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Abstract. In this paper the notions of uniformly upper and uniformly lower `-estimates
for Banach function spaces are introduced. Further, the pair (X,Y ) of Banach function
spaces is characterized, where X and Y satisfy uniformly a lower `-estimate and uniformly
an upper `-estimate, respectively. The integral operator from X into Y of the form

Kf(x) = ϕ(x)
� x

0
k(x, y)f(y)ψ(y) dy

is studied, where k, ϕ, ψ are prescribed functions under some local integrability conditions,
the kernel k is non-negative and is assumed to satisfy certain additional conditions, notably
one of monotone type.

Keywords: Banach function space, uniformly upper, uniformly lower `-estimate, Hardy
type operator

MSC 2000 : 42B20, 42B25

1. Notation and basic facts

Let (Ω, µ) be a complete σ-finite measure space. By S = S(Ω, µ) we denote the
collection of all real-valued measurable functions on Ω.
Recall that we say that a Banach space X the elements of which are equivalence

classes (modulo equality a.e.) of measurable functions in (Ω, µ) is a Banach function
space (BFS) if:

1) the norm ‖f‖X is defined for every µ-measurable function f and f ∈ X if and
only if ‖f‖X <∞; ‖f‖X = 0 if and only if f = 0 a.e.;
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2) ‖f‖X =
∥∥|f |

∥∥
X
for all f ∈ X ;

3) if 0 6 f 6 g a.e., then ‖f‖X 6 ‖g‖X ;
4) if 0 6 fn ↑ f a.e., then ‖fn‖X ↑ ‖f‖X (Fatou property);
5) if E is a measurable subset of Ω such that µ(E) <∞, then ‖ℵE‖X <∞ (where

ℵE is the characteristic function of the set E);
6) for every measurable set E, µ(E) < ∞, there is a constant CE > 0 such that∫

E f(x) dx 6 CE‖f‖X .
Given a Banach function space X we can always consider its associate space X ′

consisting of those g ∈ S that f · g ∈ L1 for every f ∈ X with the usual order and
the norm ‖g‖X′ = sup{‖f · g‖L1 : ‖f‖X 6 1}. X ′ is a BFS in (Ω, µ) and a closed
norming subspace of X∗ (norming means: ‖f‖X = sup{‖f · g‖L1 : ‖g‖X′ 6 1} for all
f ∈ X).
Let X be a BFS and ω a weight, i.e., a positive measurable function on Ω. By Xω

we denote the BFS {f ∈ S : fω ∈ X} equipped with the norm ‖f‖Xω = ‖fω‖X .
(For more details and proofs of results about BFSs (Banach lattices) we refer to [1],
[2].)

In the paper we study Hardy type operators K : X → Y of the form

Kf(x) = ϕ(x)
∫ x

0

k(x, y)f(y)ψ(y) dy.

Here X , Y are BFSs on Ω = [0,+∞), µ is the usual Lebesgue measure, ϕ, ψ are mea-
surable positive functions on [0,+∞), the kernel k is a positive measurable function
on the set {(x, y) | x > y > 0} such that

d−1(k(x, z) + k(z, y)) 6 k(x, y) 6 d(k(x, z) + k(z, y))

for some constant d > 1 and for all x, y, z with x > z > y > 0. (For Lebesgue
spaces, Orlicz and Orlicz-Lorentz spaces see [5], [7], [11].)

Beside the classical Hardy operator, examples of Hardy type operators are: the
Riemann-Liouville fractional integral operator k(x, y) = (x−y)γ with γ > 0, the loga-
rithmic kernel operator with k(x, y) = logβ(x/y), β > 0, and k(x, y) =

(∫ x
y h(s) ds

)γ

with γ > 0, h ∈ S, h > 0 a.e.
By Π∗ (by Π∗) we denote the family of sequences Π = {Ii} where Ii are intervals

in � + = [0,+∞) (measurable subsets in � + , µ(Ii) > 0) such that � + =
⋃
i

Ii and

Ii ∩ Ij = ∅ for i 6= j. We ignore the difference in notation caused by a null set.

