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Abstract. We apply the method of quasilinearization to multipoint boundary value prob-
lems for ordinary differential equations showing that the corresponding monotone iterations
converge to the unique solution of our problem and this convergence is quadratic.

Keywords: quasilinearization, monotone iterations, quadratic convergence, multipoint
boundary value problems

MSC 2000 : 34A45, 34B99

Introduction

In this paper, we shall consider the following differential problem

(1)

{
x′(t) = h(t, x(t)), t ∈ J = [0, T ], T > 0,

x(0) = −αx(t1) + βx(T ) + k, 0 < t1 < T,

where h ∈ C(J × � , � ), α, β, k ∈ � . We see that if α = k = 0 and β = 1 or β = −1,
then we have a periodic or anti-periodic boundary value problem, respectively.
It is well known ([2], [3], [8]–[12], [15]) that the method of quasilinearization offers

an approach for obtaining approximate solutions to nonlinear differential problems.
Recently it was generalized and extended under less restrictive assumptions.

The aim of this paper is to apply this method to general multipoint boundary value
problems for ordinary differential equations. We construct monotone sequences as

the solutions of the corresponding linear systems. Under the assumption that f + ∆
is convex and g + Ψ is concave for some convex function ∆ and concave function Ψ
(see assumption H3(a)) with h = f + g, we prove that those sequences converge
quadratically to the unique solution of our problem. This result is of both theoretical
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and computational interest. We must point out that our considerations lead us to

prove some results for linear problems which are important in our investigations.
In Sections 1 and 2 we study differential problems with conditions of the form

x(0) = ω1x(t1) + ω2x(T ) + k, 0 < t1 < T , for ω1, ω2, k ∈ � (see problems (1)
and (13)). Our considerations crucially depend on the notion of weakly coupled
lower and upper solutions connected with positive or negative values of ω1 and ω2.

Section 3 contains the general case with a multipoint boundary condition of the form

x(0) =
r∑

i=1

aix(ti), ai ∈ � .
This paper generalizes the results of [5] and [6] in which multipoint problems were

studied for cases when all coefficients ai are positive or all are negative. This paper
also contains some results for periodic and anti-periodic boundary value problems

obtained in [8]–[12], [16]–[17]. Note that if all coefficients ai = 0, then we have an
initial value problem.

Two and multipoint boundary value problems have been considered by several
authors, see for example [4], [13], [14] and the references therein and in [1]. It is

difficult to compare those results with the corresponding results of this paper because
we use a different technique based on the theory of differential inequalities, see for

the details [7] and [12].

Section 1

Functions u, v ∈ C1(J, � ) are called weakly coupled lower and upper solutions of
the problem (1) if

{
u′(t) 6 h(t, u(t)), t ∈ J, u(0) 6 −αv(t1) + βu(T ) + k,

v′(t) > h(t, v(t)), t ∈ J, v(0) > −αu(t1) + βv(T ) + k.

Let Ω = {(t, u) ∈ J × � : y0(t) 6 u 6 z0(t), t ∈ J} be nonempty. The notation
h ∈ C0,2(Ω, � ) means that h, hx, hxx ∈ C(Ω, � ).
We introduce the following assumptions for later use.

(H1) h ∈ C(Ω, � ), α, β > 0,
(H2) y0, z0 ∈ C1(J, � ) are weakly coupled lower and upper solutions of (1) and such

that y0(t) 6 z0(t), t ∈ J ,

(H3) f, g, ∆, Ψ ∈ C0,2(Ω, � ) with h = f + g, and moreover
(a) Fxx(t, u) > 0, ∆xx(t, u) > 0, Gxx(t, u) 6 0, Ψxx(t, u) 6 0 on Ω for F =

f + ∆, G = g + Ψ,
(b) αK(t1)+βK(T ) < 1 for K(t) = exp(

∫ t

0
L(s) ds) with L(s) = Fx(s, z0(s))+

Gx(s, y0(s)) −∆x(t, y0(s))−Ψx(s, z0(s)).

