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Abstract. In this paper we present some new oscillatory criteria for the n-th order neutral
differential equations of the form

(@(t) £ p®)alr())™ +q(t)z[o(t)] = 0.
The results obtained extend and improve a number of existing criteria.
Keywords: neutral equation, delayed argument

MSC 2000: 34C10

1. INTRODUCTION

In this paper we are concerned with the problem of oscillatory properties of n-th
order neutral differential equations

(E) ((t) £p®)z[rO)™ + q(D)zlo(t)] =0, n>2.

Throughout this paper the following hypotheses (H) are assumed to hold.
(H1) 7(¢t) € Clto,00), 7(t) < t and tlgglo 7(t) = oc;
(H2) p(t) € Clto, 00), 0 < p(t) < 1;
(H3) 4(t) € Clto, ), q(t) > 0,
(H4) o(t) € Cltg,0), o' (t) >0, o(t) < t and tllglo o(t) = 0.

In this paper, we restrict our attention only to the nontrivial solutions of Eq. (E;}),
which exist on some ray [T, 00). Such a solution is called oscillatory if it has arbi-
trarily large zeros, and otherwise it is said to be nonoscillatory. Eq. (E;) is said to
be oscillatory if all its solutions are oscillatory.
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In the last two decades some authors (see the attached references) have ob-
tained sufficient conditions for oscillation of Eq. (E;}). However, the results es-
tablished in this paper are based on conditions and techniques which are different
from theirs. Our results here are new also for the corresponding delay differential
equation (i.e. p(t) =0).

As is customary, all functional inequalities presented in this paper are assumed to
hold eventually, that is to be satisfied for all sufficiently large ¢.

2. MAIN RESULTS

We begin with the following identity, which holds for any n-times differentiable
function z(t).

k

S (g — k—1i
(1) 200 = (-1~ a0 o) + (-1 [ %z“m(u)du,

where 0 < ¢ < k < n — 1. This identity is a generalization of Taylor’s formula
with remainder encountered in calculus. For convenience we introduce the following

notation:

an—1(t) = (1 = plo(®)])q(?),

© (1 — n—I[—2
at) = [~ - plotaw

foralll € {1,2,...,n—3}.

Theorem 1. Assume that for alll € {1,2,...,n — 1} such that n+1 is odd

(21) /Oo (crl(t)al(t) - )\112(140—(12)%'/(15)) dt = oo, for some \; > 1.

Further assume that for n odd p(t) < p < 1. Then for n even Eq. (E}'") is oscillatory
and for n odd every solution x(t) of Eq. (E;) oscillates or tends to zero as t — oo.

Proof. Assume that, to the contrary, x(¢) is a nonoscillatory solution
of Eq. (E;7). Without loss of generality we may assume that z(t) > 0. (The
case when z(t) < 0 can be proved by the same arguments). Set

z(t) = x(t) + p(t)z[r(1)].
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Then z(t) > z(t) > 0 and

3) 2(t) + q(t)afo(t)] = 0.

Thus 2™ (t) < 0 and consequently 2’(t),2"(t),..., 2" D(t) are of constant signs
in some neighborhood of the infinity. One can easily conclude that there exists

1€{0,1,...,n— 1} such that n 4+ is odd and

(4) 2@ >0 for 0<i
(5) (~D)* ¢ >0 for 1<

Therefore, z(»~ 1 (t) > 0. Now we consider the following two cases.
Case 1. Let [ > 1. Then 2/(t) > 0 and using the monotonicity of z(¢) one gets

x(t) = 2(t) — p()z[r(t)] > 2(t) — p(t)[7(8)] > 2(£)(1 — p(¢))-
Combining the last inequalities together with (3) we are lead to
(6) 2(t) + (1= plo(®)])a(t)=[o(t)] < 0.

Assume that I <n—1. Settingi=1+1, k=n—1and s > ¢ in (2) and using (5)
and (6), we have

S (u — n—1—2
0y < - | &71_3%2)!(1 — plo(w))g()zlo(w)] du.

Taking into account the monotonicity of z[o(t)] and letting s — oo, we obtain
(7) 2D (@) + ay(8)2[o (1)) < 0.

