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Abstract. The aim of this paper is to present relations between Goldie, hollow and
Kurosh-Ore dimensions of semimodular lattices. Relations between Goldie and Kurosh-Ore
dimensions of modular lattices were studied by Grzeszczuk, Okiński and Puczy lowski.
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1. Preliminaries

Let L be a lattice of finite length. We will denote by L∗ the dual of L. For
elements a, b ∈ L (a 6 b) we define the interval [a, b] to be the set of all c ∈ L such

that a 6 c 6 b. We say that b covers a if a < b and [a, b] = {a, b}; in this case we
write a ≺ b. If p ∈ L covers 0, then p is an atom of L. Let A(L) be the set of all
atoms of L. Define a lattice L to be upper semimodular (briefly: semimodular) if it
satisfies the following condition:

a ∧ b ≺ a implies b ≺ a ∨ b.

L is lower semimodular if its dual lattice is semimodular.

Let T ⊆ L − {0}. T is called join independent if for every finite subset S ⊆ T

and each element t ∈ T − S, t ∧ ∨
S = 0. The Goldie dimension dG(L) of L is

defined (see [1]) as

dG(L) = max{|T | : T is a join independent subset of L}.
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The Goldie dimension of the lattice L∗ is called the hollow dimension and denoted

by dH(L) (see [2]). We have dH(L) = dG(L∗).
An element m ∈ L− {1} is meet irreducible if m = x ∧ y implies that m = x or

m = y. Dually, an element u ∈ L− {0} is join irreducible if u = x ∨ y implies that

u = x or u = y. By M(L) (resp. J(L)) we denote the set of all meet irreducible
(resp. join irreducible) elements of the lattice L. A subset T of L is said to be

meet irredundant (resp. join irredundant) if for each element t ∈ T ,
∧

(T − {t})
�

t

(resp. t
� ∨

(T − {t})).
If a = x1 ∧ x2 ∧ . . . ∧ xm for a ∈ L and x1, x2, . . . , xm ∈ M(L), then we say that

x1 ∧ x2 ∧ . . . ∧ xm is a ∧-decomposition of a. A ∧-decomposition x1 ∧ x2 ∧ . . . ∧ xm

of a is called irredundant if the set {x1, x2, . . . , xm} is meet irredundant. Dually, if
a = x1 ∨ x2 ∨ . . . ∨ xm and x1, x2, . . . , xm ∈ J(L), then we say that x1 ∨ x2 ∨ . . . ∨
xm is a ∨-decomposition of a. This ∨-decomposition of a is irredundant if the set
{x1, x2, . . . , xm} is join irredundant.
The following classical result is referred to as the Kurosh-Ore Theorem:

Theorem. If L is a modular lattice and if a = x1∧x2∧. . .∧xm = y1∧y2∧. . .∧yn

are two irredundant ∧-decomposition of a ∈ L, then m = n. Dually, the number of

join irreducible elements in any irredundant finite ∨-decomposition of a is unique.

a b c d

0 = a ∧ b ∧ c = a ∧ d
Figure 1.

The lattice of Fig. 1 shows that for semimodular lattices, the Kurosh-Ore Theorem
does not hold.

We say that the Kurosh-Ore dimension (for ∧-decompositions) of L equals n,
and write d∧(L) = n if there exists a meet irredundant subset {a1, . . . , an} of M(L)
such that 0 = a1 ∧ . . . ∧ an and for every irredundant ∧-decomposition 0 =

∧
T

of 0, |T | 6 n. By dualizing we get the concept of Kurosh-Ore dimension for

∨-decompositions. We have d∨(L) = n if and only if d∧(L∗) = n. Obviously,

d∧(L) = 1 ⇔ 0 ∈ M(L) and d∨(L) = 1 ⇔ 1 ∈ J(L).
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2. Results

Let L be a semimodular lattice of finite length and let x ∈ L The height of [0, x]
will be denoted by h(x) and called the height of x (h(x) = |C| − 1, where C is a
maximal chain in [0, x]). Write h(L) = h(1). It is easy to see that the following three
lemmas hold.

Lemma 1. Let L be a semimodular lattice of finite length. If {b1, . . . , bn} is a
join irredundant subset of L, then h(b1 ∨ . . . ∨ bn) > n.

Lemma 2. Let L be a lattice of finite length. If dG(L) = n, then there exists a

join independent set of n atoms of L.

Lemma 3 ([4], Theorem 1.9.3). If L is a semimodular lattice and 1 is a join of
a finite join independent set, containing, say, n atoms, then h(L) = n.

Theorem 1. If L is a semimodular lattice of finite length, then d∧(L) = dG(L).
���������

. Let d∧(L) = n and let 0 = a1 ∧ a2 ∧ . . . ∧ an be an irredundant

∧-decomposition of 0. Set bi =
∧{aj : j 6= i} for i ∈ I = {1, 2, . . . , n}. Since the

set {a1, a2, . . . , an} is meet irredundant, we conclude that {b1, b2, . . . , bn} ⊆ L−{0}.
Observe that

bi ∧
∨
{bj : j 6= i} = 0

for each i ∈ I . Indeed,

bi ∧
∨
{bj : j 6= i} 6 bi ∧ ai = a1 ∧ a2 ∧ . . . ∧ an = 0.

