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ZERO-TERM RANKS OF REAL MATRICES

AND THEIR PRESERVERS
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Abstract. Zero-term rank of a matrix is the minimum number of lines (rows or columns)
needed to cover all the zero entries of the given matrix. We characterize the linear operators
that preserve zero-term rank of the m × n real matrices. We also obtain combinatorial
equivalent condition for the zero-term rank of a real matrix.
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1. Introduction and preliminaries

There are many papers on the research of linear operators on matrices that preserve
certain matrix functions. But there are few papers on zero-term rank of real matrices.

Recently Beasley, Song and Lee [2] obtained characterizations of zero-term rank
preservers of matrices over anti-negative semirings.

In this article, we obtain characterizations of the linear operators that preserve
zero-term rank of real matrices.

Let Mm,n( � ) denote the set of all m × n matrices with entries in � , the real
numbers. Let � = {0,1} be the Boolean algebra. For a real matrix A = [aij ],
let A = [aij ] denote the matrix with entries in � such that aij = 0 if and only if
aij = 0. Let Eij be the m×n real matrix which has a 1 in the (i, j)-entry and is zero
elsewhere. We call Eij a cell. Let J denote the m × n matrix all of whose entries

are 1. A matrix A is said to dominate matrix B = [bij ] if aij = 0 implies that bij = 0
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and we write A > B. If A > B and there is some pair (i, j) such that aij 6= 0 but
bij = 0, then we write A > B.

The zero-term rank [3] of a matrix A, z(A), is the minimum number of lines (row
or columns) needed to cover all the zero entries of A. Of course, the term rank [1]

of A, t(A), is defined similarly for all the nonzero entries of A.

Let T : Mm,n( � ) → Mm,n( � ) be a linear operator. Say that
(i) T preserves zero-term rank k if z(T (A)) = k whenever z(A) = k for all A in

Mm,n( � );
(ii) T preserves zero-term rank if it preserves zero-term rank k for every k 6

min{m, n}.
Which linear operators over Mm,n( � ) preserve zero-term rank? The operations

of (1) permuting rows, (2) permuting columns and (3) (if m = n) transposing the
matrices inMm,n( � ) are all linear, zero-term rank preserving operators onMm,n( � ).
If we take a fixed m × n matrix B in Mm,n( � ), all of whose entries are nonzero

real numbers, then its Schur product A ◦B = [aijbij ] with A has the same zero-term
rank as does A. The operator A 7→ A ◦ B is linear. Similarly A 7→ B ◦ A is linear,

zero-term rank preserving operator. That these operations and their compositions
are the only zero-term rank preservers is one of the consequence of Theorem 2.4

below.

Let Mm,n( � ) denote the set of all m × n matrices with entries in � . If T :
Mm,n( � ) → Mm,n( � ) is a linear operator, define T : Mm,n( � ) → Mm,n( � ) by

T (A) =
m∑

i=1

n∑

j=1

T (aijEij)

for any A ∈ Mm,n( � ).
A semiring � which has no zero-divisors and which has the property that for

a, b ∈ � , a + b = 0 implies that a = b = 0 is called an anti-negative semiring.

A linear operator T : Mm,n( � ) → Mm,n( � ) is called a (P, Q, B)-operator if there
exist permutation matrices P and Q, and a matrix B, all of whose entries are nonzero,
such that T (A) = P (A ◦B)Q for all A ∈ Mm,n( � ) or if m = n, T (A) = P (A ◦B)tQ

for all A ∈ Mm,n( � ).
In [1], Beasley and Pullman characterized the term rank preservers of matrices

over semirings. And in [2], the linear operators that preserve zero-term rank over

anti-negative semirings were shown to be (P, Q, B)-operators.

We now state the result for later reference.
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Theorem 1.1 [2]. If � is any anti-negative semiring, and T is a linear operator

on the m×n matrices with entries in � , then the following statements are equivalent:
(i) T preserves zero-term rank;

(ii) T preserves zero-term ranks 0 and 1;
(iii) T is a (P, Q, B)-operator.

