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1. Introduction and preliminaries

The notion of pseudo MV -algebra has been introduced by Georgescu and Iorgu-
lescu [4], [5] and by Rach̊unek [8] (in [8], the term ‘generalizedMV -algebra’ has been

used).

We denote by V1 and V2 the collection of all varieties of pseudo MV -algebras

and the collection of all varieties of lattice ordered groups, respectively. Under the
set-theoretical inclusion, V1 and V2 are lattices.

In this paper we describe an injective mapping ϕ of V2 into V1 such that for any
Z1, Z2 ∈ V2 we have

Z1 ⊆ Z2 ⇔ ϕ(Z1) ⊆ ϕ(Z2).

If G is a lattice ordered group with a strong unit u, then the pair (G, u) is called
a unital lattice ordered group.

We will apply a result of Dvurečenskij [2] on the relations between pseudo MV -

algebras and unital lattice ordered groups.

We define the notion of the regular class of unital lattice ordered groups and we

denote by U the collection of all such classes. We consider the partial order on U

defined by the class-theoretical inclusion.
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Our method is as follows. First, we prove some auxiliary results concerning neutral

ideals of and congruence relations on pseudo MV -algebras.
Then we construct an isomorphism of U onto V1. Finally, we describe an injective

order-preserving mapping of V2 into U .

For the results and for the bibliography concerning the varieties of MV -algebras
cf. Chapter 8 of the monograph Cignoli, D’Ottaviano and Mundici [1].

2. Preliminaries

For the sake of completeness, we recall the definition of a pseudo MV -algebra.

Let A = (A;⊕,¬,∼, 0, 1) be an algebra of type (2, 1, 1, 0, 0). For x, y ∈ A we put

y � x =∼ (¬x⊕ ¬y).

Assume that A satisfies the following identities:
(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(A2) x⊕ 0 = 0⊕ x = x;
(A3) x⊕ 1 = 1⊕ x = 1;
(A4) ∼ 1 = 0;¬1 = 0;
(A5) ∼ (¬x ⊕ ¬y) = ¬(∼ x⊕ ∼ y);
(A6) x⊕ ∼ x� y = y⊕ ∼ y � x = x� ¬y ⊕ y = y � ¬x⊕ x;
(A7) x� (¬x ⊕ y) = (x⊕ ∼ y)⊕ y;

(A8) ∼ (−x) = x.
Then A is called a pseudo MV -algebra.

Let (G, u) be a unital lattice ordered group. Further, let A be the interval [0, u]
of G. For x, y ∈ A we put

x⊕ y = (x+ y) ∧ u, ¬x = u− x, ∼ x = −x+ u, 1 = u.

Then the algebraic structure

Γ(G, u) = (A;⊕,¬,∼, 0, u)

is a pseudo MV -algebra.
Dvurečenskij [2] proved that for each pseudo MV -algebra A there exists a unital

lattice ordered group (G, u) such that A = Γ(G, u).
Let ConA and ConG be the lattice of all congruence relations on A and on G,

respectively. For % ∈ ConG we denote by ψ0(%) the equivalence on A defined by

(1) a1ψ0(%)a2 iff a1%a2,

where a1, a2 ∈ A.
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The relations between Con A and ConG for the particular case when A is an

MV -algebra have been dealt with in [6, Section 1]; cf. also Cignoli, D’Ottaviano and
Mundici [1, Chapter 7].

Let us now consider the case when A is a pseudo MV -algebra. Then G need not

be abelian. In this case we have to modify the method from [6] in the following two
points:

1) Let %1 ∈ ConA and 0(%1) = {a′ ∈ A : 0%1a
′}. Further, let X0 be the convex

`-subgroup of G generated by the set 0(%1). We apply Theorem 6.10 from [3] to
obtain the fact that X0 is an `-ideal of G.