844



Lemma 1. Let a, b ∈ C(J, � ), M, N ∈ C(J, � + ) with � + = [0,∞). Assume that
k1, k2, α, α1, β, β1 > 0 and the conditions

(i) 1− βA(T ) > 0, 1− β1B(T ) > 0, α1αA(t1)B(t1) < [1− βA(T )][1− β1B(T )]

are satisfied for

A(t) = exp
(∫ t

0

a(s) ds

)
, B(t) = exp

(∫ t

0

b(s) ds

)
.

Let p, q ∈ C1(J, � ) and
{

p′(t) 6 a(t)p(t) + M(t), t ∈ J,

p(0) 6 αq(t1) + βp(T ) + k1,

{
q′(t) 6 b(t)q(t) + N(t), t ∈ J,

q(0) 6 α1p(t1) + β1q(T ) + k2.

Then

(2) w(t) 6 C(t)A−1B +D(t), t ∈ J

with

w(t) =
[

p(t)
q(t),

]
C(t) =

[
A(t) 0

0 B(t)

]
, A =

[
1− βA(T ) −αB(t1)
−αA(t1) 1− β1B(T )

]
,

B =
[

αB(t1)D(t1) + βA(T )C(T ) + k1

α1A(t1)C(t1) + βB(T )D(T ) + k2

]
, D(t) =

[
A(t)C(t)
B(t)D(t)

]
,

C(t) =
∫ t

0

M(s) exp
(
−

∫ s

0

a(u) du

)
ds, D(t) =

∫ t

0

N(s) exp
(
−

∫ s

0

b(u) du

)
ds.

Moreover, if M(t) = N(t) = 0 on J and k1 = k2 = 0, then

(3) p(t) 6 0, q(t) 6 0 on J.

���������
. Note that

{
p(t) 6 A(t)[p(0) + C(t)], t ∈ J,

q(t) 6 B(t)[q(0) + D(t)], t ∈ J,

so

(4) w(t) 6 C(t)w(0) +D(t), t ∈ J.
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Moreover, using the boundary conditions we get

{
p(0) 6 αB(t1)[q(0) + D(t1)] + βA(T )[p(0) + C(T )] + k1,

q(0) 6 α1A(t1)[p(0) + C(t1)] + β1B(T )[q(0) + D(T )] + k2,

or Aw(0) 6 B. Hence w(0) 6 A−1B because A−1 exists and is positive (so its entries
are nonnegative), by assumption (i). Combining this with (4) we have (2).

Note that if M(t) = N(t) = 0 on J and k1 = k2 = 0, then C(t) = D(t) = 0
on J , so B = [0 0]T , D(t) = [ 0 0 ]T , t ∈ J . In this case, the inequality (2) yields
p(t) 6 0, q(t) 6 0 on J .

This completes the proof. �

Remark 1. If α = α1, β = β1 and a(t) = b(t) on J , then A(t) = B(t) on J .

Consequently, the condition (i) takes the form

(5) αA(t1) + βA(T ) < 1.

Note that in this case we have also

(6) p(t) + q(t) 6 A(t)
m

[αγ(t1) + βγ(T ) + k1 + k2] + γ(t), t ∈ J

with m = 1− αA(t1)− βA(T ), γ(t) = A(t)[C(t) + D(t)], t ∈ J .

Similarly as Lemma 1 we can prove

Lemma 2. Assume that a ∈ C(J, � ), M ∈ C(J, � + ), α, β, k1 > 0 and

m ≡ 1− αA(t1)− βA(T ) > 0 for A(t) = e
� t
0 a(s) ds.

Let p ∈ C1(J, � ), and
{

p′(t) 6 a(t)p(t) + M(t), t ∈ J,

p(0) 6 αp(t1) + βp(T ) + k1.

Then

p(t) 6 A(t)
{ 1

m
[αA(t1)C(t1) + βA(T )C(T ) + k1] + C(t)

}

with C defined as in Lemma 1.

