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Abstract. Let G = (V, E) be a simple graph. A 3-valued function f : V (G)→ {−1, 0, 1} is
said to be a minus dominating function if for every vertex v ∈ V , f(N [v]) = �

u∈N [v]
f(u) > 1,

where N [v] is the closed neighborhood of v. The weight of a minus dominating function f
on G is f(V ) = �

v∈V
f(v). The minus domination number of a graph G, denoted by γ−(G),

equals the minimum weight of a minus dominating function on G. In this paper, the
following two results are obtained.
(1) If G is a bipartite graph of order n, then

γ−(G) > 4 � √n+ 1 − 1 � − n.

(2) For any negative integer k and any positive integer m > 3, there exists a graph G with
girth m such that γ−(G) 6 k. Therefore, two open problems about minus domination
number are solved.
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1. Introduction

Let G = (V, E) be a simple graph. The girth of G is the length of a shortest cycle
in G. For a vertex v of G, the closed neighborhood of v is the set N [v] consisting
of v together with all vertices of G adjacent to v. Let f be a real valued function

on V . For a non-empty subset S of V , we define f(S) =
∑
v∈S

f(v). The minus

dominating function is a function f : V (G) → {−1, 0, 1} such that f(N [v]) > 1 for
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all v ∈ V (G). The minus domination number for a graph G is γ−(G) = min{f(V ) :
f is a minus dominating function on G}. The problem of finding γ−(G) seems to
be very difficult. Even if we restrict G to be bipartite, the corresponding decision
problem is also NP-complete. In [3], the following two open problems about the

minus domination number of a graph were posed.

Conjecture 1 ([3]). If G is a bipartite graph of order n, then

γ−(G) > 4
(√

n + 1− 1
)
− n.

Problem 1 ([3]). For every negative integer k and positive integer m, does there

exist a graph G with girth m and γ−(G) 6 k?

In Section 2, we will prove that Conjecture 1 is true. And in Section 3 we will

give a positive answer to Problem 1.

2. Minus domination of bipartite graphs

In this section, we will give a proof for Conjecture 1. A bipartite graph B = (X, Y )
is an (a, b)-bipartite graph if every vertex in X has degree a and every vertex in Y

has degree b. If B = (X, Y ) is an (a, b)-bipartite graph, then a|X | = b|Y |.
Let Fs be a family of bipartite graphs of order n = 4s(s + 1) in which each

bipartite graph B = (X, Y ) satisfies the following two properties:
(1) X = X1 ∪ X2 is a partition of X such that |X1| = 2s and |X2| = 2s2, and

Y = Y1 ∪ Y2 is a partition of Y such that |Y1| = 2s and |Y2| = 2s2.

(2) Both G[X1∪Y2] and G[Y1∪X2] are (2s, 2)-bipartite graphs, G[X1∪Y1] = K2s,2s

is an (2s, 2s)-bipartite graph, and G[X2 ∪ Y2] contains no edges.
Since K2,2s is a (2s, 2)-bipartite graph, the familyFs is not empty for any positive

integer s.

It is easy to prove the following lemma.

Lemma 1. For all positive integers n, the inequality 4
(√

n + 1−1
)
−n 6 1 holds

and it becomes an equality only for n = 3.

Theorem 1. If G is a bipartite graph of order n, then

γ−(G) > 4
(√

n + 1− 1
)
− n.

Further, a bipartite graph G satisfies γ−(G) = 4
(√

n + 1− 1
)
− n if and only if G is

K1,2 or G is a bipartite graph in Fs where n = 4s(s + 1).
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. Let f be a minimum minus dominating function on G. Let X and Y

be the bipartite sets of G. Denote X+ = {v ∈ X | f(v) = 1}. X− = {v ∈ X |
f(v) = −1} and X0 = {v ∈ X | f(v) = 0}. Denote Y + = {v ∈ Y | f(v) = 1},
Y − = {v ∈ Y | f(v) = −1} and Y 0 = {v ∈ Y | f(v) = 0}. Let P = X+ ∪ Y +,

M = X− ∪ Y − and W = V (G) − P − M = X0 ∪ Y 0. Furthermore, let |X+| = x1,
|X−| = x2, |Y +| = y1, |Y −| = y2, |P | = p, |M | = m and |W | = w = n− p−m. It is

obvious that x1 + y1 = p > 0, and w > 0.
Case 1 : x1 = 0 or y1 = 0.
If x1 = 0, then we have that y1 > 0 and y2 = 0. Furthermore, we have x2 = 0.

Otherwise, we assume that there exists a vertex u ∈ X− 6= ∅. Since f(N [u]) > 1, we
have N [u] ∩ Y + 6= ∅. For any v ∈ N [u] ∩ Y +, since X+ = ∅, we have f(N [v]) 6 0.
This contradicts that f is a minus dominating function. Therefore, by Lemma 1, we

have γ−(G) = p−m = x1 + y1 − (x2 + y2) = y1 > 1 > 4
(√

n + 1− 1
)
− n. For the

case y1 = 0, the proof is completely similar. Furthermore, if a bipartite graph G of

order n satisfies that γ−(G) = 1 = 4
(√

n + 1− 1
)
− n, then n = 3 and G = K1,2.