2) The expressions

t = ¬(a2 ⊕ ¬a3), t%1(a2 ⊕ ¬a2)

in the proof of 1.5 in [6] are to be replaced by

t = ¬(a2⊕ ∼ a3), t%1¬(a2⊕ ∼ a2).

The remaining arguments and the results of Section 1 in [6] remain valid for the
pseudo MV -algebra A . Thus we have

2.1. Lemma. The mapping ψ0 is an isomorphism of the lattice ConG onto the
lattice ConA .

Let % be as above; put %1 = ψ0(%). For g ∈ G we denote by g the congruence class
in % containing the element g. Further, we construct in the usual way the factor
structure G/% = G which has the underlying set {g : g ∈ G}. Then (G, u) is a unital
lattice ordered group.

Similarly we can construct the factor structure A
1

= A /%1; its underlying set is
{a1 : a ∈ A}, where a1 is the congruence class in %1 containing the element a of A.

Hence A
1
is a factor pseudo MV -algebra of A .

In view of [6, 1.5 and 1.8], for each a ∈ A we have

(2) a1 = A ∩ a.

For each a ∈ A we put
τ(a1) = a.

Then in view of (2), τ is a correctly defined mapping of the set A
1
onto the interval

[0, u] of G. Clearly τ(01) = 0, τ(u1) = u.
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Consider the pseudo MV -algebras A
1
and Γ(G, u). Let x, y ∈ A. Then we have

x⊕ y = (x+ y) ∧ u = (x+ y) ∧ u,
x1 ⊕ y1 = x⊕ y

1 = (x+ y) ∧ u1
,

whence τ(x1 ⊕ y1) = x⊕ y.

Similarly we can verify the relations

τ(¬x1) = ¬x, τ(∼ x1) =∼ x.

Summarizing, we obtain

2.2. Lemma. The mapping τ is an isomorphism of the pseudo MV -algebra A
1

onto the pseudo MV -algebra Γ(G, u).

For the related result concerning MV -algebras cf. Theorem 7.4.2 in [1].

2.3. Lemma. Let G0 be a lattice ordered group and let ∅ 6= X ⊆ G+
0 . Assume

that the following conditions are valid:

(i) X is closed with respect to the operation +;
(ii) X is a sublattice of the lattice G+

0 ;

(iii) x+X = X + x for each x ∈ X ;
(iv) if x1, x2 ∈ X and x1 6 x2, then −x1 + x2 ∈ X and x2 − x1 ∈ X .
Put Y = {x1 − x2 : x1, x2 ∈ X}. Then Y is an `-subgroup of G0 and Y + = X .

���
�
��

. a) Let y, y′ ∈ Y . Hence there are x1, x2, x
′
1, x

′
2 ∈ X such that y =

x1 − x2, y′ = x′1 − x′2. Then

y + y′ = x1 − x2 + x′1 − x′2.

In view of (iii) there is x′′1 ∈ X such that −x2 + x′1 = x′′1 − x2, whence according

to (i) we have
y + y′ = (x1 + x′′1 )− (x′2 + x2) ∈ Y.

Further, −y = x2 − x1 ∈ Y . Hence Y is a subgroup of the group G0.
b) Let y ∈ Y , y > 0. Under the notation as above we have x1 > x2. Then in view

of (iv), y ∈ X .
c) Let y and y′ be as in a). Denote z = −x2 − x′2. Hence y > z, y′ > z. Then in

view a) and b) we obtain y − z ∈ X , y′ − z ∈ X . Thus according to (ii) we have

(y − z) ∨ (y′ − z) = v ∈ X.

By applying a) we get v + z ∈ Y , whence y ∨ y′ ∈ Y . Analogously we obtain the

relation y ∧ y′ ∈ Y . Hence Y is an `-subgroup of G0. Further, from X ⊆ G+
0 and

from b) we conclude that Y + = X . �
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Now let us suppose that G0 is a lattice ordered group with a strong unit u and that

A1 is a subalgebra of the pseudo MV -algebra Γ(G0, u). Let A1 be the underlying
set of A1. Hence A1 ⊆ G+

0 .