Moreover, if k1 = 0 and M(t) = 0 on J , then p(t) 6 0 on J .
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Lemma 3. Assume that a, b, M, N ∈ C(J, � ), and

(7) [1− βA(T )][1− β1B(T )]− αα1A(t1)B(t1) 6= 0

for A and B defined as in Lemma 1.

Then the system

(8)

{
y′(t) = a(t)y(t) + M(t), t ∈ J, y(0) = −αz(t1) + βy(T ) + k1,

z′(t) = b(t)z(t) + N(t), t ∈ J, z(0) = −α1y(t1) + β1z(T ) + k2

has a unique solution (y, z).
���������

. Indeed,

{
y(t) = A(t)[y(0) + C(t)], t ∈ J,

z(t) = B(t)[z(0) + D(t)], t ∈ J

with C and D defined as in Lemma 1. Using the boundary conditions we obtain

P
[

y(0)
z(0)

]
=

[ −αB(t1)D(t1) + βA(T )C(T ) + k1

−α1A(t1)C(t1) + β1B(T )D(T ) + k2

]

with the matrix P defined by

P =
[

1− βA(T ) αB(t1)
α1A(t1) 1− β1B(T )

]
.

By (7), the matrix P is invertible which proves that the problem (8) has a unique
solution (y, z).
This completes the proof. �

Lemma 4. Let the assumption H1 hold. Assume that hx ∈ C(Ω, � ), and

(9) α exp
(∫ t1

0

hx(s, u(s)) ds

)
+ β exp

(∫ T

0

hx(s, u(s)) ds

)
6= 1 for (s, u) ∈ Ω.

Let y, z ∈ C1(J, � ) and
{

y′(t) = h(t, y), t ∈ J, y(0) = −αz(t1) + βy(T ) + k,

z′(t) = h(t, z), t ∈ J, z(0) = −αy(t1) + βz(T ) + k.

Then y and z are solutions of the problem (1).
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���������
. Put p = y − z. Then p(0) = αp(t1) + βp(T ) and

p′(t) = h(t, y)− h(t, z) = hx(t, ξ(t))p(t), t ∈ J,

where ξ is between y and z. Hence

p(t) = d(t)p(0), t ∈ J with d(t) = exp
(∫ t

0

hx(s, ξ(s)) ds

)
.

Now, the boundary condition yields p(0)[1 − αd(t1) − βd(T )] = 0. By the condi-
tion (9), p(0) = 0, and hence p(t) = 0 on J . This means that y(t) = z(t) on J , so y

and z satisfy the equations

{
y′(t) = h(t, y), t ∈ J, y(0) = −αy(t1) + βy(T ) + k,

z′(t) = h(t, z), t ∈ J, z(0) = −αz(t1) + βz(T ) + k.

This proves that y and z are solutions of the problem (1).

This ends the proof. �

Lemma 5. Let the assumption H1 hold. Assume that hx ∈ C(Ω, � ), and

(10) −α exp
(∫ t1

0

hx(s, u(s)) ds

)
+ β exp

(∫ T

0

hx(s, u(s)) ds

)
6= 1 for (s, u) ∈ Ω.

Then the problem (1) has at most one solution.

���������
. Assume that problem (1) has two distinct solutions x and y on the

segment [y0, z0]. Put p = x − y, so p(0) = −αp(t1) + βp(T ). The mean value
theorem yields

p′(t) = h(t, x)− h(t, y) = hx(t, ξ(t))p(t), t ∈ J,

where ξ is between x and y. Hence p(t) = c(t)p(0), t ∈ J with c(t) = e
�

t
0 hx(s,ξ(s)) ds.

Moreover, by the boundary condition, p(0)[1 + αc(t1) − βc(T )] = 0. By (10), it
follows that p(0) = 0 showing that p(t) = 0 on J . This means that x(t) = y(t) on J .