2. Linear operators that preserve zero-term rank of real matrices

In this section, we assume that T is a linear operator on Mm,n( � ) with m > 1,
n > 1.
Let ‖A‖ denote the number of nonzero entries of A. We begin with some lemmas.

Lemma 2.1. If T preserves zero-term rank 1, then there exists C ∈ Mm,n( � )
such that ‖T (C)‖ = mn.
�! #"$"
%

. Choose C ∈ Mm,n( � ) such that T (C) > T (A) for all A ∈ Mm,n( � ).
Suppose that ‖T (C)‖ 6= mn. Then, for some (s, t), T (A) ◦ Est = 0, for all A ∈
Mm,n( � ). By permuting rows and columns, we may assume that (s, t) = (1, 1). Also
we assume that C = J , so that z(C) = 0. Let Ehk be a cell such that T (Ehk) has
a nonzero (p, q) entry with p, q > 2. If no such cell existed, then we obtain that
z(C − cijEij) = 1 for every cell Eij but

z(T (C − cijEij)) = min{m, n},

a contradiction. Now, for T (Ehk) = D = (dij), we have that

z

(
T

(
C − T (C)pq

dpq
Ehk

))
> 2, and z

(
C − T (C)pq

dpq
Ehk

)
6 1.

Thus, we must have z
(
C − T (C)pq

dpq
Ehk

)
= 0, since T preserves zero-term rank 1. Let

F = (fij) = C− T (C)pq

dpq
Ehk. If T (Euv)pq = 0 for some cell Euv , then z(F−fuvEuv) =

1, while z(T (F − fuvEuv)) = z(T (F ) − fuvT (Euv)) > 2, which is a contradiction.
Thus T (Eij)pq 6= 0 for all cells Eij .
If T (E11) = X = (xij) and T (E12) = Y = (yij), then

T

(
F − f11E11 +

(
f11xpq

ypq

)
E12

)

has zeros in the (1, 1) and (p, q) entries, and hence has zero term rank at least 2,
while

z

(
F − f11E11 +

(
f11xpq

ypq

)
E12

)
= 1,

a contradiction. Thus ‖T (C)‖ = mn. �
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Lemma 2.2. If T preserves zero-term rank 1, then T maps each cell to a nonzero

multiple of some cell which induces a bijection on the set of indices {1, 2, . . . , m} ×
{1, 2, . . . , n}.
�! #"$"
%

. By Lemma 2.1, there exist C ∈ Mm,n( � ) such that ‖T (C)‖ = mn.
Suppose that there is some cell Eij such that ‖T (Eij)‖ > 1. If ‖T (Eij‖ 6= mn,

then there exists a pair (h, k) such that (h, k) 6= (i, j) and for some nonzero real
number rhk ,

T (Eij + rhkEhk) > T (Eij).

Let D1 = Eij + rhkEhk. If ‖T (D1)‖ 6= mn, then there is some cell Epq such that for
some nonzero real number rpq , T (D1 + rpqEpq) > T (D1). Continuing this process,
we have a matrix D = (dij) such that ‖D‖ < mn while ‖T (D)‖ = mn. Since
‖D‖ < mn, we may assume d11 = 0 without loss of generality. Let F be the (0, 1)-
matrix in Mm,n( � ) such that f11 = 0 and for (i, j) 6= (1, 1), fij = 0 if and only if
dij 6= 0. Thus, for some sufficiently small positive real number r, we have

‖D + rF‖ = mn− 1 and ‖T (D + rF )‖ = mn.

That is,

z(D + rF ) = 1 and z(T (D + rF )) = 0.