Everywhere in the sequel `Π is a Banach sequential space (BSS), meaning that
axioms 1)–6) are completed in relation to discrete measure, and ek denotes the

standard basis in `Π.
We introduce the following notation.
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Definition 1. Let ` = {`Π}Π∈Π∗ (or, respectively, ` = {`Π}Π∈Π∗) be a family

of BSSs. A BFS X is said to satisfy a uniformly upper (lower) `-estimate for Π∗

(for Π∗) if there exists a constant C < ∞ such that for every f ∈ X and Π ∈ Π∗

(Π ∈ Π∗) we have

‖f‖X 6 C

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖Xei
∥∥∥∥
`Π

(1)

(
‖f‖X > C

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖Xei
∥∥∥∥
`Π

)
.(2)

Note that if `Π1 = `Π2 = `p for all Π1,Π2 ∈ Π∗ and 1 < p <∞, then conditions (1)
and (2) are the well-known upper and lower p-estimates for X (see [2]). The notions

of uniformly upper (lower) `-estimates, when `Π1 = `Π2 for all Π1,Π2 ∈ Π∗ (or
Π1,Π2 ∈ Π∗) were introduced by Berezhnoi (see [9]). Note also that, following [9],

in this case a BFS X is said to be `-convex or `-concave.

Definition 2. A pair (X,Y ) of BFSs is said to have the property G(Π∗) (prop-
erty G(Π∗)) if there exists a constant C such that

∑

Ii∈Π

‖fℵIi‖X · ‖gℵIi‖Y ′ 6 C‖f‖X · ‖g‖Y ′

for any sequence Π = {Ii}, Π ∈ Π∗ (Π ∈ Π∗) and every f ∈ X , g ∈ Y ′.

Definition 2 was introduced by Berezhnoi (see [10]). Let us remark that a pair

(Lp, Lq) possesses the property G(Π∗) if and only if p 6 q.

LetX , Y be BFSs on (Ω1, µ1) and (Ω2, µ2), respectively. Under the spaces with the
mixed norm X [Y ], Y [X ] we mean the spaces consisting of all k ∈ S(Ω1×Ω2, µ1×µ2)
such that ‖k(t, ·)‖Y ∈ X and ‖k(·, s)‖X ∈ Y with norms

‖k‖X[Y ] =
∥∥‖k(t, ·)‖Y

∥∥
X
, ‖k‖Y [X] =

∥∥‖k(·, s)‖X
∥∥
Y
.

It is known that X [Y ], Y [X ] are BFSs on Ω1 × Ω2. (For more details we refer
to [3].) In the general case the spaces X [Y ] and Y [X ] are not isomorphic. Moreover,
Bukhvalov has proved the following theorem (see [3], [8]).

The generalization of Kolmogorov-Nagumo’s theorem. Let (X,Y ) be a
pair of BFSs on (Ω1, µ1) and (Ω2, µ2), respectively. (But such that it does not
satisfy the Fatou property.) Suppose that for every choice of functions {fi}ni=1 in X
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with pair-wise disjoint supports, and every choice of functions {gi}ni=1 in Y with

pair-wise disjoint supports we have

(3)

∥∥∥∥
n∑

k=1

fi(t)gi(s)
∥∥∥∥
X[Y ]

∼
∥∥∥∥
n∑

k=1

fi(t)gi(s)
∥∥∥∥
Y [X]

.

Then there exist p ∈ [1,∞) and weights ω1 on Ω1 and ω2 on Ω2 such that X =
Lpω1

(dµ1), Y = Lpω2
(dµ2) (in the sense order isomorphic) or bothX , Y are AM spaces.

Definition 3. A pair (X,Y ) of BFSs is said to have the property K(Π∗) (prop-
erty K(Π∗)) if there exists a constant C such that

∥∥∥∥
∑

Ii∈Π

f(t)ℵIi(t)g(s)ℵIi(s)
∥∥∥∥
Y [X]

6 C

∥∥∥∥
∑

Ii∈Π

f(t)ℵIi(t)g(s)ℵIi(s)
∥∥∥∥
X[Y ]

for all sequences Π ∈ Π∗ (Π ∈ Π∗) and every f ∈ X , g ∈ Y .

Note that if we have a continuous embedding X [Y ] ⊂ Y [X ], then the pair (X,Y )
of BFSs satisfies the property K(Π∗). For example, L1[Y ] ⊆ Y [L1] (generalized
Minkowski’s inequality). Let us remark that a pair (Lp, Lq) satisfies property K(Π∗)
if and only if p 6 q. It is well known that if X , Y are order continuous BFSs, then

X [Y ] = X⊗mY . (For the definition of this tensor product see [3], [5].) The problem
of embedding the tensor product of function spaces into another function space of

the same type has interesting applications in the theory of integral operators.

2. The main result

First we discuss the connections between the notions just introduced.

