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0. INTRODUCTION

Recently M. Mardéti proved that every subdirectly irreducible algebra in the vari-
ety 7 generated by tournaments is a tournament; equivalently, the variety generated
by tournaments coincides with the quasivariety generated by tournaments. This has
been a conjecture formulated in the paper [3]; in that paper and in [1] we have proved
some particular cases. In [3] we have also formulated a stronger conjecture, which
remains open: A groupoid belongs to the variety 7 if and only if it satisfies the
three-variable equations of tournaments and avoids the algebras J5 and M,, (n > 3;
these algebras are defined below). This has been verified for all groupoids with at
most ten elements.

The aim of this paper is to investigate one-element extensions in the variety 7.
Let A and B be two groupoids such that B € 7 and B is an extension of A by an
element e. Denote by V the set of the elements a € A such that a — e in B. The
main result of this paper states that the congruence of B generated by all pairs of
incomparable elements from V' has all nontrivial blocks contained in V. Since there
is a hope that this could be useful for the solution of the stronger conjecture, we

While working on this paper the author was partially supported by the Grant Agency of
the Czech Republic, grant 201/99/0263 and by the institutional grant MSM113200007.
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will formulate and prove this result in terms of algebras satisfying the three-variable
equations of tournaments and avoiding J3 and M,,. (See Theorem 2.12.)

For the terminology and notation see [4] and [2].

We denote by T the class of tournaments, and by 7 the variety generated by T.
For any n > 1, let 7,, denote the variety generated by all n-element tournaments,
and let 7" denote the variety determined by the at most n-variable equations of
tournaments. So, 7, C T,,.1 €7 C 7"t C 7" for all n.

For a variety V and a positive integer n, we denote by F, (V) the free algebra in V/
on n generators. According to Theorem 3 of [3], F,,(7) = F,(7,,) = F,(T").

According to [3], the following four equations are a base for the equational theory
of T3:

(el) zz = x,

(e2) zy = yu,

(€3) wy -z = wy,

(e4) (zy - w2)(zy - yz) = wyz

and the following are consequences of these four equations:
(eb
(e6
(e7
(e8

) (zy - zz)x =2y - 2z,
) (zy - z2) - yz = 2y2y,
) xyzy = w2Y2,
) (yzo) oy - 2) = 2y - 22,
(€9) zzyrz = xyz.
According to Lemma 5 of [3], for any three elements a, b, c of an algebra A € 73 we

have:

pl) If ab — c, then a, b, c generate a semilattice.

p2) If ab — ¢ — a, then bc = ab.

If a - cand b — ¢, then ab — c.

(p1)
(p2)
(p3) If a — ¢ — ab, then ¢ — b.
(p4)
(p5)

p5) Ifa — ¢ — band a, b, ¢, ab are four distinct elements, then the subgroupoid
generated by a, b, c either contains just these four elements and ¢ — ab, or

else it contains precisely five elements a, b, ¢, ab, ab-c and a — ab-c — b.

Our proof in [2] of the fact that the variety 7 is not finitely based relied on
an infinite sequence M,, (n > 3) of algebras with the following properties: M,, is
subdirectly irreducible, |[M,,| = n + 2 and M,, € 7" — 7", These algebras are
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defined as follows. M,, = {a,b,¢,dy,...,dn_2,€};

ab =e,

e—a—c,
e—b—c,

e — ¢,

a—dy —dy— ... > dy_o—0b,
d; — ¢ for i <n—2,
¢ — dp—2,

d; — e for all i,

d; — a for i > 1,
d; — b for all 1,
dj — d; for j >i+1.

We will also need the five-element subdirectly irreducible algebra J3 € 73, intro-
duced in [3] and defined on {a,b,¢,d,e} bya >d—b—c—a,c—e,d—c,d—e
and ab = e. The algebras M3, M, and J5 are pictured in Fig. 1. (The monolith of
M, identifies ab with b; the monolith of J3 identifies ab with b with c.)

e =ab

M3 My Js3
Figure 1.