We will apply some results of Section 2 of [2]. We denote by X the set of all
elements g ∈ G0 which can be expressed in the form

g = a1 + a2 + . . .+ an (a1, a2, . . . , an ∈ A1, n > 1).

Then X satisfies the condition (i) from 2.3. Further, from Proposition 3.7 and

Proposition 3.8 in [2] we conclude that the conditions (ii), (iii) and (iv) from 2.3 are
satisfied as well. Let Y be as in 2.3; thus Y is an `-subgroup of G0.

We denote by [0, u]2 the interval with the endpoints 0 and u in Y .

2.4. Lemma. [0, u]2 = A1.


���
�
��
. Let a ∈ A1. Then 0 6 a 6 u. Further, a ∈ X ⊆ Y , whence a ∈ [0, u]2.

Conversely, let t ∈ [0, u]2. Then 0 6 t 6 u and t ∈ Y . Thus in view of 2.3, t ∈ X .
Hence there are a1, a2, . . . , an ∈ A1 with t = a1 + . . . + an. Because t 6 u, by

considering the pseudo MV -algebra Γ(G0, u) we conclude that we have

(∗) t = a1 ⊕ . . .⊕ an

in Γ(G0, u). Since A1 is a subalgebra of Γ(G0, u), the equality (∗) holds in A1 as
well. Therefore t ∈ A1. �

In view of 2.3, 2.4 and of the fact that A1 is a subalgebra of Γ(G0, u) we obtain

2.5. Lemma. Under the notation as above, A1 = Γ(Y, u).

3. Regular classes of unital lattice ordered groups

We denote by G0 the class of all unital lattice ordered groups. Let (Gi, ui)i∈I be

an indexed system of elements of G0. Consider the direct product

G0 =
∏

i∈I

Gi.

For g ∈ G0 and i ∈ I we denote by g(Gi) the component of the element g in Gi.
There exists u0 ∈ G0 such that u0(Gi) = ui for each i ∈ I . Let G1 be the convex
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`-subgroup of G0 which is generated by the element u0. Then u0 is a strong unit

of G1, whence (G1, u0) ∈ G0. We denote

G1 =
1∏

i∈I

Gi.

Assume that (G1, u1) belongs to G0 and let ϕ be a homomorphism of G1 into a lat-

tice ordered group G2. Then ϕ(u1) is a strong unit of ϕ(G1), hence (ϕ(G1), ϕ(u1)) ∈
G0. We say that ((ϕ(G1), ϕ(u1)) is a homomorphic image of (G1, u1) (under the
homomorphism ϕ).
Let X0 be the kernel of ϕ and let % be the congruence relation on G1 determined

by the `-ideal X0. For x ∈ G1 we denote by x the class of the partition of G1

corresponding to % such that x ∈ x. Hence u1 is a strong unit of G1/% = G1 and

(G1, u1) is isomorphic to (ϕ(G1), ϕ(u1)).

3.1. Definition. A nonempty subclass Y of G0 is called regular if it satisfies the

following conditions:
(i) Let (H1, u1) ∈ Y and let H2 be an `-subgroup of H1 such that u1 ∈ H2. Then

(H2, u1) ∈ Y .
(ii) The class Y is closed with respect to homomorphisms.

(iii) Assume that (Gi, ui)i∈I is an indexed system of elements of Y . Let u0 and G1

be as above. Then (G1, u0) ∈ Y .

LetX ∈ V1. Each elementA ∈ X can be written asA = Γ(G, u) with (G, u) ∈ G0.
We denote by Y the class of all such (G, u).