We start with the following observation which is easy to prove analogously to the
corresponding facts for upper and lower p-estimates (see [2]). Thus, we consider

Theorem 1 proved.

Theorem 1. Let {`Π}Π∈Π∗ (or ` = {`Π}Π∈Π∗) be a family of BFSs. A BFS X sat-

isfies a uniformly lower (upper) `-estimate, if and only if its dual X ′ satisfies the

uniformly upper (lower) `′-estimate where `′ = {`′Π}Π∈Π∗ (`′ = {`′Π}Π∈Π∗).

The main results concerning the notions introduced above are summarized in
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Theorem 2. Let (X,Y ) be a pair of BFSs on � + . Then the following assertions

are equivalent:

1) A pair (X,Y ) of BFSs possesses property G(Π∗) (property G(Π∗)).
2) A pair (X,Y ) of BFSs possesses property K(Π∗) (property K(Π∗)).
3) There is a family ` = {`Π}Π∈Π∗ (family ` = {`Π}Π∈Π∗) of BSSs such that

X satisfies a uniformly lower `-estimate and Y satisfies a uniformly upper `-

estimate.

Different conditions for a pair (X,Y ) of BFSs to have propertyG(Π∗) in terms of `-
concavity and `-convexity (in that case `Π1 = `Π2 for any Π1,Π2 ∈ Π∗) can be found
in [9]. Here (X,Y ) is a pair of symmetric spaces (Lebesgue, Lorentz, Marcinkewicz).
The next theorem characterizes the Lp spaces (1 6 p <∞).

Theorem 3. Let X be an order continuous BFS on � + . Then the following

assertions are equivalent:

1) There is a family ` = {`Π}Π∈Π∗ of BSSs such that X satisfies a uniformly lower

`-estimate and a uniformly upper `-estimate.

2) A pair (X,X) of BFSs has property G(Π∗).
3) X is order isomorphic to Lpω for some weight ω and p (1 6 p <∞).

Theorem 4. Let X , Y be order continuous BFSs on � + . Then the following

assertions are equivalent:

1) Pairs (X,Y ) and (Y,X) of BFSs possess property K(Π∗).
2) X and Y are order isomorphic to Lpω1

and Lpω2
, respectively, for some weights

ω1, ω2 and p (1 6 p <∞).

Note that if in Theorem 3 `Π1 = `Π2 for any Π1,Π2 ∈ Π∗, then the implication

1) ⇒ 3) is easily obtained from the result of L. Tzafriri (see [2, Theorem I.b.12]).
Note also that in Theorem 4 the implication 1) ⇒ 2) is not obtained from the
generalized theorem of Kolmogorov-Nagumo. (In general, supp fi 6= supp gi in (3).)
The following theorem characterizes the properties of boundedness of the map K

acting between BFSs when the pair (X,Y ) has property G(Π∗).

Theorem 5. Let a pair (X,Y ) of BFSs have property G(Π∗). Then K : X → Y

is bounded if and only if

sup
t>0

‖ℵ[t,∞)ϕ‖Y · ‖ℵ[0,t)(·)k(t, ·)ψ(·)‖X′ <∞

and

sup
t>0

‖ℵ[t,∞)k(·, t)ϕ(·)‖Y · ‖ℵ[0,t)ψ‖X′ <∞.
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Note that Theorem 5 has a natural analogue for the dual operator K∗ : Y ′ → X ′,

K∗g(x) = ψ(x)
∫ ∞

x

k(y, x)g(y)ϕ(y) dy.

In the case when X is `-concave and Y is `-convex, Theorem 5 was proved by

Stepanov and Lomakina (see [6]). (The case k(x, y) = 1 was investigated by Berezh-
noi in [9].)

Remark. Analogously we can consider the case Ω = [0, 1].

3. Proof of theorems

In what follows C denotes a positive constant different from line to line and inde-

pendent of the function f .���������
of Theorem 2. Here we present only the case when the family of covering

sequences is in Π∗ (for Π ∈ Π∗ the proof is similar).

For a fixed Π = {Ii} ∈ Π∗ we introduce the sequence space `XΠ with the norm

∥∥∥∥
∑

i

eiai

∥∥∥∥
`XΠ

= sup
∥∥∥∥

∑

Ii∈Π

aifiℵIi

∥∥∥∥
X

,

where the supremum is taken over all possible sequences of functions {fi}, ‖fi‖X 6 1.
(Similarly we introduce the space `YΠ .) It is easy to see that `

X
Π is a BSS and `

1 ⊂
`XΠ ⊂ `∞. Obviously, X satisfies a uniformly upper `-estimate, where ` = {`XΠ }Π∈Π∗ .