Two elements a, b of an algebra A € 72 are said to be comparable if either a — b
or b — a; we write a | b in that case. If a, b are incomparable, we write a || b.

We say that an algebra A avoids an algebra B if A contains no subalgebra isomor-
phic to B. We denote by 7* the class of the algebras belonging to 72 and avoiding
the algebras J3 and M, for all n > 3.
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1. ONE-ELEMENT EXTENSIONS

Throughout this paper let A be an algebra belonging to 7*; let A = U UV be
a partition of A into two disjoint subgroupoids such that u € U, v € V and u || v
imply uv € U; let e be an element not belonging to A; define an algebra B with the
underlying set AU {e} in such a way that A is a subgroupoid and v — e — u for all
u € U and v € V. Then, as it is easy to see, B belongs to 73. We will assume that
B avoids J3 and M, for all n > 3, so that B € T *.

1.1 Proposition. The following are true:
(1) There are no elements u € U, v € V anda € A withu || v, v — a — v and
a — uv.
(2) There are no elements u € U and v,w € V with u || v, u — w and v — w.
(3) There are no elements u € U and v1,v9 € V with vy || ve, v1 — u — vy and

u — v1v2.

Proof. Suppose there are such elements.

(1) Since u - a — v — e — u, a — uv, e > uv and a | e, these five elements
constitute a subalgebra isomorphic to J3 (no matter whether a — e or e — a).

(2) The elements v — e — u with uv and w constitute a subalgebra isomorphic
to Ms.

(3) The elements v; — u — v with v1v2 and e constitute a subalgebra isomorphic
to Ms.

We get a contradiction in each case. g

1.2. Proposition. Let w € U, v € V, u || v. Then there is no element a € A

with u — a — v.

Proof. Suppose there is. Put ¢’ = wva. By (p5) we have u — a’ — v. Since
a’ — uv, we get a contradiction with 1.1(1). O

1.3. Proposition. Let u € U, v € V, u || v. Then there is no element w € V

with u — w.

Proof. Suppose there is. By 1.1.(2), v » w. By 1.2, w -» v. Hence v || w. If
vw || u, we get a contradiction with 1.1(2), since u — w and vw — w. If u — vw,
we get a contradiction with 1.2, since u — vw — v. Hence vw — w. Then also
vw — wv. We have wvw = vuw = vwuvw = vwvw = vw. Clearly, vw # wv and

vw # w. Hence uv || w. But then uvw € U, a contradiction with wow = vw € V. O

236



For v1,v2 € V we write v; = vy if for every u € U, one of the following three cases
takes place:
(1) w — v and u — wvo;
(2) v1 — v and vy — u;
(3) ul v1, u || v2 and uwvy = wvs.
Clearly, = is an equivalence on V.

1.4. Proposition. Let vi,ve € V, vy || va. Then v1 = vg = v1vs.

Proof. LetuecU.

Let u — v;. By 1.3, u is comparable with both v, and vivy. If v — u, then
u — v1v2 by (p5) and we get a contradiction by 1.1(3). Hence u — wvs, and then
U — V103,

Now let u — v1v2. By 1.3, u is comparable with both v; and v,. We cannot have
v1 — u and vo — u at the same time, since then vivs — u. Hence either u — v or
u — v9. But then we have both © — v, and u — vy by the first part of the proof.

This proves that for any v € U, u — vy iff u — vo iff u — vyvs.

Let u || v1. Then wv; — vy implies uwv; — vo and wv; — vive. We have vivou =
V1Uv2V1U = viuv1u = viu. Hence u || v1ve. We cannot have u — vq. If v3 — u, then
v1vg — v2 — u and wv; — ve contradict (p5). Hence u || vo. Similarly as for vy, we
get v1V2U = VaU.

The rest is clear. O

1.5. Proposition. Let uj,us € U and v € V be such that uy || ug and ug — v —
uo. Then v — ujug and there is no w € V with us — w — uq.

