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Abstract. This paper deals with two types of non-local problems for the Poisson equation
in the disc. The first of them deals with the situation when the function value on the circle
is given as a combination of unknown function values in the disc. The other type deals
with the situation when a combination of the value of the function and its derivative by
radius on the circle are given as a combination of unknown function values in the disc. The
existence and uniqueness of the classical solution of these problems is proved. The solutions
are constructed in an explicit form.
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Introduction

This paper investigates non-local boundary problems for the Poisson equation in
the disc. The non-local problem for harmonic functions in the two-dimensional case

was first investigated by O. Sjöstrand [9]. Unique existence theorems were obtained
by using the theory of Fredholm integral equations. Analogous problems were posed

by A. Bitsadze and A. Samarski. Unique existence theorems for a harmonic function
were obtained in a rectangle [1]. A. Bitsadze [2] also constructed the harmonic

function u(r, ϑ) in the disc (r 6 1) satisfying the condition

u(1, ϑ) = u(h, ϑ) + f(ϑ), 0 6 ϑ 6 2π, 0 < h < 1,

where r, ϑ are the polar coordinates of the point, f(ϑ) is a given function, and h is a

given constant. The solution is represented by Fourier series. In this paper this prob-
lem is generalized and more effective solutions in the integral form by quadratures

are constructed. They may be used for a wider class of functions. Non-local bound-
ary problems arise in connection with mathematical modeling of some processes in
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physics, chemistry, biology, etc. Applications of these problems can be found in the

research of baroclinic sea dynamics [4], in the theory of elasticity and shells [3], [6],
[7], [8], etc.

1.1. The first problem.
Let D be a disc with radius R, whose center coincides with the origin of coor-

dinates. Consider a finite number of concentric circles, with radii satisfying the

condition R > R1 > . . . > Rm > 0. Let S be the boundary of D, then D = D ∪ S.

Consider the non-local problem for the Poisson equation in the disc:

∆u = g(r, ϑ), reiϑ ∈ D,(1)

u(R, ϑ)−
m∑

k=1

aku(Rk, ϑ) = f(ϑ), 0 6 ϑ < 2π,(2)

where z = reiϑ are complex points of the disc, f ∈ C2(S), g ∈ C1(D) are given
functions, ak (k = 1, . . . , m) are given real numbers, ∆ is the Laplace operator,
written in polar coordinates

∆ =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂ϑ2
.

By a classical solution u(r, ϑ) of the problem (1)–(2) we mean a function u(r, ϑ)
of class C2(D) ∩ C(D) satisfying all the conditions of the problem (1)–(2).

Theorem 1. Let f ∈ C2(S), g ∈ C1(D) and

1− kn 6= 0, n = 0,±1,±2, . . .

where

kn =
1
2π

∫ 2 �
0

k(ϑ)e−inϑ dϑ, k(ϑ) =
m∑

k=1

ak
R2 −R2

k

R2 + R2
k − 2RRk cosϑ

.

Then there exists a unique classical solution of problem (1)–(2), which is represented
as follows:

u(r, ϑ) =
1
2π

∫ 2 �
0

R2 − r2

R2 + r2 − 2Rr cos(ϑ− θ)

(
F (θ) +

1
2π

∫ 2 �
0

k∗(θ − ϕ)F (ϕ) dϕ

)
dθ

+ u1(r, ϑ),
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where

u1(r, ϑ) =
1
4π

∫ 2 �
0

∫ R

0

ln(r2 + %2 − 2r% cos(ϑ− θ))g(%, θ)% d% dθ,(3)

k∗(ϑ) =
∞∑

n=−∞

kn

1− kn
einϑ,

F (θ) = f(θ)− u1(R, θ) +
m∑

k=1

aku1(Rk, θ).(4)

���������
. As is known, the general solution of the equation (1) is represented as

follows:

(5) u = u0 + u1,

where u0 is a harmonic function and u1 is a particular solution, which can be taken
as (3).