Let a pair (X,Y ) of BFSs have property K(Π∗). For f ∈ X and any sequence of
functions {gi}, ‖gi‖Y 6 1, we have

∥∥∥∥
∑

Ii∈Π

f(t)ℵIi(t)gi(s)ℵIi(s)
∥∥∥∥
Y [X]

=
∥∥∥∥

∑

Ii∈Π

‖fℵIi‖Xgi(s)ℵIi(s)
∥∥∥∥
Y

6 C

∥∥∥∥
∑

Ii∈Π

f(t)ℵIi(t)gi(s)ℵIi(s)
∥∥∥∥
X[Y ]

= C

∥∥∥∥
∑

Ii∈Π

f(t)ℵIi(t)‖giℵIi‖Y
∥∥∥∥
X

6 C‖f‖X .

It follows immediately that X satisfies the uniformly lower `-estimate, where ` =
{`YΠ}Π∈Π∗ . This completes the proof of the implication 2) ⇒ 3). Conversely, if
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X satisfies a uniformly lower `-estimate and Y satisfies a uniformly upper `-estimate

for some family BSSs ` = {`Π}Π∈Π∗ , we have

∥∥∥∥
∑

Ii∈Π

f(t)ℵIi(t)g(s)ℵIi(s)
∥∥∥∥
Y [X]

=
∥∥∥∥

∑

Ii∈Π

‖fℵIi‖Xg(s)ℵIi(s)
∥∥∥∥
Y

6 C

∥∥∥∥
∑

Ii∈Π

ei‖fℵIi‖X · ‖gℵIi‖Y
∥∥∥∥
`Π

6 C

∥∥∥∥
∑

Ii∈Π

‖giℵIi‖Y · f(t)ℵIi(t)
∥∥∥∥
X

= C

∥∥∥∥
∑

Ii∈Π

f(t)ℵIi(t)g(s)ℵIi(s)
∥∥∥∥
X[Y ]

,

and the equivalence 2) ⇔ 3) is proved.
Suppose that 3) holds. By duality (Theorem 1) it follows that Y ′ satisfies a

uniformly lower `′-estimate, where `′ = {`′Π}Π∈Π∗ . Applying Hölder’s inequality we
obtain that the pair (X,Y ) of BFSs possesses property G(Π∗).
Finally, we must prove 1) ⇒ 3). For fixed f ∈ X and any sequence of func-

tions {gi}, ‖gi‖Y 6 1, we have

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖Xgi(s)ℵIi(s)
∥∥∥∥
Y

= sup
‖g‖Y ′61

∫ �
+

∑

Ii∈Π

‖fℵIi‖Xgi(t)ℵIi(t)g(t) dt

6 sup
‖g‖Y ′61

∑

Ii∈Π

‖fℵIi‖X · ‖giℵIi‖Y · ‖gℵIi‖Y ′

6 sup
‖g‖Y ′61

∑

Ii∈Π

‖fℵIi‖X · ‖gℵIi‖Y ′ 6 C‖f‖X .

Consequently, X satisfies a uniformly lower `-estimate, where ` = {`YΠ}Π∈Π∗ . This

completes the proof of 1) ⇒ 3). �

Remark. Let X simultaneously satisfy uniformly upper and lower `-estimates,
` = {`Π}Π∈Π∗ . Then for any f ∈ X

(4)
1
C
‖f‖X 6

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖X
‖ℵIi‖X

· ℵIi

∥∥∥∥
X

6 C‖f‖X .

It follows from Theorem 2 that

‖f‖X =
∥∥∥∥

∑

Ii∈Π

f(t)ℵIi(t)
∥∥∥ ℵIi

‖ℵIi‖X

∥∥∥
X

∥∥∥∥
X

6 C

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖X
‖ℵIi‖X

· ℵIi

∥∥∥∥
X

.

In a similar way we obtain the right inequality of (4).
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���������
of Theorem 3. The fact 1) ⇔ 2) is a direct consequence of Theorem 2.

