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SEQUENTIALLY COMPLETE INDUCTIVE LIMITS

AND REGULARITY
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Abstract. A notion of an almost regular inductive limits is introduced. Every sequentially
complete inductive limit of arbitrary locally convex spaces is almost regular.

Keywords: sequential completeness, regular, resp. almost regular, inductive limit of lo-
cally convex spaces
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1. Introduction

Throughout the paper E1 ⊂ E2 ⊂ . . . is a sequence of Hausdorff locally convex

spaces with respective topologies τn and continuous identity maps En → En+1,
n ∈ � . Their locally convex inductive limit ind En, resp. inductive topology ind τn,
is for brevity denoted by E, resp. τ . We also assume E to be Hausdorff.

If X is locally convex space with a topology α and A ⊂ X , we denote the closure

of A in X by clα A or clX A, and strong dual of X by X ′.

Definition. An inductive limit ind En is called almost regular if for any set B,
bounded in ind En, there exists n ∈ � such that for any 0-nbhd U ∈ τn, the closure

clτ U absorbs B.

Lemma 1. Let X be a locally convex space, Y its completion, U a closed 0-nbhd
in X , V = clY U , x ∈ X , x 6∈ U , and B ⊂ X . Then:

(a) x 6∈ V ,

(b) B is bounded in X iff it is bounded in Y .
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. (a) Take f ∈ X ′ such that f(x) > 1 and f(U) ⊂ (−∞, 1]. Let g ∈ Y ′

be the continuous extension of f to Y . Then g(x) = f(x) > 1 and g(V ) ⊂ (−∞, 1].
Hence x 6∈ V .
(b) Any set bounded in X is also bounded in Y . Let a set B ⊂ X be bounded

in Y and U be a 0-nbhd in X . Then V = clY U is a 0-nbhd in Y and there exists
λ > 0 such that B ⊂ λV . This implies B = B ∩ X ⊂ λV ∩ X = λU . Hence B is

absorbed by U . �

Lemma 2. Given ind En and for any n ∈ � , a 0-nbhd Un ∈ τn. Put Vn = clτ Un

and assume that for any k, n ∈ � , there is xkn ∈ E such that xkn 6∈ kVn. For any

k, n ∈ � , pick a τ -closed 0-nbhd Wkn ∈ τ such that (xkn + Wkn) ∩ kVn = ∅. Put
Vn = {Vm ; m > n}, W = {Wkn ; k, n ∈ � }, andM =

⋂{(1/n)W ; n ∈ � , W ∈ W }.
For any n ∈ � , denote by Xn the vector space clτ En equipped with the topology

generated by the subbasis, (see [1]), Vn ∪W , by Yn the quotient space Xn/M , and

by πn the canonical projection clτ En → clτ En/M . Then for any k, n ∈ � , the space
Yn is a metrizable locally convex space and (xkn + M) ∩ kπnVn = ∅.
�! #"$"&%

. For any n ∈ � , denote by Fn the vector space clτ En with the topology

generated by the subbasis W . Then each quotient space Fn/M is Hausdorff. The
space Yn is also Hausdorff since its topology is stronger than that of Fn/M . The

topology of Yn has a countable subbasis, hence Yn is metrizable.
The last statement in the lemma is evident. �

Lemma 3. Let ind En, of arbitrary locally convex spaces, be sequentially com-

plete and B an absolutely convex, bounded, and closed set in ind En. Then there

exist λ > 0 and m ∈ � such that B ⊂ λ clτ (B ∩ Em).
�! #"$"&%

. Let Bn = clτ (B ∩ En), n ∈ � . Denote by F , resp. Fn, the linear span
of B, resp. Bn, equipped with the topology generated by the basis {k−1B ; k ∈ � },
resp. {k−1Bn ; k ∈ � }. By [4, Prop. 1], the space F , as well as all spaces Fn,
are Banach. The topology of each Fn is the same as that inherited from F and

F =
⋃{Fn ; n ∈ � }. Hence F = ind Fn is a strict inductive limit and the identity

map F → ind Fn is continuous. By [3, cor. IV, 6.5], there exists m ∈ � such that
F = Fm and both spaces have the same topology. Since the set B is bounded in F ,
there exists λ > 0 such that B ⊂ λBm. �

Theorem. Any sequentially complete ind En of arbitrary locally convex spaces

En, n ∈ � , is almost regular.
�! #"$"&%

. Assume that ind En is sequentially complete but not almost regular.
Then there exists a set B, bounded in ind En, such that for any n ∈ � there is
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a 0-nbhd Un ∈ τn whose closure clτ Un does not absorb B. We may assume that

B is absolutely convex and τ -closed. By Lemma 3, there exists m ∈ � such that
clτ (B ∩ Em) absorbs B. Without loss of generality we may assume m = 1.
Since clτ Un does not absorb B, there exist, for any k ∈ � , a point xkn ∈ B and

a τ -closed 0-nbhd Wkn ∈ τ such that (xkn + Wkn) ∩ k clτ Un = ∅. Further, we use
the same notation as in Lemma 2.

For any n ∈ � , the completion Zn of Yn is a Fréchet space, Z1 ⊂ Z2 ⊂ . . ., and the
identity maps Zn → Zn+1 are continuous. The projection π : En → Yn, n ∈ � , is
continuous. Hence π : ind En → ind Yn is continuous, too, and the set πB is bounded
in ind Yn as well as in ind Zn.

By [3, cor. IV, 6.5] the closure of πB in the topology of ind Zn is bounded in some
space Zm. Hence πB is also bounded in Zm. By Lemma 1, πB is bounded in Ym.

This implies that πB is absorbed by πVm. But it follows from Lemma 2, that for
any k ∈ � , πxkm ∈ πB \ kπVm. We got a contradiction. �
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