By means of the equality (5), the problem (1)–(2) reduces to the following problem:

∆u0 = 0, reiϑ ∈ D,(6)

u0(R, ϑ)−
m∑

k=1

aku0(Rk , ϑ) = F (ϑ), 0 6 ϑ < 2π,(7)

where F (ϑ) is given by the formula (4). Since u0 is a function harmonic in D and

continuous in D, it is possible to use the Poisson formula

(8) u0(r, ϑ) =
1
2π

∫ 2 �
0

(R2 − r2)u0(R, θ) dθ

R2 + r2 − 2Rr cos(ϑ− θ)
, 0 6 ϑ < 2π.

Using the formula (8) for the condition (7) one can obtain

(9) u0(R, ϑ)− 1
2π

m∑

k=1

ak

∫ 2 �
0

(R2 −R2
k)u0(R, θ) dθ

R2 + R2
k − 2RRk cos(ϑ− θ)

= F (ϑ), 0 6 ϑ < 2π.

Let us introduce the following notations

(10) v(ϑ) = u0(R, ϑ), k(ϑ) =
m∑

k=1

ak
R2 −R2

k

R2 + R2
k − 2RRk cosϑ

.

By virtue of (10) the equation (9) can be written in the following way:

(11) v(ϑ)− 1
2π

∫ 2 �
0

k(ϑ− θ)v(θ) dθ = F (ϑ), 0 6 ϑ < 2π.
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The equation (11) represents a convolution type equation, whose kernel has the

same period as the function F (ϑ) in the right-hand side of the equation (11) and
the unknown function v(ϑ). Therefore in this case the solution of the equation (11)
can be sought in quadratures by applying the discrete Fourier transform. Let us

introduce the following notations

vn =
1
2π

∫ 2 �
0

v(ϑ)e−inϑ dϑ, kn =
1
2π

∫ 2 �
0

k(ϑ)e−inϑ dϑ,(12)

Fn =
1
2π

∫ 2 �
0

F (ϑ)e−inϑ dϑ.

Multiplying the equation (11) by 1
2 � e−inϑ, integrating from 0 to 2π and changing

the integration order (as the sub-integral functions are continuous), one can obtain

1
2π

∫ 2 �
0

v(ϑ)e−inϑ dϑ− 1
2π

∫ 2 �
0

v(ϑ) dϑ
1
2π

∫ 2 �
0

k(ϕ− ϑ)e−inϕ dϕ

=
1
2π

∫ 2 �
0

F (ϑ)e−inϑ dϑ.(13)

Let us denote
ϕ− ϑ = γ.

Taking into account this notation and (12), the equation (13) can be rewritten as

(14) vn −
1
2π

∫ 2 �
0

v(ϑ) dϑ
1
2π

∫ 2 � −ϑ

−ϑ

k(γ)e−in(γ+ϑ) dγ = Fn.

As k(γ)e−in(γ+ϑ) is a periodic function with period 2π, one gets

∫ 2 � −ϑ

−ϑ

k(γ)e−in(γ+ϑ) dγ =
∫ 2 �

0

k(γ)e−in(γ+ϑ) dγ.

Consequently, from (14) one can obtain

vn −
1
2π

∫ 2 �
0

v(ϑ)e−inϑ dϑ
1
2π

∫ 2 �
0

k(γ)e−inγ dγ = Fn.

Hence, one gets

(15) vn(1− kn) = Fn, n = 0,±1,±2, . . . .

The last equation is solvable for any Fn only when

(16) 1− kn 6= 0, n = 0,±1,±2, . . . .
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In this case the equation (15) has the unique solution:

(17) vn =
Fn

1− kn
, n = 0,±1,±2, . . . .

Let us rewrite (17) in the following way

(18) vn = Fn + k∗nFn, n = 0,±1,±2, . . .

where
k∗n =

kn

1− kn
= kn

( 1
1− kn

− 1
)

+ kn.

Since kn is the discrete Fourier transform of the periodic function k(ϑ), kn

(
(1 −

kn)−1 − 1
)
will be the discrete Fourier transform of a periodic function.

Taking into account the notations (10) and (12) one can obtain

kn =
m∑

j=1

aj

2π

∫ 2 �
0

(R2 −R2
j ) e−inϑ dϑ

R2 + R2
j − 2RRj cosϑ

.