This completes the proof. �
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Lemma 6. Assume that the assumptions H1, H3 are satisfied. Let u, v ∈ C1(J, � )
be weakly coupled lower and upper solutions of (1) such that y0(t) 6 u(t) 6 v(t) 6
z0(t) on J . Let

(11)





y′(t) = h(t, u) + W (t, u, v)[y(t)− u(t)], t ∈ J,

y(0) = − αz(t1) + βy(T ) + k,

z′(t) = h(t, v) + W (t, u, v)[z(t)− v(t)], t ∈ J,

z(0) = − αy(t1) + βz(T ) + k

with W (t, u, v) = Fx(t, u) + Gx(t, v)−∆x(t, v)−Ψx(t, u).
Then

(12) u(t) 6 y(t) 6 z(t) 6 v(t), t ∈ J,

and moreover, y, z are weakly coupled lower and upper solutions of (1).
���������

. By the assumption H3, we get W (t, u, v) 6 L(t). This, the assumption
H3(b) and Lemma 3 prove that the system (11) has a unique solution (y, z).
Now we are going to show that (12) holds. Put p = u − y, q = z − v, so p(0) 6

αq(t1) + βp(T ), q(0) 6 αp(t1) + βq(T ). Moreover,
{

p′(t) 6 h(t, u)− h(t, u)−W (t, u, v)[y(t)− u(t)] = W (t, u, v)p(t), t ∈ J,

q′(t) 6 h(t, v) + W (t, u, v)[z(t)− v(t)]− h(t, v) = W (t, u, v)q(t), t ∈ J.

This and Lemma 1 give p(t) 6 0, q(t) 6 0 on J showing that u(t) 6 y(t), z(t) 6 v(t)
on J . Now, let p = y − z. Hence p(0) = αp(t1) + βp(T ). Furthermore, by the mean
value theorem and the assumption H3(a) we obtain

p′(t) = h(t, u)− h(t, v) + W (t, u, v)[y(t)− u(t)− z(t) + v(t)]

= hx(t, ξ(t))[u(t)− v(t)] + W (t, u, v)[y(t)− u(t)− z(t) + v(t)]

= [Fx(t, ξ(t)) + Gx(t, ξ(t))−∆x(t, ξ(t)) −Ψx(t, ξ(t)) −W (t, u, v)][u(t)− v(t)]

+ W (t, u, v)p(t) 6 W (t, u, v)p(t), t ∈ J,

where u(t) < ξ(t) < v(t), t ∈ J . This and Lemma 2 prove that y(t) 6 z(t) on J

which means that (12) holds.

Now, the mean value theorem and the assumption H3(a) yield

y′(t) = h(t, u) + W (t, u, v)[y(t)− u(t)]− h(t, y) + h(t, y)

= h(t, y) + hx(t, ξ1(t))[u(t) − y(t)] + W (t, u, v)[y(t)− u(t)] 6 h(t, y), t ∈ J,

z′(t) = h(t, v) + W (t, u, v)[z(t)− v(t)]− h(t, z) + h(t, z)

= h(t, z) + hx(t, ξ2(t))[v(t) − z(t)] + W (t, u, v)[z(t)− v(t)] > h(t, z), t ∈ J.
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It follows that y and z are weakly coupled lower and upper solutions of (1).

This completes the proof. �

Theorem 1. Let the assumptions H1, H2 and H3 hold.

Then there exist monotone sequences {yn}, {zn} which converge monotonically
and uniformly to the unique solution of the problem (1) and the convergence is

quadratic.

���������
. Let

{
y′n+1(t) = h(t, yn) + W (t, yn, zn)[yn+1(t)− yn(t)], t ∈ J,

yn+1(0) = −αzn+1(t1) + βyn+1(T ) + k,
{

z′n+1(t) = h(t, zn) + W (t, yn, zn)[zn+1(t)− zn(t)], t ∈ J,

zn+1(0) = −αyn+1(t1) + βzn+1(T ) + k,

where W is defined as in Lemma 6. By Lemma 3, y1 and z1 are well defined.