Proof. If v || wjug, then ujus — u; — v contradicts 1.2. By (p5) we get
v — ujug. Suppose there is an element w € V with us — w — u;. Then w — ujus,
and v [ w by 1.4. But then the elements u1, u2, v, w, ujus constitute a subalgebra
isomorphic to J3, a contradiction. O

1.6. Proposition. Let v € U and v1,v2 € V be such that u || v1 and u || vs.
Then uvy = uvy.

Proof. Suppose uv; # uve. By 1.4, v1 | vo. Without loss of generality, we can
assume that v; — ve. By 1.3, uv; I vy. If uvy — vo then uvovy = uvivouvy = UL,
so that wvs || v1, a contradiction by 1.3. Hence vy — uwvy. From wvqv; = vouwvy =
VU UVV1 = V1 We get v1 — wve. If wvy || wve, we get a contradiction by the second
part of 1.5. Hence uv; | uvge. But then, by (p5), both uv; — uve and uvy — wvs, a
contradiction. O
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1.7. Proposition. Let u € U, v € V, u || v. Then for every w € V either

uw = uv or else w — u and w — uv.

Proof. By 1.3 we cannot have u — w. If u || w, then ww = uv by 1.6. It
remains to consider the case w — u. By 1.4, v [ w. If w — v, then clearly w — wuv.
Finally, let v — w. By 1.3 we have uv | w, and hence w — uv by (p5). O

2. INCOMPARABILITIES IN V'

By a basic pair we will mean a pair a, b of elements of V' such that either a || b or
b = ad for some d € V with d || a or a = bd for some d € V with d || b. In this section
we assume that there exists a basic pair a, b and a sequence ¢, . . ., ¢, of elements of V
such that acy ...c, #Z bey ... ¢,. Then let us consider one such sequence a, b, ¢y, . .., ¢y,
minimal in the sense that n is as small as possible and, among all such sequences of
the same length, the number Y = |{i: acy...ci—1 || ¢;} + |{é: ber...cim1 || ¢} is
as small as possible. By 1.4, we have n > 1.

Two elements v, v' of V are said to be connected through basic pairs if there exists
a finite sequence vy, ..., v of elements of V such that vy = v, vy = v’ and for each
j=1,...,k, vj_1, v; is a basic pair.

2.1. Proposition. Let i € {1,...,n}. Then acy...c; # bey...c; and the ele-
ments acy ...c; and be; . .. ¢; are not connected through basic pairs.

Proof. Suppose the elements are connected through vg,...,vx. For each
Jj=1,...,k we have v;_1¢i11...¢p = VjCiy1...Cy by the minimality of n. Hence,
by the transitivity of =, acy ...c, = bcy ... ¢,, a contradiction. (I

2.2. Proposition. ¢; [ a and ¢; | b.

Proof. It is easy to see that if either ¢; || @ or ¢; || b, then (in every one of
a small number of possible cases) ac; and be; are connected through basic pairs, a
contradiction with 2.1. O

2.3. Proposition. If b = ad for some d || a, then a — ¢; — b and ¢; — d.

Proof. Suppose ¢; — a. Due to 2.1 and 2.2, b — ¢;. But then ¢;d = b and
c1, b is a basic pair, a contradiction. Hence a — ¢;. Then ¢; — b and, by (p3),
C1 — d. O
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2.4. Proposition. If a || b then either a — ¢; — b and ¢; — ab, or b — ¢; — a
and ¢; — ab.

Proof. Clearly, either a — ¢; — b or b — ¢; — a. By symmetry, it is sufficient
to consider the first case. Then acy = a and be; = ¢1. If ¢1 || ab, then a, ab and ab, ¢;
are basic pairs, a contradiction. Hence ¢; | ab and ¢; — ab by (p5). O

It follows from these lemmas that without loss of generality, we can assume that
al b,a— c; — band ¢; — ab. So, we will go on under this assumption. We will
assume that we have already proved for some index ¢ the following: a - ¢; — ... —
ci —bc;g—bforallj <i,c; —aforall2<j<i,cp —ciforl <j<j+2<k <y,
c; —abforall j<i,and a=c¢; =...=¢;—1 =b. (This has been proved for i = 1.)