Implications 3) ⇒ 1) and 3) ⇒ 2) are obvious. We will show 1) ⇒ 3).
First we recall some standard notation (see [2]). A closed linear subspace X0

of a Banach space X is said to be a complemented subspace if there is a projection

from X onto X0, or what is the same, if there exists a closed linear subspace X1 of X
such that X = X0 ⊕X1. By a sublattice of a BFS X we mean a norm closed linear

subspace X0 of X such that max(x(t), y(t)) belongs to X0 whenever x, y ∈ X0. The
key point in the proof of implication 1) ⇒ 3) consists in the fact that every sublattice
of X is complemented. (The existence of projections on every sublattice implies that
the space is Lp (1 6 p <∞) or of c0 type. For more details and proofs of results of
J. Lindenstrauss and L. Tzafriri we refer to [2].)
Let P0 denote the canonical embedding of X into X∗∗. It should be noted that

P0(X) is a complemented sublattice of X∗∗.
Let X0 be a sublattice of X . For every finite set A = {fi}ni=1 of disjoint positive

functions with norm one in X0 there exists a set A′ = {gi}ni=1 of disjoint functions
with norm one in X∗ = X ′ such that supp fi = supp gi, 〈fi, gi〉 = 1 for any i.
There is a positive projection PA from X onto span{fi, i = 1, 2, . . . , n}, defined

by

PAf(x) =
n∑

i=1

(∫ �
+
f(s)gi(s) ds

)
· fi(t), f ∈ E.

Applying Hölder’s inequality and Theorem 2 we obtain

‖PAf‖X = sup
‖g‖X′61

∫ �
+
PAf(x) · g(x) dx

6
n∑

i=1

‖fℵsuppgi‖X · ‖gℵsuppgi‖X′ 6 C‖f‖X .

We partially order the set A of a finite set of disjoint positive vectors with norm one

in X0 by {yi}ni=1 < {zj}mj=1 if span{yi, i = 1, 2, . . . , n} ⊆ span{zj , j = 1, 2, . . . ,m}.
Now we consider each PA as an operator from X into X∗∗. For fixed f ∈ X

and every A ∈ A, the function PAf belongs to the W ∗(X∗∗, X∗) compact subset
{y : ‖y‖X∗∗ 6 C ·‖f‖X} in X∗∗. Hence, by Tichonoff’s theorem, the net {PA}A∈A of
operators from X into X∗∗ has a subnet which converges to the same limit point P
(in the topology of point-wise convergence on X taking in X∗∗ the W ∗(X∗∗, X∗)
topology).
It follows immediately that P0P is a positive projection from X onto X0. (Note

that for any fixed ε > 0 and f ∈ X0 there are functions {fi}Ni=1 in X0 with pair-wise

disjoint supports such that
∥∥∥f −

N∑
i=1

fi

∥∥∥
X
< ε. For more details about Freudenthal’s

spectral theorem see [2], [3].) This completes the proof. �
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���������
of Theorem 4. Implication 2) ⇒ 1) is obvious. We will show 1) ⇒ 2).

There is a family ` = {`Π}Π∈Π∗ of BSSs such that X satisfies a uniformly lower
`-estimate and a uniformly upper `-estimate, namely, we can use BSSs with the
norm ∥∥∥∥

∑

i

aiei

∥∥∥∥
`Π

=
∥∥∥∥

∑

Ii∈Π

ai
‖ℵIi‖Y

ℵIi

∥∥∥∥
Y

and, consequently, X is order isomorphic to Lp1ω1
for some p1 (1 6 p1 < ∞) and

a weight ω1. In a similar way we conclude that Y is order isomorphic to Lp2ω2
for

some p2 (1 6 p2 <∞) and a weight ω2. Obviously, p1 = p2. ����������
of Theorem 5. It is clear that the continuity of K : X → Y is equivalent

to the continuity of K0 : X0 → Y0, where X0 = Xψ−1 , Y0 = Yϕ, and

K0f(x) =
∫ x

0

k(x, t) dt.

Note also that if a pair (X,Y ) of BFSs has property G(Π∗), then (X0, Y0) has
property G(Π∗) too. Consequently, without loss of generality we can assume that
ψ = ϕ = 1.
Without loss of generality suppose that f is nonnegative with compact support.

Following the procedure introduced in [7] (see also [9]), select a monotone sequence

{xi} ⊂ � + , −∞ < i 6 N 6 +∞ such that

K0f(x) 6 C

( ∑

−∞6i6N
ℵ(xi,xi+1)(x)

∫ xi

xi−1

k(xi, t)f(t) dt

+
∑

−∞6i6N
k(xi, xi−1)

∫ xi−1

0

f(t) dt · ℵ(xi,xi+1)(x)
)

= C(F1(x) + F2(x)).