This is a contradiction. If ‖T (Eij)‖ = mn, then we can take D = Eij in the above

case and obtain the same contradiction. Thus ‖T (Eij)‖ 6 1 for all cells Eij . If
T (Eij) = 0 for some cell Eij , then the fact that ‖T (C)‖ = mn implies ‖T (Epq)‖ > 2
for some (p · q), which is a contradiction. That is, T is bijective on the set of indices
{1, 2, . . . , m} × {1, 2, . . . , n}. �

Theorem 2.3. If T preserves zero-term rank 1, then T is a (P, Q, B)-operator.
�! #"$"
%

. By Lemma 2.2, T is bijective on the set of indices {(i, j) | i =
1, . . . , m, j = 1, . . . , n}. Thus, for any A in Mmn( � ),

T (A) =
m∑

i=1

n∑

j=1

T (aijEij) =
m∑

i=1

n∑

j=1

T (aijEij) = T (A).

This shows that T preserves zero-term rank 1 since T does also. By Theorem 1.1,
T is a (P, Q, B)-operator, where B = J . Thus, the mapping A 7→ P tT (A)Qt is the

identity linear operator onMm,n( � ). That is, P tT (Eij)Qt = bijEij for each pair (i, j)
(or perhaps P tT (Eij)Qt = bijEji in the case m = n). Then, T (C) = P (C ◦B)Q for
all C ∈ Mm,n( � ) or m = n and T (C) = P (C ◦B)tQ for all C ∈ Mm,n( � ). �

Now, we obtain the characterizations of the linear operators that preserve zero-
term rank of real matrices.
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Theorem 2.4. For a linear operator T : Mm,n( � ) → Mm,n( � ), the following are
equivalent:

(i) T preserves zero-term rank;

(ii) T preserves zero-term rank 1;
(iii) T is a (P, Q, B)-operator.
�! #"$"
%

. Obviously (i) implies (ii) and (iii) implies (i). By Theorem 2.3, we have
that (ii) implies (iii). �

3. Combinatorial characterization of zero-term rank

In this section, we obtain an equivalent condition for the zero-term rank. A min-

imal covering of the zeros of A is called proper provided that it does not consist of
all m rows of A or of all n columns of A.

Theorem 3.1. Let A be an m × n real matrix. Then the zero-term rank of A is

equal to the maximal number of zeros in A with no two of the zeros on a line.
�! #"$"
%

. We prove this equality by induction on the number of lines in A. For
the case that m = 1 or n = 1, the equality holds. Hence we take m > 1 and n > 1.
Let z(A) = p and q denote the maximal number of zeros in A with no two of the
zeros on a line. Then the definition of zero-term rank implies that q 6 p. Hence it

suffices to show that q > p. Consider two cases :
Case 1) Assume that A does not have a proper covering. Then we must have

p = min{m, n}. We permute the lines of A so that the permuted matrix B has a
zero in the (1, 1) position. We delete row 1 and column 1 of the permuted matrix B

and denote the resulting matrix of size m−1 by n−1 by B(1|1). The matrix B(1|1)
cannot have a covering composed of fewer than p − 1 = min{m − 1, n − 1} lines
because such a covering of B(1|1) plus the two deleted lines would yield a proper
covering for A. We now apply the induction hypothesis to B(1|1) and this allows us
to conclude that B(1|1) has p− 1 zeros with no two of the zeros on a line. But then
A has p zeros with no two of the zeros on a line and it follows that q > p.

Case 2) Assume that A has a proper covering composed of e rows and f columns
where p = e + f . We permute lines of A so that these e rows and f columns occupy

the left-upper positions of the permuted matrix B. Then B assumes the following
form

B =
[

B11 B12

B21 B22

]
.

In this decomposition B22 is the (m−e)×(n−f) submatrix with all nonzero entries.
The matrix B12 has e rows and cannot be covered by fewer than e lines and the
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matrix B21 has f columns and cannot be covered by fewer than f lines. This is the

case because otherwise we contradict the fact that p = e + f is the minimal number
of lines in A that cover all of the zeros on A. We may apply the induction hypothesis
to both A1 and A2 and this allows us to conclude that q > p. �
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