Introducing the notation

t = Reiϑ,

one gets

cosϑ =
eiϑ + e−iϑ

2
=

R2 + t2

2Rt
.

According to the residue theory one obtains

kn = −
m∑

j=1

(R2 −R2
j )

ajR
n

2πiRj

∫

s

dt

(t−Rj)(t−R2/Rj)tn

=
m∑

j=1

aj





(Rj

R

)n

, n > 0,

( R

Rj

)n

, n 6 −1,

thus

(19) kn =
m∑

j=1

aj

(Rj

R

)|n|
, n = 0,±1,±2, . . . .

It is obvious that k∗n vanishes at the infinity just as fast as kn does, therefore

k∗(ϑ) is an analytic function. The solution of the equation (11) can be obtained by
multiplying (18) by einϑ and summing over the interval (−∞,∞):

(20) v(ϑ) = F (ϑ) +
1
2π

∫ 2 �
0

k∗(ϑ− θ)F (θ) dθ,
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where on the basis of (19) one gets:

(21) k∗(ϑ) =
∞∑

n=−∞

kn

1− kn
einϑ =

∞∑

n=−∞

m∑
j=1

aj

(Rj

R

)|n|einϑ

1−
m∑

j=1

aj

(Rj

R

)|n| .

Taking into account (10) and substituting u0(R, θ) into the Poisson formula (8)
for the function v(θ) defined from the formula (20), one obtains unknown harmonic
function u0(r, ϑ), 0 < r < R, expressed as

u0(r, ϑ)(22)

=
1
2π

∫ 2 �
0

R2 − r2

R2 + r2 − 2Rr cos(ϑ− θ)

(
F (θ) +

1
2π

∫ 2 �
0

k∗(θ − ϕ)F (ϕ) dϕ

)
dθ,

where F (θ) is the function defined by the formula (4). Thus, on the basis of (22),
(3) and (5) the solution of the problem (1)–(2) can be represented as follows:

u(r, ϑ) =
1
2π

∫ 2 �
0

R2 − r2

R2 + r2 − 2Rr cos(ϑ− θ)

(
F (θ) +

1
2π

∫ 2 �
0

k∗(θ − ϕ)F (ϕ) dϕ

)
dθ

+
1
4π

∫ 2 �
0

∫ R

0

ln(r2 + %2 − 2r% cos(ϑ− θ))g(%, θ)% d% dθ.

�

Remark. Since k∗(ϑ) is an analytic function, the function v(ϑ) obtained by the
formula (20) will belong to the same class as F (ϑ) and the formula (20) is true not
only for continuous F (ϑ), but also for an integrable function F (ϑ).

1.2. The second problem.
Consider the non-local problem for the Poisson equation in the disc:

∆u = g(r, ϑ), reiϑ ∈ D,(23)

∂u

∂r

∣∣∣
r=R

+ αu(R, ϑ) =
m∑

k=1

βku(Rk, ϑ) + f(ϑ), 0 6 ϑ < 2π,(24)

where ∆, D, S, R and Rk (k = 1, . . . , m) are defined as in the first problem, f ∈
C2(S), g ∈ C1(D) are given functions, α, βk (k = 1, . . . , m) are given real numbers.

By a classical solution u(r, ϑ) of the problem (23)–(24) we mean a function u(r, ϑ)
of class C2(D) ∩ C1(D) satisfying all the conditions of the problem (23)–(24).
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Theorem 2. Let f ∈ C2(S), g ∈ C1(D) and α 6=
m∑

k=1

βk,

1− kn 6= 0, n = 0,±1,±2, . . .

where

kn =
1
2π

∫ �
− �

k(ϑ)e−inϑ dϑ,

k(ϑ) = αR ln(2R2(1− cosϑ)) −
m∑

k=1

βkR ln(R2 + R2
k − 2RRk cosϑ).

