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Abstract. An inductive locally convex limit of reflexive topological spaces is reflexive iff
it is almost regular.
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Throughout the paper E1 ⊂ E2 ⊂ . . . is a sequence of locally convex spaces with
identity maps idn : En → En+1, n ∈ � , continuous and E = ind En its locally convex

inductive limit. The strong dual of En, resp. E, is denoted by E′
n, resp. E

′. For a
set A ⊂ E, its closure in E, resp. its polar, is denoted by clE A, resp. A◦. If A ⊂ En,

then its polar in E′
n is denoted by A◦n.

Definition. An inductive limit ind En is called regular, resp. almost regular,
if each set B, bounded in ind En is also bounded in some constituent space En,
resp. there exists a set A, bounded in some En, such that B ⊂ clE A.

For m, n ∈ � , 1 6 m 6 n, we denote by rn, resp. rm,n, the mapping which

associates with each f ∈ E ′, resp. fn ∈ E′
n, its restriction to the subspace En,

resp. Em. Clearly, rm = rm,n ◦ rn, the projective limit F = proj(E ′
n, rn) makes

sense, and the linear spaces underlying F and E ′ are the same.

Lemma 1. Let ind En be almost regular. Then the projective topology top F

and the strong topology β(E ′, E) are the same.
	�

�����

. Since each map rn : E′ → E′
n, n ∈ � , is continuous and the projective

topology of F is the coarsest topology on the linear space underlying E ′, for which

all these maps are continuous, we have topF ⊂ β(E ′, E). Hence it is sufficient to
show that for any set B, bounded in E, its polar B◦ is contained in top F .
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Since ind En is almost regular, there exists a set A, bounded in some En, such

that B ⊂ clE A. Then A◦n ∈ topE′
n and r−1

n (A◦n) ∈ top F . Further,

r−1
n (A◦n) = {f ∈ E′ ; |rnf(x)| 6 1 for x ∈ A}

= {f ∈ E′ ; |f(x)| 6 1 for x ∈ clE A}
⊂ {f ∈ E′ ; |f(x)| 6 1 for x ∈ B} = B◦

Hence, B◦ ∈ topF . �

Lemma 2. Assume top F ⊃ β(E ′, E). Then ind En is almost regular.
	�

�����

. Take a set B bounded in ind En. Then B◦ ∈ β(E′, E) ⊂ top F and
there exists a family {Bm ; 1 6 m 6 n}, where each set Bm is bounded in Em, such

that
⋂{r−1

m (B◦m
m ) ; 1 6 m 6 n} ⊂ B◦.

Each set Bm, m 6 n, is also contained and bounded in En. Denote by A the

balanced convex hull of
⋃{Bm ; 1 6 m 6 n}. Then A is bounded in En and for each

m ∈ � , 1 6 m 6 n, we have

A◦ = {f ∈ E′ ; |f(x)| 6 1 for x ∈ A}
⊂ {f ∈ E′ ; |f(x)| 6 1 for x ∈ Bm} ⊂ r−1

m B◦m
m .

Hence A◦ ⊂ ⋂{r−1
m B◦m

m ; 1 6 m 6 n} ⊂ B◦. This implies B◦◦ ⊂ A◦◦ and B ⊂
B◦◦ ⊂ A◦◦ = clE A, i.e. ind En is almost regular.

In the following, let {Fn, n ∈ � } be a family of locally convex spaces and {pm,n ;
1 6 m 6 n} a family of linear continuous mappings pm,n : Fn → Fm such that for

any k, m, n ∈ � , k 6 m 6 n, we have pk,n = pk,m ◦ pm,n. Moreover, let L be
a linear space and pn : L → Fn, n ∈ � , be a linear injective mapping such that
pm = pm,n ◦pn for any m 6 n. Then the projective limit proj(Fn, pn) exists. Denote
it by F . Finally, let F ′

n, n ∈ � , resp. F ′, be the strong dual of Fn, resp. of F . Then,

each mapping in : f 7→ f ◦ pn : F ′
n → F ′, n ∈ � , is linear and the inductive limit

G = ind(F ′
nin) makes sense. �

Lemma 3. The linear spaces underlying F ′ and G are the same.
	�

�����

. The vector space underlying G is the linear hull of the union
⋃{inF ′

n ;
n ∈ � } and inF ′

n ⊂ F ′, n ∈ � . Hence G ⊂ F ′. Take f ∈ F ′. Then U =
f−1(−1, 1) ∈ topF and there exists a family {Um ∈ top Fm ; 1 6 m 6 n} such that⋂{p−1

m Um ; 1 6 m 6 n} ⊂ U . Further, Vm = p−1
m,nUm ∈ top Fn for 1 6 m 6 n.