From (6) it is easy to see that (7) is true also for [ = n — 1. Define

2
0 wl) = o' 5
Then w;(t) > 0 and further
e ety 200 20
0
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Forn>2weleti=1,k=10—1,s=ty <tin (2) and noting (4) one can see that
for any \; > 1

Pt — )2 gyt
" 0> [ S 0w

holds eventually. Note that (10) is satisfied also for n = 2. In this case | = 1 and
A = 1. It follows from (10) that

1

Z/[o'(t)] > m o’l_l(t)z(l)[o.(t)] > 1

>\l(l IR 1)| Ul_l(t)z(l) (t)a

which in view of (9) and (7) leads to

o.2l—1 o’ Z(l) 2
Wt < - o Wa(t) - T (ﬂ( (t))

NI—1) \Z[o0)]
ot () (8) ZZ[(: ((;)]
= —dBalt) + P 40(12)! o)
(2 by
l .
< —ol(Bay(t) + B = Dlo'(t) 40(12)! o).

Integrating from ¢; to t, we get

w®) < ) - | t o' (a(s) -

t1

P —1)a'(s) 5
1o(s) ] .

Letting t — oo we get w;(t) — —oo. This contradicts the positivity of w;(t) and we
conclude that Case 1 is impossible.

Case 2. Let [ = 0. Note that this case is possible only when n is odd. Therefore,
for n even the proof of our theorem is complete. To finish the proof we shall show
that tli)rgo x(t) = 0. Since z(t) > x(t) > 0, it is sufficient to verify that tlig)lo z(t) = 0.
On the other hand, (4)—(5) with = 0 imply that tlggo z(t) exists and is nonnegative
and finite. Aiming at a contradiction we assume that tli)rgo z(t) = ¢ > 0. Then
z(t) > ¢, eventually. Choose 0 < & < ¢(1 — p)/p. Evidently z[o(t)] < ¢+ ¢, for all
large t. It is easy to verify that

x(t) > z(t) —p)z[T(t)] > c—plc+e) > c12(t),
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where 0 < ¢; = (¢ —p(c+¢€))/(c+¢€). Then (3) implies
(11) 2 (1) + e1q(t)z]o(t)] < 0.
Setting it =0, k=n—1 and s >t =t; in (2) and using (5), one gets

U — tl)n71

Substituting (11) into (12), using z[o(¢)] > ¢ and then letting s — oo, we obtain

* (u—t)" L
z(t1) 2 Clc/t1 NCESN q(u) du,
which implies
(13) / u"q(u) du < .
t1
But in view of (2,_1) we have
o = / ~plota(du < [ gty du.
t1

which contradicts (13). Consequently, tlim z(t) = 0. The proof is now complete. [

For the third order neutral equation the previous theorem provides the following

criterion.

Corollary 1. Assume that for some A > 1

/ : (o%)(l ~ plow))a(t) - A;f(’t()t)) o

Then every solution z(t) of Eq. (ET) oscillates or tends to zero as t — co.

Remark 1. We note that for n = 2, o(t) = t and p(t) = 0, condition (27) of

Theorem 1 reduces to - )
tq(t) — — | dt =
/ ( q(t) 4t) 00

which is the well known Kiguradze and Chanturia oscillation criterion [3] for the
corresponding second order differential equation

2" +q(t)z = 0.

Remark 2. For Eq. (EJ) Theorem 1 improves Theorem 2 in [2] where the con-
dition [* ¢(s)ds = oo is required.
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Corollary 2. Assume that for alll € {1,2,...,n — 1} such that n+1 is odd

(14;) htrgioglf gl+10(/t(1()”(t) y 12(l4— 1)1

Then for n even Eq. (E}) is oscillatory and for n odd every solution z(t) of Eq. (E})
oscillates or tends to zero as t — oc.

Proof. Note that (14;) implies (2;). O

Remark 3. Recently Parhi and Mohanty in [12] presented another oscillation
criterion for Eq. (E;). This criterion extends some other known results. Our results
here generalize those in [5], [7], [8] and [12].