Then there exists a unique classical solution of the problem (23)–(24), which is

represented as follows:

u(r, ϑ) = − R

2π

∫ 2 �
0

ln(R2 + r2 − 2Rr cos(ϑ− θ))w(θ) dθ + c + u1(r, ϑ),

where

u1(r, ϑ) =
1
4π

∫ 2 �
0

∫ R

0

ln(r2 + %2 − 2r% cos(ϑ− θ))g(%, θ)% d% dθ,(25)

w(ϑ) = F (ϑ) +
1
2π

∫ �
− �

k∗(ϑ− θ)F (θ) dθ +
( m∑

k=1

βk − α

)
c

(
1 +

k0

1− k0

)
,

k∗(ϑ) =
∞∑

n=−∞

kn

1− kn
einϑ,

F (ϑ) = −∂u1

∂r

∣∣∣
r=R

− αu1(R, ϑ) +
m∑

k=1

βku1(Rk, ϑ) + f(ϑ),

c =
−

(∫ �
− �

(
F (ϑ) + 1

2 �
∫ �
− � k∗(ϑ− θ)F (θ) dθ

)
dϑ

)
( m∑

k=1

βk − α
)
2π

(
1 + k0(1− k0)−1

) .

���������
. To solve this problem one cannot use the Poisson formula, since for

determining the value ∂u1/∂r
∣∣
r=R

the boundary value of the kernel obtained as

a result of differentiation of the integral kernel has a second order singularity at
θ = ϑ. Therefore for investigating this problem it is more convenient to use Dini’s

formula [5], which gives the solution of Neumann’s problem to the Laplace equation.
As in the case of the solution of the first problem, the general solution of the

equation (23) is represented as follows:

(26) u = u0 + u1,
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where u1 is a particular solution, which can be taken as (3), and u0 is a harmonic

function satisfying the following problem:

∆u0 = 0, reiϑ ∈ D,(27)

∂u0

∂r

∣∣∣
r=R

+ αu0(R, ϑ)−
m∑

k=1

βku0(Rk, ϑ) = F (ϑ), 0 6 ϑ < 2π,(28)

where F (ϑ) is given by the formula (25). If f ∈ C2(S), g ∈ C1(D), then F (ϑ) ∈
C2(S). By virtue of (28) the solvability condition of the Neumann problem will be

(29)
∫ 2 �

0

(
αu0(R, ϑ)−

m∑

k=1

βku0(Rk, ϑ)
)

dϑ =
∫ 2 �

0

F (ϑ) dϑ.

Provided (29), u0(r, ϑ) is represented by Dini’s formula [5]:

(30) u0(r, ϑ) = − R

2π

∫ 2 �
0

ln(R2 + r2 − 2Rr cos(ϑ− θ))w(θ) dθ + c,

where
w(ϑ) =

∂u0

∂r

∣∣∣
r=R

, c = const.

Thus the function u0 defined by the formula (30) represents the solution of the

problem (27), (28).
Substituting into the condition (28) the value of u0 defined by the formula (30)

one obtains an integral equation with respect to w(ϑ):

(31) w(ϑ) − 1
2π

∫ 2 �
0

k(ϑ− θ)w(θ) dθ = F (ϑ) + c̃, 0 6 ϑ < 2π,

where

c̃ = c

( m∑

k=1

βk − α

)
,(32)

k(γ) = αR ln(2R2(1− cos γ))−
m∑

k=1

βkR ln(R2 + R2
k − 2RRk cos γ),

where k(γ) is a periodic function with period 2π, which is continuous except at
γ = 0, where it has the logarithmic singularity. Since w(θ) is a periodic function,
the equation (31) can be expressed as follows:

(33) w(ϑ) − 1
2π

∫ �
− �

k(ϑ− θ)w(θ) dθ = F (ϑ) + c̃, −π 6 ϑ < π.
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Applying the discrete Fourier transform to the equation (33), one gets

(34) wn(1− kn) = Fn + c̃n, n = 0,±1,±2, . . .

here also

wn =
1
2π

∫ 2 �
0

w(ϑ)e−inϑ dϑ,

kn =
1
2π

∫ 2 �
0

k(ϑ)e−inϑ dϑ,

Fn =
1
2π

∫ 2 �
0

F (ϑ)e−inϑ dϑ,

c̃n =

{
c̃, n = 0,

0, n 6= 0.