Put ¢ = a. Clearly, {ac1...¢cj,bcr...c;} ={cj_1,¢} for 1 < j <.

2.5. Proposition. ¢; = a. Consequently, n > i.

Proof. Letwu € U. Let a — u, so that also b — u, ab — v and ¢; — u for
j < i. Suppose u — ¢;. Then all these elements constitute a subalgebra isomorphic
to M2, a contradiction. So, a — w implies that either ¢; — u or u || ¢;.

Let ¢; — u. Suppose u — a. Then all these elements together with e (with
respect to a — ¢; — ... — ¢; — u — b) constitute a subalgebra isomorphic to M3,
a contradiction. So, ¢; — u implies that either a — w or a || u.

If w — ¢; then by 1.3 we cannot have a || u, so we get a — u. If u — a then we
cannot have u || ¢;, so we get u — ¢;. So, u — a if and only if u — ¢;.

Let u || ¢;. Then ue; € U and uc; — ¢;. Hence uc; — a. By 1.7 we get ua = uc;.
Quite similarly, if u || a then uc; = ua. The rest is clear. O

2.6. Proposition. ¢;11 ] ¢;.

Proof. Suppose ¢;y1 || ¢;. If also ¢;41 || ¢i—1 then ¢;—1¢;41,¢icip1 can be
connected through basic pairs, a contradiction. If ¢;41 — ¢;—1 then ¢;_1¢i41, ¢4
is a basic pair, a contradiction. Hence ¢;—1 — ¢;41 and thus ¢;—1 — c¢;ci41. We
have {Ci,16i+1, CiCi+1} = {Cifl, CiCi+1}. But then C;4+1 can be replaced with CiCit1,
a contradiction with the minimality of Y. ]

2.7. Proposition. c¢;41 | ¢i—1.

Proof. Suppose ¢it1 || ¢i—1. If ;41 — ¢ then ¢;—1¢41, ¢icit1 1s a basic pair,
a contradiction. If ¢; — c¢;q1 then {¢;—1¢iy1,¢i¢i41} = {ci—1civ1,¢i}, cimiciva |
¢i, ¢; — Ci—1ciy1 and c;y1 can be replaced with ¢;, c;y1, a contradiction with the
minimality of Y. ([
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2.8. Proposition. ¢; — c;41 — ¢i—1.

Proof. Suppose, on the contrary, that ¢;—1 — ¢;41 — ¢;, so that {¢;—1¢;41,
ciciv1} = {ci—1,cit+1}. Of course, i > 1.

Supppose there is an index j with 1 < j < i —1 and ¢; - c¢;11, and let j be
the largest index with that property. If ¢; || c¢i+1, then this is a basic pair and
{cjcjt1,civ1ciy1} = {¢j,¢j41}, a contradiction with the minimality of n. Hence
Ci+1 — ¢j. By the minimality of n, ¢jciy1...¢n = Cj41Ci41 ... Cn, 1€, Cig1...Cp =
Cj+1Cit2 ... Cp. But also cjricita...cnp = CjyaCiqa...Cnp = ... = Ci—1Ci42..-Cp
and hence ¢;_iciy2...¢y = Ci+1Ci+2...Cn, a contradiction. We have proved that
cj —ciyr forall 1 < j<i—1.

Suppose a || ¢i+1. Then acija...cn = ¢iy1Ciy2...cpn, but also aciyo...c, =
C1Ci42...Cp = ...Ci—1Ci+2...Cpn, 80 that ¢;_1¢j49...¢cn = Ci41Ci42 ... Cp, a contra-
diction.

Suppose c¢;+1 — a. Then ac;41¢i42...¢n = C1Ci41 ... Cp, 1.6, Ciy1Cita ... Cp
Ci1Cit2...Cn. But also cicipo...cp = caCiya...Ch = ... = ¢i—1Ci42...Cy, SO that
Ci—1Ci+2 -+ Cn = Ci+1Cit2 - - - Cn, & contradiction.