Put V =
⋂{Vm ; 1 6 m 6 n} and denote by M the linear hull of V , equipped with

the topology of Fn. Then the linear mapping f ◦ p−1
n : M → � is majorized by the

104



Minkowski functional ϕ : Fn → � of V . Since ϕ is a continuous seminorm on Fn, the

mapping f ◦ p−1
n : M → � has a continuous extension g : Fn → � . Then for x ∈ F ,

we have f(x) = (f ◦ p−1
n ◦ pn)(x) = (f ◦ p−1

n )(pnx) = g(pnx) = (g ◦ pn)(x) = (ing)(x)
and f = ing ∈ inF

′
n ⊂ G. �

Lemma 4. Each mapping in : F ′
n → F ′, n ∈ � , is continuous.

	�

�����
. Take U ∈ top F ′. Then there exists a set B, bounded in F such that

its polar B◦ ⊂ U . The set pnB is bounded in Fn. Hence for its polar (pnB)◦n ⊂ F
′
n

we have (pnB)◦n = {f ∈ F ′
n ; |f(x)| 6 1 for x ∈ pnB} ∈ top F ′

n.

For f ∈ (pnB)◦n and x ∈ B, we have |(inf)(x)| = |(f◦pn)(x)| = |f(pn(x))| 6 1.
This implies inf ∈ B◦ and in(pnB)◦n ⊂ B◦ ⊂ U . �

Lemma 5. top G = top F ′.

	������
. Since the topology of the inductive limit G is the finest one for which all

mappings in : F ′
n → F ′, n ∈ � , are continuous, we have top G ⊃ top F ′. To prove

the other inclusion, take a closed, balanced, and convex neighborhood U ∈ topG.

For each n ∈ � , we have i−1
n U ∈ top F ′

n hence there exists a balanced convex
set Bn ⊂ Fn, bounded in Fn, such that B◦n

n = {f ∈ F ′
n ; |f(x)| 6 1 for x ∈

Bn} ⊂ i−1
n U . The set B =

⋂{p−1
n Bn ; n ∈ � } is balanced, convex, and bounded

in F = proj(Fn, pn). The polar B◦ is the F ′-closure of the convex hull of the union⋃{(p−1
n Bn)◦ ; n ∈ � }. Further, (p−1

n Bn)◦ = {f ∈ F ′ ; |f(x)| 6 1 for x ∈ p−1
n Bn} =

{f ∈ F ′ ; |(f ◦ p−1
n )(y)| 6 1, y ∈ Bn} = inB◦n

n ⊂ U .

Hence we have B◦ ⊂ U , where B◦ ∈ topF ′. �

Theorem. Let E1 ⊂ E2 ⊂ . . . be a sequence of reflexive locally convex spaces

with identity maps idn : En → En+1, n ∈ � , continuous. Then its locally convex
inductive limit ind En is reflexive iff it is almost regular.

	�

�����
. It follows from Lemmas 1–5 that almost regularity of ind En implies its

reflexivity.

Assume ind En to be reflexive and that the spaces Fn, resp. mappings pn, n ∈ � ,
from Lemmas 3–5 are the same as the dualsE ′

n, resp. mappings rn, from Lemmas 1, 2.

Take a bounded set B ⊂ E = ind En. We have to construct a set A, bounded
in some En, such that B ⊂ clE A. By Lemma 5, we have E = F ′ and the set B is

also bounded in F ′. Hence, B◦ = {f ∈ F ; |f(x)| 6 1 for x ∈ B} ∈ top F and there
exists a closed balanced convex U ∈ topE ′

n such that r−1
n ⊂ B◦.
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The balanced convex set A = {x ∈ En ; |f(x)| 6 1 for x ∈ U} is weakly bounded
in En. Hence it is also bounded in the topology of En. Since A ⊂ En, we have

A◦ = {f ∈ E′ ; |f(x)| 6 1 for x ∈ A}
⊂ {r−1

n g ∈ E′ ; g ∈ E′
n, |g(x)| 6 1 for x ∈ A} = r−1

n A◦n.

Take f ∈ A◦n ⊂ E′
n, f 6= 0. There exists α > 0 and g ∈ U such that f = αg.

Let β = sup{λ > 0, λg ∈ U}. Then g 6= 0 implies β 6= +∞ and we can put h = βg.
Since the set U is closed convex, and balanced, we have h ∈ U .

Let λ = αβ−1 and ε ∈ (0, 1). The choice of β implies existence of xε ∈ A for
which |h(xε)| > 1 − ε. Then 1 > |f(xε)| = |λh(xε)| > λ(1 − ε). Thus λ 6 1 =
inf{(1− ε)−1 ; ε ∈ (0, 1)} and f ∈ U . So far, we have A◦ ⊂ r−1

n A◦n ⊂ r−1
n U ⊂ B◦.

This implies B ⊂ B◦◦ ⊂ A◦◦ = clE A. �
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