Applying Hölder’s inequality we obtain
∫ xi+1

xi

g(t) dt ·
∫ xi

xi−1

k(xi, t)f(t) dt

6 ‖gℵ(xi,xi+1)‖Y ′ · ‖ℵ(xi,xi+1)‖Y · ‖k(xi, ·)ℵ(xi−1,xi)‖X′ · ‖fℵ(xi−1,xi)‖X
6 C‖gℵ(xi,xi+1)‖Y ′ · ‖fℵ(xi−1,xi)‖X .

Substituting these estimates into the formula for ‖F1‖Y we obtain

‖F1‖Y = sup
‖g‖Y ′61

∑

i

∫ xi+1

xi

g(t) dt ·
∫ xi

xi−1

k(xi, t)f(t) dt

6 sup
‖g‖Y ′61

( ∑

−∞<2i6N
‖gℵ(xi,xi+1)‖Y ′ · ‖fℵ(xi−1,xi)‖X

+
∑

−∞<2i+16N
‖gℵ(xi,xi+1)‖Y ′ · ‖fℵ(xi−1,xi)‖X

)
6 C‖f‖X .
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To estimate ‖F2‖Y we note that for a fixed strictly increasing sequence {xi} (−∞ <

i < +∞) the inequality

(5)

∥∥∥∥
∑

i

k(xi, xi−1)
∫ xi−1

0

f(t) dt · ℵ(xi,xi+1)

∥∥∥∥
Y

6 C‖f‖Y

is valid if

(6) sup
i

∥∥∥∥
∑

j>i
ℵ(xj ,xj+1)k(xj , xj−1)

∥∥∥∥
Y

· ‖ℵ(0,xi−1)‖X′ <∞.

The proof of (6) ⇒ (5) is based on the fact that the function
∫ x
0
f(t) dt is non-

decreasing. Let m be an integer such that ‖f‖L1 ∈ (2m, 2m+1]. Then there is an
increasing sequence {ti} (−∞ < i 6 m) such that 2i =

∫ ti
0
f(t) dt =

∫ ti+1

ti
f(t) dt for

k 6 m− 1 and 2m =
∫ tm
0

f(t) dt.
It is clear that

∫ xi−1

0 f(t) dt �
∫ tk+1

tk
f(t) dt for xi−1 ∈ (tk, tk+1]. Substituting

this estimate into the formula for ‖F2‖Y and applying the above method (see the
calculation of the norm ‖F1‖Y ) we can prove implication (6) ⇒ (5).
It follows from the inequality k(xi, xi−1) 6 d2k(x, t) for x > xi > xi−1 > t that

∥∥∥∥
∑

j>i
ℵ(xj ,xj+1)k(xj , xj−1)

∥∥∥∥
Y

· ‖ℵ(0,xi−1)‖X′ 6 C sup
t>0

‖ℵ[t,∞)k(·, t)‖Y · ‖ℵ(0,t]‖X′ <∞,

which completes the proof of the sufficiency part.

The necessity can be obtained in a similar way as for the Lebesgue space (see [7])
and we omit it here. �

4. Examples

Let p be a fixed µ-measurable function on Ω, 1 6 p(t) 6 +∞. Put Ω∞ =
{t : p(t) = +∞}, Ω0 = Ω \ Ω∞. The BFS Lp(t) is defined by the norm

‖f‖Lp(t) = inf
{
λ > 0:

∫

Ω0

∣∣∣f(t)
λ

∣∣∣
p(t)

dµ(t) 6 1
}

+ ‖fℵΩ∞‖L∞ .

It is well known that (see [13]) (Lp(t))′ is isomorphic to the space Lq(t), where
p(t)−1 + q(t)−1 = 1. Moreover, the norm is order continuous if and only if p ∈ L∞.
The spaces Lp(t) are of Musielak-Orlicz type. The concept of Musielak-Orlicz spaces
was introduced in [4].
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Below we consider the case Ω = [0, 1] and the µ-Lebesgue measure. Let P[0,1]

denote the set of functions p ∈ C([0, 1]), ‖p‖C > 1 such that for all t1, t2 ∈ [0, 1]

∣∣(p(t1)− p(t2)) ln |t1 − t2|
∣∣ 6 C.

Example 1. Let p1, p2 ∈ P[0,1] and p1(t) 6 p2(t) for all t ∈ [0, 1]. Then the pair
(Lp1(t), Lp2(t)) of BFSs has property G(Π∗).���������

. First we prove that for fixed p ∈ P[0,1],

(7)

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖Lp(t)

‖ℵIi‖Lp(t)
· ℵIi

∥∥∥∥
Lp(t)

� ‖f‖Lp(t) .