Hence a — c;41.

Suppose b || ¢it+1. Then ¢ip1¢iCiqa...cn = biCigya ... Cp, 1€, Cit1Cit2 ... Cn

CiCit2...Cn. But also ¢;_1¢iy2...¢p, = c¢iciya...cn, and thus c¢;_1ciq2...cp

Ci+1Ci+2 - . - Cn, & contradiction.

Suppose c;+1 — b. Then acjiiciya...cn = bCit1Cit2 ... Cp, 1€, aCiqa...Cp
Ci+1Cit2 -..Cn. But also acj42...cn = Ci1Ci42...Cn = ... = Ci—1Ci42 ... Cp, SO that
Ci—1Ci+2 . ..Cp = Ci+1Ci42 - . - C, & contradiction.

Hence b — c¢;41. Then also ab — ¢;41. But then all these elements constitute a
subalgebra isomorphic to M; 2, a contradiction. O

2.9. Proposition. c¢;11 —c¢; forall 1 <j <i—1.

Proof. Suppose, on the contrary, that j is the largest index with 1 <
j < i—1and ¢it1 » ¢;. I ¢iyq1 || ¢ then cip1cipa...0n = ¢jCiyo...cp =
Cj41Ci42 - -Cn = ... = CiCiy2...Cp, a contradiction. If ¢; — c¢;41 then cjcipr x
Cit2-.-Cn = Cj+1Ci+1Ci+2 ---Cn, 1€, CjCit2...Cn = Ci41Ci42...Cp, but also ¢; x
Cit2...Cn = Cjf1Ci42...Cp = ... = CiCit2...Cpn, S0 that c;ciyn...cn = ciq1 X
Cit+2 - ..Cp, a contradiction. (Il

2.10. Proposition. ¢;11 — a.

Proof. 1If a || ¢it1, then a contradiction can be obtained in the same way
as in 2.9, with ¢; = ¢o. If @ — c¢;41 then acipici42...¢, = c1Cit1Cit2 .. Cn,

240



ie, aciya...Chp = Ci41Ci42...Cn, but also acj42...cp, = ciciy2...cp = ...

o

CiCi+2 .. .Cp, S0 that cijci4o...cp = ciyi1¢i42...cp, a contradiction.

2.11. Proposition. c;y1 — b and c¢;y1 — ab.

Proof. If ¢;41 || b then cij1¢i42...¢n = bCita...Cn = acipa...cn =
C1Ci42 .- Cp = ... = CiCit2...Cn, a contradiction. Suppose b — c¢;11. Then

ci+1 || ab, since otherwise ¢;41 — ab and b — ¢;41 — a with ¢; and ab would give a
subalgebra isomorphic to J3. Hence ¢;11¢42...¢n = (ab)Ciq2...Ch = aCiqa...Cp =
C1Ci42...Cph = ... = CiCi+2 . ..Cpn, a contradiction. Hence c¢;1; — b and, consequently,
Ci+1 — ab. O

The assumption taken at the beginning of this section turns out to be contradic-
tory, as by 2.5 we get n > ¢ for all positive integers i. As a consequence, we get the
following result.

2.12. Theorem. Let A, B be two algebras in T* such that B is an extension
of A by an element e, and let V = {a € A: a — e}. The congruence of B generated
by the pairs (a,b) € V2 such that a || b is contained in V? Uidg.

3. MORE RESULTS

3.1. Proposition. Let u € U, v € V and u || v. Then there is no a € A with

u — a—uv.

Proof. Suppose there is. We have a — v by (p3), a contradiction with 1.2. O

3.2. Proposition. Let uq,us € U and v € V' be such that u; || uz and uy — v —
us. Then there is no w € V with uy — w.

Proof. Suppose there is. Since u; — v, by 1.3 we cannot have u; || w. By 1.5
we have v — ujus and we cannot have w — uy. Hence uqy — w. Since v — us — w,
by 1.4 we cannot have v || w. If w — v then these elements constitute a subalgebra
isomorphic to M3, a contradiction. Hence v — w. But then these elements together
with e (with u1 — v — e — w2) constitute a subalgebra isomorphic to My, a
contradiction. O
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3.3. Proposition. Let u € U, v € V, u || v. Then for any s € A, s — uv implies

S — U.

