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Abstract. By a ternary structure we mean an ordered pair (U0, T0), where U0 is a finite
nonempty set and T0 is a ternary relation on U0. A ternary structure (U0, T0) is called here
a directed geodetic structure if there exists a strong digraph D with the properties that
V (D) = U0 and

T0(u, v, w) if and only if dD(u, v) + dD(v, w) = dD(u, w)

for all u, v, w ∈ U0, where dD denotes the (directed) distance function in D. It is proved in
this paper that there exists no sentence s of the language of the first-order logic such that
a ternary structure is a directed geodetic structure if and only if it satisfies s.
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0

The letters e, f, g, . . . , n (possibly with indices) will be reserved for denoting in-
tegers. All graphs and digraphs considered here are finite. For the graph theory

terminology, the reader in referred to [1].
Let G be a connected graph, and let V (G), E(G) and dG denote the vertex set

of G, the edge set of G and the distance function of G, respectively. By the geodetic
relation of G we will mean the ternary relation ΓG on V (G) defined as follows:

ΓG(u, v, w) if and only if dG(u, v) + dG(v, w) = dG(u, w)
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for all u, v, w ∈ V (G). By the interval function of G we mean the mapping IG :
V (G)× V (G) → 2V (G) defined as follows:

IG(x, y) = {z ∈ V (G) ; ΓG(x, z, y)}

for all x, y ∈ V (G). Note that the interval function of a connected graph was
extensively studied in Mulder [3].

Let D be a strong digraph, and let V (D), E(D) and dD denote the vertex set
of D, the edge set of D and the (directed) distance function of D, respectively. By

the directed geodetic relation of D we shall mean the ternary relation Γdir
D on V (D)

defined as follows:

Γdir
D (u, v, w) if and only if dD(u, v) + dD(v, w) = dD(u, w)

for all u, v, w ∈ V (D).
By a ternary structure we shall mean an ordered pair (U0, T0), where U0 is a

finite nonempty set and T0 is a ternary relation on U0. We say that a ternary

structure (U0, T0) is a geodetic structure if there exists a connected graph G such
that U0 = V (G) and T0 = ΓG. We say that a ternary structure (U0, T0) is a directed
geodetic structure if there exists a strong digraph D such that U0 = V (D) and
T0 = Γdir

D .

In [4], [5] and [6] the present author gave an axiomatic characterization of the
interval function of a connected graph. This characterization can be easily reformu-

lated to an axiomatic characterization of the geodetic structure: a ternary structure
is a geodetic structure if and only if it satisfies a certain finite set of axioms, or said

more strictly, if and only if it satisfies a certain axiom in the language of first-order
logic. In the present paper we will prove that a similar result for a directed geodetic

structure does not hold.
To prove this, we need to introduce some logical notions and to use a result

of model theory. For further details and more explicit formulations, the reader is
referred to [2], Chapter 0.

1

By an atomic formula of the first-order logic of vocabulary {T}, where T is the

ternary relation symbol, we mean an expression x = y, where x and y are variables,
or an expression T (x, y, z), where x, y, z are variables. By a formula of the first

order logic of vocabulary {T} (shortly: a formula) we mean an atomic formula of the
first-order logic of vocabulary {T}, or an expression ¬a, where a is a formula, or an
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expression a1 ∨ a2, where a1 and a2 are formulae, or an expression ∃xa, where x is

a variable and a is a formula.
Following [2], we define the quantifier rank qr of a formula:
if a is an atomic formula, then qr(a) = 0;
if a is a formula, then qr(¬a) = qr(a);
if a1 and a2 are formulae, then qr(a1 ∨ a2) = max(qr(a1), qr(a2));
if a is a formula and x is a variable, then qr(∃xa) = qr(a) + 1.
By a sentence of the first-order logic of vocabulary {T} (shortly: a sentence) we

mean a formula s such that for every atomic subformula a of s it holds that every
variable belonging to a is in the scope of the corresponding quantifier. (For further
details and more explicit formulations, the reader is referred to [2], Chapter 0).

We will define a partial isomorphism from a ternary structure to a ternary struc-
ture as a special case of the partial isomorphism defined in [2], p. 15. Let (U1, T1) and
(U2, T2) be ternary structures. By a partial isomorphism from (U1, T1) to (U2, T2)
we mean an injective mapping α with the properties that Def(α) ⊆ U1, Im(α) ⊆ U2

and

T1(u, v, w) if and only if T2(α(u), α(v), α(w))

for all u, v, w ∈ Def(α).
Let (U1, T1) and (U2, T2) be ternary structures and let n > 0. We will write

(U1, T1) ∼=n (U2, T2) if there exist nonempty subsets Q0, . . . ,Qn of the set of all

partial isomorphisms from (U1, T1) to (U2, Y2) such that the following statements (I)
and (II) hold:

(I) for every m, 0 < m 6 n, u ∈ U1 and α ∈ Qm, there exists β ∈ Qm−1 with the
properties that α ⊆ β and u ∈ Def(β).
(II) for every m, 0 < m 6 n, u ∈ U2 and α ∈ Qm, there exists β ∈ Qm−1 with the

properties that α ⊆ β and u ∈ Im(β).
The next theorem will be an important tool for us. Recall that by a sentence we

mean a sentence of the first-order logic of vocabulary {T}.