Moreover, Lemma 6 yields the relation

y0(t) 6 y1(t) 6 z1(t) 6 z0(t), t ∈ J.

Also, by Lemma 6, y1 and z1 are weakly coupled lower and upper solutions of (1).

Now, using induction argument, we can prove that for all n and t ∈ J ,

y0(t) 6 y1(t) 6 . . . 6 yn−1(t) 6 yn(t) 6 zn(t) 6 zn−1(t) 6 . . . 6 z1(t) 6 z0(t).

Employing a standard argument (see [7]), it is easy to conclude that the sequences
{yn}, {zn} converge uniformly and monotonically to the limit functions y and z,

respectively, where y and z satisfy the equations





y′(t) = h(t, y), t ∈ J,

y(0) = − αz(t1) + βy(T ) + k,

z′(t) = h(t, z), t ∈ J,

z(0) = − αy(t1) + βz(T ) + k.

By Lemma 4, y and z are solutions of (1). This and Lemma 5 show that problem (1)

has a unique solution x, so y = z = x.

The proof will be completed if we show that the convergence of {yn} and {zn}
to x is quadratic. Let pn+1 = x − yn+1 > 0, qn+1 = zn+1 − x > 0. Note that
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pn+1(0) = αqn+1(t1) + βpn+1(T ), qn+1(0) = αpn+1(t1) + βqn+1(T ). Hence, by the
mean value theorem and the assumption H3(a), we obtain

p′n+1(t) = h(t, x)− h(t, yn)−W (t, yn, zn)[yn+1(t)− yn(t)]

= hx(t, ξ1)pn(t)−W (t, yn, zn)[pn(t)− pn+1(t)]

6 [Fx(t, x)− Fx(t, yn) + Gx(t, yn)−Gx(t, zn) + ∆x(t, zn)−∆x(t, yn)

+ Ψx(t, yn)−Ψx(t, x)]pn(t) + W (t, yn, zn)pn+1(t)

= {Fxx(t, ξ2)pn(t)−Gxx(t, ξ3)[pn(t) + qn(t)] + ∆xx(t, ξ4)[qn(t) + pn(t)]

−Ψxx(t, ξ5(t))pn(t)}pn(t) + W (t, yn, zn)pn+1(t)

6 {(A1 + A4)pn(t) + (A2 + A3)[pn(t) + qn(t)]}pn(t) + L(t)pn+1(t),

6 L(t)pn+1(t) + D1,

where yn(t) < ξ1(t), ξ2(t), ξ5(t) < x(t), yn(t) < ξ3(t), ξ4(t) < zn(t) with L defined as

in the assumption H3(b), and

|Fxx(t, u)| 6 A1, |Gxx(t, u)| 6 A2, |∆xx(t, u)| 6 A3, |Ψxx(t, u)| 6 A4 on Ω,

D1 = max
t∈J

[K1p
2
n(t) + K2q

2
n(t)], K1 = A1 + A4 +

3
2
(A2 + A3), K2 =

1
2
(A2 + A3).

In a similar way, we obtain

q′n+1(t) 6 L(t)qn+1(t) + D2 with D2 = max
t∈J

[K3p
2
n(t) + K4q

2
n(t)],

where
K3 =

1
2
(A1 + A4), K4 = A2 + A3 +

3
2
(A1 + A4).

Put w = pn+1 + qn+1, so w(0) = αw(t1) + βw(T ), and

w′(t) 6 L(t)w(t) + D, t ∈ J

with D = D1 + D2. Consequently, by Lemma 2, we have

w(t) 6 K(t)
{ 1

m
[αK(t1)C(t1) + βK(T )C(T )] + C(t)

}
D, t ∈ J

with K defined as in the assumption H3(a) and

C(t) =
∫ t

0

e−
�

s
0 L(r) dr ds, m = 1− αK(t1)− βK(T ).

Put
γ = max

t∈J
K(t)

{ 1
m

[αK(t1)C(t1) + βK(T )C(T )] + C(t)
}

.
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Then

max
t∈J

w(t) 6 (K1 + K3)γ
[
max
t∈J

p2
n(t) + max

t∈J
q2
n(t)

]
.