Proof. Let s — uv. Let us first consider the case s € V. If s || u then by 1.6
we have us = wv, a contradiction with s — wv. If u — s, we get a contradiction
by 3.1. Hence s — u.

Now consider the case s € U. Again by 3.1, we cannot have u — s. Suppose s || u.
Since s — uwv — v, by 1.2 we cannot have s || v. If v — s then s — u by (p3).
So, let s — v. Since us — s — v, by 1.2 we cannot have us || v. If us — v then
us — uv, a contradiction with (p5). Hence v — wus. But then v — w by (p3), a
contradiction. O

3.4. Proposition. Let u € U, v € V, w || v. Then for any s € A, u — s implies

uv — S.

Proof. Letu — s. Then s € U by 1.3. By 3.1, s -» uv. So, suppose s || uv.
By 3.1, we cannot have u — uwvs. Hence, by (p5), u || uvs and uv — wvsu. By (pl)

we get v || wusu and v - uvsu = wv. But wwsu — uvs — uw, a contradiction by 3.1.
O

3.5. Proposition. Let u € U, v € V, u || v. Then there are no elements r,s € U

withu —r — s — uv.

Proof. Suppose there are. By 3.3 and 3.4, s — u and uv — 7.

Suppose s — v. Then, by 1.2, we cannot have r || v. Again by 1.2, we cannot
have r — v. Hence v — 7. But then these elements together with e (with respect to
v — e — s — u) constitute a subalgebra isomorphic to My, a contradiction.

Since s — uv — v, by 1.2 we cannot have s || v. It follows that v — s.

By 1.2 we cannot have r — v. If v — r then these elements, with respect to
v — 8 — u, constitute a subalgebra isomorphic to M3, a contradiction. Hence v || r.
We have vru = vurvu = wvuv = uwv. Consequently, the elements r, s, u, vr, uv (with
respect to vr — s — u) constitute a subalgebra isomorphic to M3, a contradiction.

O

3.6. Proposition. Let a,b,p € U and v € V be such that a || v, b — a, p — a
and av = bv. Then bpv = pv.

Proof. Letp— v. Then p — av ="bv — b, so p — b by 3.3. Hence bp = p and
bpv = pv.

Let v — p. Then bpv = pbv = pvbpv = vbpv = vapv = avpv = apvp = pvp = pu.

It remains to consider the case p || v. Since pv — p — a, by 3.4 we have pv — a.
Hence pv — av. We have avp = apvap = pvap = pvp = pv. By three-variable
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equations, bpv - pv = bvpv = avpv = pvv = pv, so that pv — bpv. We have
bpvp = bupv = pu.

If either bp || v or bp — v then bpv — p, bpvp = bpv, so bpv = pv and we are
through. So, the case v — bp remains. Then v = bpv = bupbv = avpbv = pvbv =
pbuvb = vb, a contradiction. O

3.7. Proposition. Let u €¢ U, v € V, u || v; let a € U. Then uv - ua = uva and

uvaw = uaw for allw € V.

Proof. Since uva — uv, we have uva — u by 3.3. Hence wv - ua = uv - ua-u =
G- U-UV-U= Q- UV U UV = UVAU - UV = uVa-uv = uva. In order to prove the rest, it is
sufficient to assume that a — u. By 1.7 we have either uw = wv or wvw = uw = w,
$0 uvw = uw in any case. Hence, by 3.6, it is sufficient to consider the case u | w.
By 1.7 we have w — u and w — uwv.

If w — a then w — wva and wvaw = w = aw.

