, . . . , C)

.

If we put Zn+i1 = U1, Zn+i2 = U2, . . . ,Zn+ik
= Uk, Zn+ik+1 = Uk+1 and

substitute the rest of the variables by C, then the equation (3.2) becomes

kf(C,C, . . . , C)f(C, . . . ,U1, . . . , C,U2, . . . ,Uk, C, . . . ,Uk+1, . . . , C)(3.32)

= f(C, C, . . . , C,U1)f(C, . . . , C, . . . ,U2, . . . ,Uk, . . . ,Uk+1, . . . , C)

+ f(C, C, . . . , C,U2)f(C, . . . ,U1, . . . ,Uk, . . . ,Uk+1, . . . , C) + . . .

+ f(C, C, . . . , C,Uk+1)f(C, . . . ,U1, . . . ,U2, . . . ,Uk, . . . , C, . . . , C).

On the basis of the induction hypothesis (3.31), it follows from (3.32) that

(3.33) f(C, . . . ,U1, . . . ,U2, . . . ,Uk, . . . ,Uk+1, . . . , C) =
∏k+1

i=1 f(C, C, . . . , C,Ui)
fk(C, C, . . . , C)

.

Therefore, we have proved by mathematical induction that the formula (3.33)
holds for every k < n.

By putting Zi = C (1 6 i 6 n), Zn+j = Uj (1 6 j 6 n), Z2n+s = C (1 6 s 6
n(k − 2)), from the equation (3.2) we obtain

nf(C,C, . . . , C)f(U1,U2, . . . ,Un)(3.34)

= f(C, C, . . . , C,U1)f(C,U2,U3, . . . ,Un)

+ f(C, C, . . . , C,U2)f(U1, C,U3,U4, . . . ,Un) + . . .

+ f(C, C, . . . , C,Un)f(U1,U2, . . . ,Un−1, C).

On the basis of the equality (3.33), the last equality (3.34) becomes

(3.35) f(U1,U2, . . . ,Un) =
∏n

i=1 f(C, C, . . . , C,Ui)
fn−1(C, C, . . . , C)

.

By introducing the notation K(U) = f(C, . . . , C,U)/ n
√

fn−1(C, C, . . . , C), we ob-
tain that the function f in the case a = n(k − 1) really has the form (3.5).
Now, we suppose that f(U,U, . . . ,U) ≡ 0. Next, we will need the following result.
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Lemma 3.3. If f(Z1,Z2, . . . ,Zn) is a nonzero solution of the equation (3.2)
for a = n(k − 1) such that f(U,U, . . . ,U) ≡ 0, and at least one of the variables
U1,U2, . . . ,Un−1 is equal to Un, then

f(U1,U2, . . . ,Un) ≡ 0.

��
������
. Let En−1 = {1, 2, 3, . . . , n−1}, and let Sm (1 6 m 6 n−1) be a subset

of the set En−1 which contains m elements. We have f(Un,Un, . . . ,Un) ≡ 0.
Now, we suppose that

(3.36) f(V1,V2, . . . ,Vn−1,Un) = 0

holds for each of the
(
n−1
m

)
sets Sm, where

Vi =

{
Un, i ∈ Sm,

Yi, i ∈ En−1 \ Sm.

We will prove that

(3.37) f(W1,W2, . . . ,Wn−1,Un) = 0

holds for each of the
(

n−2
m−1

)
sets Sm−1, where

Wi =

{
Un, i ∈ Sm−1,

Yi, i ∈ En−1 \ Sm−1.

By substituting Znm+i = Zi (0 6 m 6 k − 1) in the equation (3.2) and putting
Zi = Wi, on the basis of the assumption (3.36) we obtain

(k − 1)(n−m)fk(W1,W2, . . . ,Wn−1,Un) = 0,

from which we deduce (3.37) because k > 2 and m < n.

Therefore, Lemma 3.3 is proved by induction. �

By putting Znm+i = Ui (0 6 m 6 k − 1) and according to Lemma 3.3, from the
equation (3.2) we obtain

(k − 1)(n− 1)fk(U1,U2, . . . ,Un) = 0.

Since k > 1 and n > 1, we conclude that the function f has the form (3.5).

1032



We may easily check that the functions (3.5) satisfy the functional equation (3.2).

We can do this by a direct substitution of (3.5) into (3.2). This completes the proof
of Theorem 3.1 for the case a = n(k − 1).
Now, we will pass to the proof of Theorem 3.1 for the case a 6= r(k−1) (1 6 r 6 n).
In this case, Lemma 3.3 also holds.

By putting Znm+i = Zi (0 6 m 6 k − 1) and using Lemma 3.3, from the equa-
tion (3.2) we obtain

[a− (k − 1)]fk(Z1,Z2, . . . ,Zn) = O.

Since a 6= k − 1, from the above equality we immediately deduce the statement of
Theorem 3.1 for the case a 6= r(k − 1) (1 6 r 6 n).
Therefore, Theorem 3.1 has been completely proved. �

We have not been able to solve equation (3.2) for a = r(k − 1) (2 6 r 6 n− 1).

Remark 3.2. The function

(3.38) f(U1,U2, . . . ,Un) =

∣∣∣∣∣∣∣∣∣

H1(U1) H1(U2) . . . H1(Us)
H2(U1) H2(U2) . . . H2(Us)
...

Hs(U1) Hs(U2) . . . Hs(Us)

∣∣∣∣∣∣∣∣∣

n∏

i=s+1

H1(Ui),

where s = n− r + 1, and Hi (1 6 i 6 n− r + 1) are arbitrary functions, is a solution
of the equation (3.2) for a = r(k − 1) but the question of generality of this solution
remains open.

Also, for r = n the function (3.38) becomes (3.5). If we assume that

n∏

i=n+1

H1(Zi) = I,

then the function (3.38) for r = 1 becomes (3.4).
All this suggests to put forth the following hypothesis.

Hypothesis 3.4. The general solution of the functional equation (3.2) in the
case a = r(k − 1) (1 6 r 6 n) is given by the formula (3.38).

This paper makes an entity with the previous papers [2], [3], [4].
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