Example 1. We consider the third order differential equation

(15) («(0) + palr(®)])" + yelt] =0,

with b > 0,0 < 8 < 1,0 < p < 1. Corollary 2 implies that all nonoscillatory
solutions of (15) tend to zero as t — oo provided that

v
(1 —p)

a >

On the other hand Theorem 2.1 in [12] requires

8
e(—nB)B%(1 —p)’

a >

Now we turn our attention to oscillatory properties of Eq. (E;;). We shall consider
the following functions:

foralll € {1,2,...,n—3}.
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Theorem 2. Let 0 < p(t) < p < 1. Assume that for every | € {1,2,...,n— 1}
such that n + 1 is odd

(16;) /Oo (crl(t)bl(t) - )\llz(l;a—(lt))w/(t)) dt = oo, for some A\ > 1.

n

Then every solution z(t) of Eq. (E;,) oscillates or tends to zero as t — co.

Proof. Let x(t) be an eventually positive solution of Eq. (E;;). Setting

(17) 2(t) = z(t) — p(t)z[r(t)]

we obtain z(t) < x(t) and (3). Since 2(™(¢) < 0 then 2 (t), fori = 0,1...,n —1
are of constant sign eventually.

We claim that z(t) is bounded. To prove this assume, to the contrary, that x(t) is
unbounded. Hence there exists a sequence {¢,,} such that lim ¢, = 00, moreover
lim z(tm,) = oo and x(ty,) = max{z(s);to < s < tm}. Sin?:le ﬁt) — 00 as t — 00,

m—0o0

we can choose a large m such that 7(¢,,) > to. As 7(¢) < t, we have

Therefore for all large m
2(tm) 2 x(tm) — pr[7(tm)] = (1 = p)a(tm).

Thus z(tm,) — oo as m — oo. Since z(t), z/(t) are of constant sign this yields
z(t) > 0, 2/(t) > 0. By the well known lemma of Kiguradze it is easy to check that
there exists [ € {1,2,...,n — 1} such that n + [ is odd and (4)—(5) hold. In view
of (3) we see that

V(1) 4 q(t)z]o(t)] < 0.

Proceeding similarly as in the Case 1 of the proof of Theorem 1 we obtain

2D (@) 4 by(t)2[o ()] < 0.

We define the function w;(t) as in (8). Following all steps of the proof of Theorem 1,
Case 1 we arrive to a contradiction with (16;) and so we can conclude that x(t) is
bounded. Consequently, in view of (17) z(t) is bounded and hence

(18) (-0 <0, for j=1,2,...,n—1.
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We distinguish the following two cases.

Case 1. Let z(t) > 0. Then for n even (18) implies z’(¢) > 0 and this situation
has been shown to lead to a contradiction with (16;) above.

For n odd, (18) implies that { = 0. Thus z(t) is positive and decreasing, therefore
there exists a finite tlg& z(t) =c¢>0. If ¢ > 0, then (3) yields

(19) 2(t) + q(t)z(a(t)) < 0.

Setting t =0, k =n—1and s >t =t; in (2) we get (12). Taking into account (19)
we have in view of (12) that
u — tl)n_l

(20) z(t1) = c/oo ((7171)' q(u) du.

t1

Then (16,,—1) yields

00 = /00 o™ Hu)q(u) du < /00 u" g(u) du.
to ta
This contradicts (20) and consequently tlggo z(t) = 0. On the other hand the bound-
edness of x(t) yields tllg)lo supz(t) = a, 0 < a < co. Then there exists a sequence {ty}
such that kllngo tp = 00, kli)n;o x(tx) = a. If a > 0, choosing € = a(1 — p)/(2p) we see
that z[7(t)] < a + ¢, eventually. Moreover

(21) 0= lim 2(t) > lim (w(tx) = pla+2)) = (1 —p) > 0.

— 00

Thus a = 0 and that is tlim x(t) = 0.
Case 2. Let z(t) < 0. For n even, it follows form (18) that z’(¢) > 0 which
implies that tlim z(t) = ¢ < 0. Denote limsup x(t) = a. If @ > 0 then considering a

t—o0

sequence {t;} as above and proceeding exactly as above we are led to

0=>c= klggo z(tg) = klingo(x(tk) —-pla+e)) = g(l —p)>0.
Then a = 0 and tlirglo x(t) = 0 and moreover (17) implies tlglgo z(t) = 0.