Let @ — w. Then a | v. If a — v then wwa = uwavua = a and we are through.
So, let v — a. Then v — a — u gives v — wwva by (p5). We have uv — v — a,
a — w — uv and (obviously) uv || a, a contradiction by 1.5.

It remains to consider the case a || w. Then aw — u by 3.4. Since aw — w,
by 1.3 we cannot have aw || v. If aw — v then aw — wwv, hence aw — wuva,
and aw — wva — a implies wvaw = aw by (pl). So, let v — aw. We have
wvaw = wvwa(uv)w = (aw - uwv)w. By the previous part of the proof (the case
a — w) we have (uv - aw)w = aww = aw. Hence uwvaw = aw. O

3.8. Proposition. Let u € U, v € V, u || v; let a € U be such that a — u and
a || wv. Then there is no element b € U with a — b — uva.

Proof. Suppose there is. We have wvav = wava = av. So, if uva — v then
av = wuva, a contradiction with a — b — wwa by 3.1. Since wva — uv — v, we
cannot have wva || v. Hence v — wva. From wvav = av we get v — a. By (p3),
b — wv. Since b — uv — v, we cannot have b || v. Now either b — v or v — b, and
in each case the elements uv, v, a, b, uva constitute a subalgebra isomorphic to J3,
a contradiction. O

3.9. Proposition. Let uj,us € U, v,w € V, u; || u2, u1 — v — uz and us || w.
Then one of the following two cases takes place:
(1) uiug = ugw, v — uguz, uy J w, v J w;

(2) v = w — ug, V= LU, V= UsW — U7, UULW = UW.

Proof. We have u; | w by 1.3 and v | w by 1.4. Let ujus # ugw. Since

v — ug, we have v — ugw by 1.7. Since u; — v — ugw — w, we have uy | usw
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by 3.2. If w1 — usw then u; — us by 3.3, a contradiction. Hence usw — u;. Since
also usw — ug, we get ugw — ujuz. Since ugw — ujus — uz, by (p2) we get
urugw = ugw. If u3 — w then ujug = usw by (p2), a contradiction. Since uy | w,
we get w — wjy. It remains to prove v — w. We have v | w, and if w — v then
the elements w, v, ujus, usw, u; (with respect to w — v — wujus) constitute a
subalgebra isomorphic to M3, a contradiction. O

3.10. Proposition. Let uj,us € U, v € V, uy || u2, u1 — v — us. Then for
every w € V one of the following cases takes place:
(1) us || w, urug = ugw, v — uyug, uy | w, v | w;
(2) ug || w, v = w — ug, vV — UrUz, V — U2 — U1, UIUIW = UW;

(3) w— uz, w — urug, v — urug, w | u1, and if w — uy then w | v.

Proof. By 3.2 and 3.9, it remains to consider the case w — wus. According
to 1.3 we have w | u1, and according to 1.4 if w — w; then w [ v. By 1.5, v — ujus.

Suppose w || uyus. By 3.4 we have ujusw — uy and ujusw — us. If u3 — w then
u; — w — ug implies u; — ujugw by (pb), a contradiction. Hence w — wu;. But
then w — wjus, a contradiction.

Hence w | ujug. It follows that if u; — w then w — wjus. If w — wq, then

w — uqusg is clear. So, w — wius in all cases. O

3.11. Proposition. Let uj,us € U, v € V, u; || ua2, u1 — v — ug. Then there
is no element u € A with us — u — ujuo, and there is no element u € A with

Ug — U — U7.

Proof. In each case, we would have v € U according to 3.2. By 1.5 we have
v — ujug. Suppose us — u — ugus. By (p3), u — wup. Since u — u; — v, by 1.2 we
cannot have u || v. But then, the elements u1, u, us, ujus, v constitute a subalgebra
isomorphic to Js, a contradiction.

Now suppose us — u — uq. Then us — ujusu — ujus, which has been proved to

be impossible. O
3.12. Proposition. Let w € U,v € V, u || vandc¢; € U (i =1,...,n) be
elements with ¢,, — ¢;,—1 — ...c1 — u. Then uvey .. .c,v = cp0.