Since max
t∈J

pn+1(t) 6 max
t∈J

w(t) and max
t∈J

qn+1(t) 6 max
t∈J

w(t) we get the desired

quadratic convergence.
The proof is therefore complete. �

Remark 2. Theorem 1 contains some results of [5] (when α = 0), [8], [12] (when
α = β = 0), [10], [12] (when α = k = 0, β = 1).

Section 2

Now, we shall consider the following differential problem

(13)

{
x′(t) = h(t, x(t)), t ∈ J = [0, T ], T > 0,

x(0) = αx(t1)− βx(T ) + k, 0 < t1 < T,

where h ∈ C(J × � , � ), k ∈ � , α, β > 0.
Functions u, v ∈ C1(J, � ) are called weakly coupled lower and upper solutions of

the problem (13) if
{

u′(t) 6 h(t, u(t)), t ∈ J, u(0) 6 αu(t1)− βv(T ) + k,

v′(t) > h(t, v(t)), t ∈ J, v(0) > αv(t1)− βu(T ) + k.

Theorem 2. Let the assumptions H1 and H3 hold. Let y0, z0 be weakly coupled

lower and upper solutions of the problem (13) and such that y0(t) 6 z0(t), t ∈ J .

Then there exist monotone sequences {yn}, {zn} which converge monotonically and
uniformly to the unique solution of the problem (13) and the convergence is quadratic.
���������

. Let
{

y′n+1(t) = h(t, yn) + W (t, yn, zn)[yn+1(t)− yn(t)], t ∈ J,

yn+1(0) = αyn+1(t1)− βzn+1(T ) + k
{

z′n+1(t) = h(t, zn) + W (t, yn, zn)[zn+1(t)− zn(t)], t ∈ J,

zn+1(0) = αzn+1(t1)− βyn+1(T ) + k,

where W is defined as in Lemma 6. The proof is similar to the proof of Theorem 1

and therefore is omitted. �

Remark 3. Theorem 2 contains some results of [5] (when α = 0), [12], [16], [17]
(when α = k = 0, β = 1).
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Section 3

Let us consider a generalization of the problems (1) and (13), namely

(14)





x′(t) = h(t, x), t ∈ J,

x(0) =
r∑

i=1

aix(ti) + k, 0 < t1 < t2 < . . . < tr−1 < tr = T,

where h ∈ C(J × � ), k ∈ � and ai ∈ � , i = 1, . . . , r. Functions u, v ∈ C1(J, � ) are
called weakly coupled lower and upper solutions of the problem (14) if





u′(t) 6 h(t, u), t ∈ J, u(0) 6
r∑

i=1

aiζ(ti, u, v) + k,

v′(t) > h(t, v), t ∈ J, v(0) >
r∑

i=1

aiη(ti, u, v) + k,

where

ζ(ti, u, v) =

{
u(ti) if ai > 0,

v(ti) if ai < 0,
η(ti, u, v) =

{
v(ti) if ai > 0,

u(ti) if ai < 0.

The proof of the next theorem is similar to the proofs of Theorems 1 and 2 and
therefore is omitted.

Theorem 3. Let the assumption H3(a) hold. Assume that the condition

r∑

i=1

|ai|K(ti) < 1 for K(t) = e
� t
0 L(s) ds

is satisfied with L defined as in the assumptionH3(b). Let y0, z0 ∈ C1(J, � ) be weakly
coupled lower and upper solutions of the problem (14) such that y0(t) 6 z0(t), t ∈ J .

Then there exist monotone sequences {yn}, {zn} which converge monotonically
and uniformly to the unique solution of the problem (14) and the convergence is

quadratic.

Remark 4. Note that Theorems 1 and 2 are special cases of Theorem 3. More-
over, Theorem 3 contains some results of [6] when all the coefficients ai of (14) are
positive or all are negative.
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