We need the following lemma (see [12], [14]).

Lemma. Let p1, p2 be fixed measurable functions on [0, 1], 1 6 p1(t) 6 p2(t) 6
C < +∞ a.e. Then for every f ∈ Lp2(t) the inequality

(8) ‖f‖Lp1(t) 6 2‖f‖Lp2(t)

is valid.

To prove the inequalities (7) let us first consider the case p(t) > 1 on [0, 1]. Below
we will use the following notation:

p(I) = min
t∈I

p(t), p(I) = max
t∈I

p(t), pΠ(t) =
∑

Ii∈Π

p(Ii)ℵIi(t).

From (8) it follows that

1
2
|I |1/p(I) 6 ‖ℵI‖Lp(t) 6 2|I |1/p(I).

Under our assumptions we have for some constant C and every interval I ⊂ [0, 1]

|I |1/p(I)−1/p(I) =
(
exp

(
− log |I | · (p(I)− p(I))

))1/(p(I)p(I))
.

Consequently,

(9) |I |1/p(I) � ‖ℵI‖Lp(t) � |I |1/p(I).

From the definition of the norm, it is obvious that if ‖fℵI‖Lp(t) 6 1, then

(10) ‖fℵI‖Lp(t) 6
(∫

I

|f(t)|p(t) dt
)1/p(I)

.
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Combining the estimates (9), (10) for ‖f‖Lp(t) 6 1 we have

∫

[0,1]

( ∑

Ii∈Π

‖fℵIi‖Lp(t)

‖ℵIi‖Lp(t)
· ℵIi

)pΠ(t)

dt 6 C
∑

Ii∈Π

∫

Ii

∫
Ii
|f(t)|p(t) dt

|Ii|
dt

6 C
∑

Ii∈Π

∫

Ii

|f(t)|p(t) dt = C

∫

[0,1]

|f(t)|p(t) dt 6 C.

Consequently, for any f ∈ Lp(t) we have

(11)

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖Lp(t)

‖ℵIi‖Lp(t)
ℵIi

∥∥∥∥
Lp(t)

6 2
∥∥∥∥

∑

Ii∈Π

‖fℵIi‖Lp(t)

‖ℵIi‖Lp(t)
ℵIi

∥∥∥∥
LpΠ(t)

6 C‖f‖Lp(t) .

Analogously, for q(t) we have

(12)

∥∥∥∥
∑

Ii∈Π

‖gℵIi‖Lq(t)

‖ℵIi‖Lq(t)
ℵIi

∥∥∥∥
Lq(t)

6 C‖g‖Lq(t) .

Using the estimates (11), (12) we obtain

‖f‖Lp(t) = sup
‖g‖

Lq(t) 61

∫

[0,1]

f(t)g(t) dt 6 sup
‖g‖

Lq(t) 61

∑

Ii∈Π

∫

Ii

f(t)g(t) dt

6 sup
‖g‖

Lq(t) 61

∑

Ii∈Π

‖fℵIi‖Lp(t) · ‖gℵIi‖Lq(t)

6 sup
‖g‖

Lq(t) 61

∫

[0,1]

∑

Ii∈Π

‖fℵIi‖Lp(t)‖gℵIi‖Lq(t)

‖ℵIi‖Lp(t)‖ℵIi‖Lq(t)
ℵIi

6 sup
‖g‖

Lq(t) 61

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖Lp(t)

‖ℵIi‖Lp(t)
ℵIi

∥∥∥∥
Lp(t)

·
∥∥∥∥

∑

Ii∈Π

‖gℵIi‖Lq(t)

‖ℵIi‖Lq(t)
ℵIi

∥∥∥∥
Lq(t)

6 C

∥∥∥∥
∑

Ii∈Π

‖fℵIi‖Lp(t)

‖ℵIi‖Lp(t)
ℵIi

∥∥∥∥
Lp(t)

.

The proof of inequalities (7) in the case p([0, 1]) > 1 is complete.
Case p([0, 1]) = 1. Fix k ∈ � and put

pk(t) =





1 +
1
k
, when t ∈ {x : p(x) 6 1 + 1/k},

p(t), when t ∈ {x : p(x) > 1 + 1/k}.