Proof. The quasiequation z,, — zp_1 — ... — 21 — & = TY21...2,Y = ZnyY
is satisfied in all tournaments and is equivalent to an equation, so it is satisfied in A.
O
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3.13. Proposition. Let n be the least number for which there exist elements
ueU,veV,weVande; €U (i=1,...,n) such that u || v, ¢, = cp_1 — ... —
c¢1 — w and uvey — cpw # cpyw. Then

(1) v—c¢;and v — uvey . ..c; for all i > 1.
(2) w— cp_1, w — uVE] ... Cp, and W — UVCY .. . Cp.

(3) It is sufficient to consider only the case ¢, — w.
Proof. By 3.7 we have n > 2. Suppose that for some i, v - wvcy...c;.
By 3.12, uvey ... ;v = ¢v. If ¢;v = ¢; then uvey ... ;v = ¢, so that ¢; — uvey ...

and hence wvcy ... ¢; = ¢;, a contradiction. Hence ¢; || v. By the minimality of n,

ChW = CjUCj41...CrW = UVCYL...CUC41 ...CrW. Hence uvey ... v 7& uvey ... Cj.
Using uvey...cp — u0Cy...Cp1 — ... — UVCY ...C;, by the minimality of n we
have

UVCY . .. Cpw = uvey . .. Cu(Uvey ... Cigp1) - . (Uver .. Lep)w

= vei(uver ... cip1) .. (wver .. .ep)w.
But this last expression equals vc;ci41 .. . c,w, since the quasiequation
Zn = .21 DT = Uz ... 2 = y2zi(Tyz1 .. Zig1) - (TYz1L - 2n)

is satisfied in all tournaments and is equivalent to an equation. We get uvcy .. .c,w =
VC;iCit1 - - - CpW = cpw, a contradiction.

Hence v — uwey ... ¢; for all 4. From this we get v — ¢; by (p3).

We have ¢, 1w = uvey . .. ¢p—1w by the minimality of n. If w || ¢,,—1 then ¢, w =
UVCy ... Ch_1cpw by 3.6, a contradiction. Hence w — c¢,_;. Consequently, w —
uvey ...Cp—1-.

Suppose w -+ wwcy...c,. Then wvey...c,w — wvey...c, — ¢, implies

UVCY . .. CLW — Cp; hence uvey ... co,w — we,. We get
UVCY -« .« CrpeqWEy, = (UVC « .« Cr W - UVCY . . . Cpy ) (UVCY . . . W - WE, ),
ie.,
Wey, = UVC] . . . CpW - WCy, = UVC] . . . Cn,

a contradiction.

Hence w — uvcey ... c,. Then w - ¢, and wc_.c,_1. The quasiequation

Y—2Zp .. 2] DL => TYZ] ... Zn—1 " UZn—12nZn—1
=XYZ1 ... Zp  UZn—12nZn—1
is satisfied in all tournaments and is equivalent to an equation; we get uvcy ...cp—1 -

WCy = UVCY ... Cp - WCy. From this it follows that if ¢, is replaced with wc,, all the

above conditions are satisfied and, moreover, ¢,, — w. ]
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3.14. Proposition. Let u € U, v € V, u || v, ¢1,¢2 € U, ca — ¢1 — u. Then
uveicow = cow for allw € V.

Proof. Suppose uvcicow # cow. By 3.13 we have v — ¢, v — ¢, v — uvcy,
v — UVCiCo, W — €1, W — uvcy, w — uvecice and it is sufficient to consider the
case co — w. Since uv — v — wveice and (by (pb)) uveica — uv - wveics - uvey —
wv - uvcyca, by 3.11 we have uv | uveies. Since uv — v — ¢ and ¢a — w, by 3.2
we have uv I ca. If ¢ — ww then co — wweq, so that uveicas = o, a contradiction.
Hence uv — ¢3. Then uv — wveiea. But ¢ || uvey, so that c2 — w — wvey and

uvc] — uv — uvcicy give a contradiction by 3.11. O
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