Theorem 1. Let (U1, T1) and (U2, T2) be ternary structures and let n > 0.
Then (U1, T1) and (U2, T2) satisfy the same sentences s of qr(s) 6 n if and only if
(U1, T1) ∼=n (U2, T2).

Theorem 1 is a special case of Fräıssé’s Theorem. Its proof can be found in [2],
Chapter 1, where also further important notions closely connected to this theorem

appear.
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Let (U0, T0) be a ternary structure. We denote by E0 the set of all ordered pairs

(u, v) of distinct elements of U0 such that

if T0(u, w, v), then u = w or v = w for every w ∈ U0.

By the underlying digraph of (U0, T0) we mean the digraph D defined as follows:

V (D) = U0 and E(D) = E0. It is clear that if (U0, T0) is a directed geodetic
structure and D is its underlying digraph, then D is strong and T0 = Γdir

D .

We will construct a certain infinite sequence of ternary structures. We will need
them for proving the main result of the present paper. If e > 2, then we denote
Ne = {1, 2, . . . , e}.
Let g, h > 2. We denote by Lg,h the mapping of Ng+h into itself defined as follows:

Lg,h(e) = h + e + 1 for 1 6 e < g;
Lg,h(g) = h;

Lg,h(g + 1) = h + 1;
Lg,h(g + f + 1) = f for 1 6 f 6 h− 1.

Clearly, Lg,h is a bijection of Ng+h onto itself.
Let g, h > 2. We denote by Bg,h the ternary relation on Ng+h defined as follows:

Bg,h(e1, e2, e3) if and only if(1)

(e1 6 e2 6 e3) or (Lg,h(e1) 6 Lg,h(e2) 6 Lg,h(e3)) or

(e1 = g + 1, 1 6 e2 6 g − 1, e3 = g)

for all e1, e2, e3 ∈ Ng+h. We denote by Dg,h the digraph defined as follows:

V (Dg,h) = Ng+h

and

E(Dg,h) = {(1, 2), (2, 3), . . . , (g + h− 1, g + h)} ∪ {(g + 1, 1), (g + h, g)}.

A diagram of D5,7 is given in Fig. 1.
Clearly, Dg,h is the underlying digraph of the ternary structure (Ng+h, Bg,h). We

can see that Dg,h is strong. As follows from (1), Bg,h = Γdir
Dg,h

if and only if g 6 h.

Lemma 1. Let i, j > 2. Then (Ni+j , Bi,j) is a directed geodetic structure if and
only if i 6 j.
���������

is obvious. �
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Lemma 2. Let n > 1, and let i, j > 2n. Then

(Ni+j , Bi,j) ∼=n (Ni+j , Bj,i).

���������
. Put A[i] = Bi,j and A[j] = Bj,i. Let k ∈ {i, j}. We define M[k],1 =

{1, 2, . . . , k + 1} and M[k],2 = {k, k + 1, . . . , i + j}. We denote by G[k],1 and G[k],2

the graphs defined as follows: V (G[k],1) = M[k],1, V (G[k],2) = M[k],2,

E(G[k],1) = {{1, 2}, {2, 3}, . . . , {k − 1, k}} ∪ {{k + 1, 1}}

and

E(G[k],2) = {{k + 1, k + 2}, {k + 2, k + 3}, . . . , {i + j − 1, i + j}} ∪ {{i + j, k}}.

Obviously, G[k],1 and G[k],2 are paths. We denote by d[k],1 and d[k],2 the distance
function of G[k],1 and G[k],2, respectively.

We denote by S[k] the binary relation on Ni+j defined as follows:

S[k](e, f) if and only if there exists r ∈ {1, 2} such that e, f ∈ M[k],r

for all e, f ∈ Ni+j . Obviously, S[k](k, e) and S[k](k + 1, e) for all e ∈ Ni+j .

Moreover, for all distinct e, f ∈ Ni+j such that {e, f} 6= {k, k + 1} we denote by
s[k](e, f) the unique r ∈ {1, 2} with the property that {e, f} ⊆ M[k],r.
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Let m ∈ {0, 1, . . . , n}. Put dm
[k](e, e) = 0 for every e ∈ Ni+j . For all distinct

f, g ∈ Ni+j such that S[k](f, g) we define dm
[k](f, g) as follows:

dm
[k](f, g) = ∞ if {f, g} = {k, k + 1},

dm
[k](f, g) = ∞ if {f, g} 6= {k, k + 1} and d[k],s[r](f,g)(f, g) > 2m

and

dm
[k](f, g) = d[k],s[k](f,g)(f, g) if {f, g} 6= {k, k + 1}

and d[k],s[r](f,g)(f, g) < 2m.