Case 2 : x1 > 0 and y1 > 0.
Since every vertex in X− must be adjacent to at least two vertices in Y +, by the

pigeon-hole principle, there is a vertex v0 of Y + such that v0 is adjacent to at least
d2x2/y1e vertices of X−. Since 1 6 f(N [v0]) = 1− |N(v0) ∩X−|+ |N(v0) ∩X+| 6
1− d2x2/y1e+ |N(v0) ∩X+|, we have that

x1 = |X+| > |N(v0) ∩X+| > d2x2/y1e > 2x2/y1.

Thus we obtain that x1y1 > 2x2. Similarly, we have that x1y1 > 2y2. Therefore
x1y1 > x2 + y2 = n − p − w. Since x1y1 6 1

4 (x1 + y1)2 = 1
4p2, we have that

1
4p2 > n − p − w. Thus we have that 1

4p2 + p > n − w. Since p = x1 + y1 > 2 and
w > 0, we have that w(w + 4p− 8) > 0. Thus we can obtain that

p2

4
+ p > n− w > n− (p + 2)w

4
− w2

16
.

This follows that (2p + w

4
+ 1

)2

> n + 1.

Thus we have that

2p + w > 4
(√

n + 1− 1
)
.

Therefore,

γ−(G) = p−m = 2p− (n− w) = (2p + w) − n > 4
(√

n + 1− 1
)
− n.
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Now we assume that G is a bipartite graph of order n such that γ−(G) =
4
(√

n + 1−1
)
−n. Then 2p+w = 4

(√
n + 1−1

)
and w(w+4p−8) = 0. Since p > 2,

we have that w = 0 and 1
4p2 + p = n. Thus x1y1 = 1

4 (x1 + y1)2 and x1y1 = x2 + y2.
Therefore, the following properties of G can be obtained:

(1) x1 = y1 = 1
2p =

√
n + 1− 1,

(2) x2 = y2 = 1
2x1y1 = 1

8p2 = 1
2

(
n− 2

√
n + 1 + 2

)
,

(3) every vertex in X2 ∪ Y2 has degree 2,

(4) every vertex in X1 (Y1) is adjacent to
√

n + 1− 1 vertices in Y2 (X2), and

(5) G[X1∪Y1] is a
(√

n + 1−1,
√

n + 1−1
)
bipartite graph and G[X2∪Y2] contains

no edges.

Since
√

n + 1 is an integer and n is even, there exists an s such that n = 4s(s+1).
Thus G is a bipartite graph in Fs. Now for any graph G in Fs, we let f(v) = −1 if
v ∈ X2∪Y2 and f(v) = 1 if v ∈ X1∪Y1. Then f is a minus dominating function on G.
Thus γ−(G) 6 f(V (G)) = |X1|+ |Y1| − |X2| − |Y2| = 4

(√
n + 1− 1

)
− n. Therefore

any graph G in Fs satisfies that γ−(G) = 4
(√

n + 1 − 1
)
− n. This completes the

proof. �

3. Graphs with negative minus domination number and large girth

In this section, we are going to give a positive answer to Problem 1. An s-regular

graph with girth m is called an (s, m)-graph.

Lemma 2 ([8, p. 81]). For any positive integers s > 2, m > 3 and n > 3, there
exists a connected (s, m)-graph G such that the order of G is at least n.

An s-factor of G is an s-regular spanning subgraph of G, and G is s-factorable if

there are edge-disjoint s-factors H1, H2, . . . , Hr such that G = H1 ∪H2 ∪ . . . ∪Hr.

Lemma 3. For any positive integer r, if G is a 4r-regular graph, then G is

4-factorable.

���������
. By a famous theorem of Petersen [7], we have that any regular graph

with even degree is 2-factorable. Thus G can be factored into 2r 2-factors F1, . . . , F2r.

Let Hj = F2j−1 ∪ F2j , j = 1, . . . , r. Then H1, . . . , Hr are r pair-wise edge disjoint
4-factors of G. �
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Theorem 2. For any negative integer k and positive integer m > 3, there exists
a graph G with girth m and γ−(G) 6 k.
���������

. Assume that k is a negative integer and m > 3 is a positive integer. Let
n be a positive integer such that m− n 6 k. By Lemma 2, there exists a connected
(8, m)-graph H with order at least n. By Lemma 3, H can be factored into two edge

disjoint 4-factors H1 and H2. Let C be an m-cycle in H . By subdividing all edges in
E(H1)−E(C) we obtain a new graph G from H . Then G is a connected graph with

girth m. We denote by T the set of all vertices with degree 2 in G. Then t = |T | >
2n − m, and the order of G is n + t. We define a mapping f : V (G) → {−1, 0, 1}
such that f(v) = 1 if v ∈ V (G)−T and f(v) = −1 if v ∈ T . Then it is easy to verify
that f is a minus dominating function on G. Thus γ−(G) 6 f(V (G)) = n − t 6
n− (2n−m) = m− n 6 k. Therefore, G is a graph satisfying all the conditions of
the theorem. This completes the proof. �
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