For n odd we have z'(t) < 0 which yields tliglo z(t) = —c < 0.

This again yields tli)rglo x(t) = 0, while, on the other hand, it follows from the
inequality z(t) > z(t) — pxz(7(t)) that tlirgo z(t) > 0, a contradiction. The proof is
complete. O
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Corollary 3. Let 0 < p(t) < p < 1. Assume that for every l € {1,2,...,n— 1}
such that n + 1 is odd

O'l 1 _ 1)
= T

Then every solution x(t) of Eq. (E;) oscillates or tends to zero as t — oc.
Proof. Note that (21;) implies (16;). O

It is useful to notice the following result which immediately follows from the proof
of Theorem 2. This corollary can be used in the comparison theory of neutral differ-
ential equations.

Corollary 4. Let all the assumptions of Theorem 2 hold. Let x(t) be an eventu-
ally positive solution of Eq. (E;;). Let z(t) be defined by (17). Then

(i) for n even we have

(22) lim z(t) =0, lim 29 (¢) =0, (=1)77120 ) >0, j=0,1,...

t—o00 t—o0

7”717

(ii) for n odd we have

(23) lim z(t) =0, lim 29 () =0, (=1)29() >0, j=0,1,...,n— 1.

t—oo t—oo

Remark 4. It is evident from the proofs of Theorems 1 and 2 that we can let
A1 = 1in (21;), (16;), respectively.

Example 2. Let us consider the second order neutral differential equation

(24) (x(t) — 0,52(t — 1))" + %x(t 1) =o0.

Then by Corollary 3 every nonoscillatory solution x(t) of (24) satisfies (22). One

such solution is z(t) = e™¢.

Employing additional conditions imposed on the coefficients of Eq. (E;;) the con-
clusion of Theorem 2 (Corollary 3) can be strenghtened as follows.

115



Corollary 5. Assume that n is even. Let all the assumptions of Theorem 2
(Corollary 3) hold. Then if p(t) oscillates, then Eq. (E,;) is oscillatory.

Proof. Let z(t) be a positive solution of (E ), then by Corollary 4, z(t) < 0.
If {ti} is a sequence of zeros of p(t) then

0> 2(tr) = z(tr) — p(tr)z(7(tr)) > 0,
a contradiction. O
Example 3. We consider the fourth order neutral differential equation

— sin (V)
(25) (x(t) - %x[r(t}]) +—z(ft) =0, 0<p<1.

Then by Corollary 5, Eq. (25) is oscillatory provided that

a >

9
233"
On the other hand, Parhi and Mohanty’s result [12] guarantees oscillation of (25) if

29
BPe(—Inp)

a >

On the other hand, the results presented in [8] cannot be applied to Eq. (28) as the
required condition [~ ¢(s)ds = oo is not satisfied for (25).

In the following we are concerned with the investigation of oscillation of the special
case of (E;) with n odd, that is we shall assume that o(t) =t — 0o, 7(¢t) = ¢t — 7,
p(t) =p, with e >0, 7 >0, p € (0,1).

Corollary 6. Assume that n is odd. Let the hypotheses of Theorem 2 hold.
Furthermore assume that

(26) liminf/t q(s)(s —t)"ds > (1 —p)(n—1)..

—
t—o0 o

Then Eq. (E;;) is oscillatory.

Proof. Let x(t) be an eventually positive solution of (E; ). Then it follows
from Corollary 4 that (23) holds. On the other hand the condition (26) (see [8])
implies that Eq. (E,;) has no solution satisfying (23). The proof is complete. O
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As we mentioned above our results here generalize and extend a number of existing

oscillation criteria. Moreover our results are new even for the corresponding delay

differential equations, that is for p(t) = 0.

We remark that it is only routine work to extend our results to equations with

several delays of the form

(1]
2]

8]

[10]
[11]

[12]

[13]

k

((t) £ p)z[r(ON™ + Y ai(t)z[ox(#)] = 0.

i=0
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