Let m ∈ {1, . . . , n}. It is easy to see that

if dm
[i](e, f) = dm

[j](g, h), then dm−1
[i] (e, f) = dm−1

[j] (g, h)(2)

for all e, f, g, h ∈ Ni+j such that S[i](e, f) and S[j](g, h).

We denote byP the set of all partial isomorphisms α of (Ni+j , A[i]) into (Ni+j , A[j])
such that {i, i + 1} ⊆ Def(α) and for all e ∈ Def(α) it holds that

α(e) ∈ M[j],1 \ {j, j + 1} if e ∈ M[i],1 \ {i, i + 1},
α(e) ∈ M[j],2 \ {j, j + 1} if e ∈ M[i],2 \ {i, i + 1},
α(e) = j if e = i

and

α(e) = j + 1 if e = i + 1.

Define α0 = {(i, j), (i + 1, j + 1)}. Obviously, α0 ∈ P.
Let α ∈ P, and let e, f ∈ Def(α). It follows from the definition of P that if

S[i](e, f), then S[j](α(e), α(f)).
For every m, 0 6 m 6 n, we denote by Qm the set of all α ∈ P such that

(3) dm
[i](e, f) = dm

[j](α(e), α(f)) for all e, f ∈ Def(α) such that S[i](e, f).

Clearly, α0 ∈ Qn. It follows from (2) that

(4) Qn ⊆ Qn−1 ⊆ . . . ⊆ Q0.

To finish the proof we need to show that the statements (I) and (II) hold for
Q0,Q1, . . . ,Qn.
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Let m ∈ {1, . . . , n}, α ∈ Qm, and let g ∈ Ni+j . First, assume that g ∈ Def(α).
By (4), α ∈ Qm−1. We put β = α. Now, assume that g 6∈ Def(α). Then g 6∈ {i, i+1}.
There exists exactly one r ∈ {1, 2} such that g ∈ V (G[i],r). It is clear that there
exist e, f ∈ V (G[i],r) ∩ Def(α) such that

e belongs to the (i + 1)− g path in G[i],r,

f belongs to the g − i path in G[i],r,

g belongs to the e− f path in G[i],r

and no inner vertex of the e − f path in G[i],r belongs to Def(α). It is easy to see
that α(e), α(f) ∈ V (G[j],r) and dm

[j],r(α(e), α(f)) = dm
[i],r(e, f). Let P denote the

α(e)− α(f) path in G[j],r. Obviously, no inner vertex of P belongs to Im(α).
We distinguish three cases.

Case 1. Assume that d[i],r(e, g) < 2m−1. Then there exists exactly one h1 ∈
V (G[j],r) such that h1 belongs to P and d[j],r(α(e), h1) = d[i],r(e, g); we put h = h1.

Case 2. Assume that d[i],r(e, g) > 2m−1 and d[i],r(g, f) < 2m−1. Then there

exists exactly one h2 ∈ V (G[j],r) with the properties that h2 belongs to P and
d[j],r(h2, α(f)) = d[i],r(g, f); we put h = h2.

Case 3. Assume that d[i],r(e, g) > 2m−1 and d[i],r(g, f) > 2m−1. Then d[i],r(e, f) >
2m. There exists exactly one h3 ∈ V (G[j],r) with the properties that h3 belongs to

the P and d[i],r(α(e), h3) = 2m−1; we put h = h3.

Now put β = α ∪ {(g, h)}. Since (2) holds, it is easy to see that β ∈ Qm−1. Thus

(I) holds. The fact that (II) also holds can be proved similarly.

Hence (Ni+j , Bi,j) ∼=n (Ni+j , Bj,i), which completes the proof. �

The next theorem gives the main result of the present paper:

Theorem 2. There exists no sentence s of the first-order logic of vocabulary {T}
such that a connected ternary structure is a directed geodetic structure if and only

if it satisfies s.
���������

. Combining Lemmas 1 and 2 with Theorem 1, we get the result. �

Remark 1. Theorem 1 was used by the present author for proving another, very
different, result on ternary structures in [7].

Remark 2. The idea of functions dm
[k] in the proof of Lemma 2 was inspired by

one of the ideas in Example 1.3.5 of [2].

Remark 3. A preliminary version of the main result of this paper was presented
by the author on Slovak and Czech conference GRAPHS 2000 held at Liptovský

Trnovec (Slovakia), May 15–19, 2000 (organized by School of Finance of Matej Belo
University, Banská Bystrica, and other institutions).
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