Therefore, {b1, b2, . . . , bn} is a join independent subset of L. Hence dG(L) > n.

Suppose that dG(L) > n. By Lemma 2, there is a join independent set
{p1, p2, . . . , pn} ⊆ A(L) with k > n. For 1 6 i 6 k, we put ci =

∨{pj : j 6= i}. We
prove that

(1) c1 ∧ c2 ∧ . . . ∧ ck = 0.

Assume that c1 ∧ c2 ∧ . . . ∧ ck > 0, and let q be an atom of L such that q 6
c1 ∧ c2 ∧ . . . ∧ ck. Obviously,

q
�

p2 and q 6 c1 = p2 ∨ p3 ∨ . . . ∨ pk.

Therefore,
q 6 p2 ∨ p3 ∨ . . . ∨ pi+1 and q

�
p2 ∨ p3 ∨ . . . ∨ pi
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for some 2 6 i < k. We have pi+1 ∧ (p2 ∨ p3 ∨ . . . ∨ pi) = 0 ≺ pi+1 and hence, by

semimodularity,

p2 ∨ . . . ∨ pi ≺ p2 ∨ . . . ∨ pi ∨ pi+1.

Consequently, q∨p2∨ . . .∨pi = p2∨ . . .∨pi∨pi+1. Then pi+1 6 q∨p2∨ . . .∨pi 6 ci+1,

a contradiction. Thus (1) holds.

Let 1 6 j 6 k. It follows that

c1 ∧ . . . ∧ cj−1 ∧ cj+1 ∧ . . . ∧ ck

�
cj ,

since otherwise pj 6 cj , contradicting our assumption that {p1, p2, . . . , pk} is a join
independent subset of L. Therefore, the set {c1, c2, . . . , ck} is meet irredundant.
Take a ∧-decomposition ci =

∧
Ti of ci. For 1 6 i 6 k, let T ′

i be a subset of Ti such

that T = T ′
1 ∪ T ′

2 ∪ . . . ∪ T ′
k is a meet irredundant set and 0 =

∧
T . Since the set

{c1, c2, . . . , ck} is meet irredundant, we conclude that |T | > k > n. Thus d∧(L) > n,

a contradiction. From this we see that dG(L) = n. �

Theorem 2. Let L be a semimodular lattice of finite length. Then the following

conditions are equivalent:

(i) 1 is a join of atoms.
(ii) dG(L) = d∨(L) = h(L).
���������

. (i) ⇒ (ii). Let 1 be a join of a finite join independent set, containing,
say, n atoms. Then dG(L) > n = h(L) (see Lemma 3). Let dG(L) = k. By Lemma 2,
there exists a join independent set {p1, p2, . . . , pk} of k atoms of L. From (i) it follows
that there are atoms q1, q2, . . . , qm such that

1 = p1 ∨ p2 ∨ . . . ∨ pk ∨ q1 ∨ q2 ∨ . . . ∨ qm

and the set {p1, p2, . . . , pk, q1, q2, . . . , qm} is join irredundant. By the definition of
d∨(L), d∨(L) > m + k > k, i.e., dG(L) 6 d∨(L). From Lemma 1 we conclude that
d∨(L) 6 h(L). Thus we have (ii).

(ii) ⇒ (i). Let dG(L) = d∨(L) = h(L) = n. By Lemma 2, there exists a join

independent set {a1, a2, . . . , an} of n atoms of L. It follows that

1 = a1 ∨ a2 ∨ . . . ∨ an,

since otherwise h(L) > h(a1 ∨ a2 ∨ . . . ∨ an) > n, contradicting our assumption that
h(L) = n. �
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An immediate consequence of Theorems 1 and 2 is

Corollary 1. Let L be a semimodular lattice of finite length. If 1 is a join of
atoms, then d∧(L) = d∨(L) = dG(L) = h(L).

Recall that a lattice L is atomistic if every element of L is a join of atoms (note that

0 is the join of the empty set of atoms). A geometric lattice is a finite semimodular
atomistic lattice.

From Corollary 1 we have

Corollary 2. If L is a geometric lattice, then d∧(L) = d∨(L) = dG(L) = h(L).

The dual of Theorem 1 yields

Corollary 3. If L is a lower semimodular lattice of finite length, then d∨(L) =
dH(L).

Combining Corollary 1 and Corollary 2 we get

Corollary 4. Let L be an atomistic modular lattice of finite length. Then

d∧(L) = d∨(L) = dG(L) = dH(L) = h(L).

In particular, we have

Corollary 5. If L is a modular geometric lattice, then d∧(L) = d∨(L) = dG(L) =
dH(L) = h(L).
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