It is clear that inequalities (7) are valid for Lpk(t), and a simple limiting argument
gives the desired result.
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By `pk(t)
Π (k = 1, 2) we denote sequence spaces with the norm

∥∥∥∥
∑

i

aiei

∥∥∥∥
`

pk(t)
Π

=
∥∥∥∥

∑

Ii∈Π

ai
‖ℵIi‖Lpk(t)

ℵIi

∥∥∥∥
Lpk(t)

.

Let ‖∑
aiei‖`p1(t)

Π
= 1, then

∫

[0,1]

( ∑

Ii∈Π

|ai|
‖ℵIi‖Lp1(t)

ℵIi

)p1(t)
dt = 1

and consequently ∑

Ii∈Π

1
|Ii|

∫

Ii

a
p1(t)
i dt 6 C.

Using the last inequality and the fact that |ai| 6 1, we have

∑

Ii∈Π

1
|Ii|

∫

Ii

a
p2(t)
i dt 6 C

and consequently ∥∥∥∥
∑

i

aiei

∥∥∥∥
`

p2(t)
Π

6 C.

It follows that for any Π ∈ Π∗

(13)

∥∥∥∥
∑

i

aiei

∥∥∥∥
`

p2(t)
Π

6 C

∥∥∥∥
∑

i

aiei

∥∥∥∥
`

p1(t)
Π

.

Using (7), (13) we have that Lp1(t) satisfies a uniformly lower {`p1(t)Π }Π∈Π∗-estimate
and Lp2(t) satisfies a uniformly upper {`p1(t)Π }Π∈Π∗-estimate. �

Case Ω = [0,∞). Let P[0,∞) denote the set of functions defined on [0,∞) of the
form p(2/π arctan t) where p ∈ P[0,1].

Example 2. Let p1, p2 ∈ P[0,∞) and p1(t) 6 p2(t) for all t ∈ [0,+∞). Then the
pair (Lp1(t), Lp2(t)) of BFSs possesses property G(Π∗).���������

. For any p ∈ P[0,1] the spaces Lp(t) and L
p(`(t))
ω are isomorphic, where

`(t) = 2/π arctan t, t ∈ [0,∞), and ω(t) = (2/π (1 + t2)−1)1/p(`(t)). (Note that the
measure spaces ([0, 1], dt), ([0,∞), 2(π(1 + t2))−1 dt) are isomorphic.)
Note also that the pair (X,Y ) of BFSs possesses property G(Π∗) if and only if the

pair (Xω1 , Yω2) possesses property G(Π∗) for some weights ω1, ω2. This completes
the proof. �
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Remark. Below we will construct a function p(t) ∈ C([0, 1]) such that the pair
(Lp(t), Lp(t)) of BFSs does possess property G(Π∗).

Let us start by defining some subsets of [0, 1]. Let us put

Qkm =
(
4−m−1 +

3(k − 1)
16m

4−m, 4−m−1 +
3k

16m
4−m

)
, m ∈ � , k = 1, 2, . . . , 4m;

Okm =
(
4−m−1 +

3(k − 1)
4m

4−m, 4−m−1 +
3k
4m

4−m
)
, m ∈ � , k = 1, 2, . . . ,m.

Let {p1
m}m∈ � be a convergent sequence of numbers with p1

m > 2, m ∈ � . Let
us define a new sequence of numbers {p2

m}m∈ � in the following way: p2
m = p1

m −
(ln(m+ 5))−α, where α is a number from the interval (0, 1).
Let us construct a function p ∈ C([0, 1]), p(t) > 1, such that p(t) = p1

m with

x ∈ Q4l+1
m , m ∈ � , l = 0, 1, . . . ,m − 1, and p(t) = p2

m with x ∈ Q4l+3
m , m ∈ � ,

l = 0, 1, . . . ,m− 1. (The possibility of such construction is obvious.)
For the functions

fm(t) =
m−1∑

l=0

ℵQ4l+1
m

(t), gm(t) =
m−1∑

l=0

ℵQ4l+3
m

(t)

we have

Am =
m∑

k=1

‖fmℵOk
m
‖Lp(t) · ‖gmℵOk

m
‖Lq(t) = m|Q1

m|1/p
1
m · |Q1

m|1−1/p2m

and

Bm = ‖fm‖Lp(t) · ‖gm‖Lq(t) = (m|Q1
m|)1/p

1
m · (m|Q1

m|)1−1/p2m .

It is clear that
Am
Bm

= m1/p2m−1/p1m →∞ as m→∞.

Consequently, the pair (Lp(t), Lp(t)) does not possess property G(Π∗).
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