The last equation is solvable for any Fn + c̃n only when

1− kn 6= 0, n = 0,±1,±2, . . . .

In this case the equation (34) has a unique solution which is represented as follows

(35) wn =
Fn + c̃n

1− kn
, n = 0,±1,±2, . . . .

As in the previous problem, (35) can be expressed as

(36) wn = Fn + c̃n + k∗n(Fn + c̃n), n = 0,±1,±2, . . .

where

k∗n =
kn

1− kn
.

Hence, similarly as above, the solution of the problem (33) can be written as
follows:

(37) w(ϑ) = F (ϑ) +
1
2π

∫ �
− �

k∗(ϑ− θ)F (θ) dθ +
( m∑

k=1

βk − α

)
c
(
1 +

k0

1− k0

)

where

k∗(ϑ) =
∞∑

n=−∞

kn

1− kn
einϑ.
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Proceeding from (32) one obtains

kn =
αR

2π

∫ �
− �

ln(2R2(1− cos θ))e−inθ dθ

−
m∑

k=1

βkR

2π

∫ �
− �

ln(R2 + R2
k − 2RRk cos θ)e−inθ dθ.

Let us calculate the first integral as shown below:
∫ �
− �

ln(2R2(1− cos θ))e−inθ dθ = ln R2

∫ �
− �

e−inθ dθ +
∫ �
− �

2 ln
∣∣∣2 sin

θ

2

∣∣∣e−inθ dθ

=





−2π/n, n = 1, 2, . . . ,

2π ln R2, n = 0,

2π/n, n = −1,−2, . . . .

Let us calculate the second integral when n = 0:
∫ �
− �

ln(R2 + R2
k − 2RRk cos θ)e−inθ dθ = 2π ln R2.

Introduce the following notation:

t = eiθR,

then

cos θ =
t2 + R2

2Rt
, sin θ =

t2 − R2

2iRt
.

Let us calculate the second integral when n 6= 0:
∫ �
− �

ln(R2 + R2
k − 2RRk cos θ)e−inθ dθ =

2RRk

in

∫ �
− �

sin θe−inθ dθ

R2 + R2
k − 2RRk cos θ

=
Rn

in

∫

S

(t2 −R2) dt

tn+1(t−Rk)(t−R2/Rk)
.

According to the residue theorem one gets
∫ �
− �

ln(R2 + R2
k − 2RRk cos θ)e−inθ dθ

=
Rn

n





−

(R2

Rk

)2

−R2

(R2

Rk

)n+1(R2

Rk
−Rk

)2π, n > 1,

R2
k −R2

Rn
k

(
Rk −

R2

Rk

)2π, n 6 −1.
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We have found that the integral vanishes at the infinity. Therefore k∗n is repre-

sented as a sum of two summands. The first component vanishes at the infinity
as 1/n, and the second one vanishes at the infinity to a higher order. Therefore
the kernel k∗(ϑ) is continuous everywhere except at the point ϑ = 0, where it has a
logarithmic singularity. As is known, the convolution of an integrable function with
a continuous function is continuous. Proceeding from that, since F (ϑ) is continuous,
the function defined by the formula (37) is continuous, which means that w(ϑ) is
continuous as well.

It is possible to choose the constant c so that
∫ �
− � w(θ) dθ = 0. On the basis of (37)

we obtain:

(38) c =
−

(∫ �
− �

(
F (ϑ) +

1
2π

∫ �
− �

k∗(ϑ− θ)F (θ) dθ

)
dϑ

)

( m∑

k=1

βk − α

)
2π

(
1 + k0(1− k0)−1

) .

Since

1− kn 6= 0, n = 0,±1,±2, . . .

we have
(
1 + k0(1− k0)−1

)
6= 0.

Thus, one obtains the solution of the problem (23), (24):

u(r, ϑ) = − R

2π

∫ 2 �
0

ln(R2 + r2 − 2Rr cos(ϑ− θ))w(θ) dθ + c + u1(r, ϑ).

�
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