3.2. Lemma. The class Y satisfies the condition (i) from 3.1.

���
�
��

. Assume that H1, H2 and u1 are as in the condition (i) of 3.1. There
exists A1 ∈ X with A1 = Γ(H1, u1).
The element u1 is a strong unit of H2, hence we can construct the pseudo MV -

algebra A2 = Γ(H2, u1).
Let us denote by ⊕i,¬i and ∼i the corresponding operations in Ai (i = 1, 2). If

+, − and ∧ are the operations in H1, then from the fact that H2 is an `-subgroup

of H1 we conclude that for h, h′ ∈ H2 we have

h⊕1 h
′ = (h+ h′) ∧ u1 = h⊕2 h

′,

¬1h = u1 − h = ¬2h, ∼1 h = −h+ u1 =∼2 h.

Hence A2 is an subalgebra of A2. Since A1 ∈ X , we get A2 ∈ X . Thus (H2, u1) ∈ Y .
�
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3.3. Lemma. The class Y satisfies the condition (ii) from 3.1.

���
�
��

. Let (G, u) ∈ Y and let (ϕ(G), ϕ(u)) be a homomorphic image of (G, u).
Then without loss of generality we can assume that (ϕ(G), ϕ(u)) = (G, u), where
G = G/% for some congruence relation % on G. Thus in view of 2.2, Γ(G, u) is
isomorphic to a pseudo MV -algebra A

1
= Γ(G, u) ∈ X . Then A

1 ∈ X , whence

(G, u) ∈ Y . �

3.4. Lemma. The class Y satisfies the condition (iii) from 3.1.

���
�
��

. Suppose that the assumptions of the condition (iii) of 3.1 are satisfied.
For each i ∈ I there exists Ai ∈ X with Ai = Γ(Gi, ui). Put

A = Γ(G1, u0).

From the relation

G1 =
1∏

i∈I

Gi

we conclude that the interval [0, u0] of G1 can be written as a direct product

[0, u0] =
∏

i∈I

[0, ui].

Thus in view of the results of [6], the pseudo MV -algebra A is isomorphic to the

direct product of the pseudo MV -algebras Ai (i ∈ I). Therefore A belongs to the
variety X . This yields that (G1, u0) is an element of Y . �

Under the notation as above we put Y = ψ1(X). Thus according to 3.2, 3.3 and
3.4 we have

3.5. Lemma. ψ1 is a mapping of the collection V1 into U .

Now let Y1 ∈ U . We denote by X1 the class of all pseudo MV -algebras A such
that A = Γ(G, u) for some (G, u) ∈ Y1.

3.6. Lemma. The class X1 is closed with respect to subalgebras.

���
�
��

. Let A ∈ X1. Thus there is (G, u) ∈ Y1 with A = Γ(G, u). Let A1 be

a subalgebra of A . In view of 2.5 there exists an `-subgroup G1 of G such that
u is a strong unit of G1 and A1 = Γ(G1, u). Then we have (G1, u) ∈ Y1, whence

A1 ∈ X1. �
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3.7. Lemma. The class X1 is closed with respect to homomorphic images.

���
�
��

. Let A ∈ X1. It suffices to verify that, whenever %1 is a congruence
relation on A , then A /%1 belongs to X1.

Let (G, u) be as in the proof of 3.6 and let %1 be a congruence relation on A .
Put A /%1 = A

1
. Let (G, u) be as in 2.2. Since Y1 is closed with respect to homo-

morphisms, we get (G, u) ∈ Y1 and hence Γ(G, u) ∈ X1. Then according to 2.2 we
obtain that A /%1 belongs to X1. �

3.8. Lemma. The class X1 is closed with respect to direct products.

���
�
��

. Let (A )i∈I be an indexed system of elements of X1. For each i ∈ I

there exists (Gi, ui) ∈ Y1 with Γ(Gi, ui) = Ai. Put

(∗) A =
∏

i∈I

Ai.

Further, let (G1, u0) be as above. Since Y1 ∈ U and (Gi, ui) ∈ Y1 we get (G1, u0) ∈
Y1. The relation (∗) yields that A = Γ(G1, u0). Thus A ∈ X1. �

In view of 3.6, 3.7 and 3.8 we have

3.9. Lemma. The class X1 is a variety of pseudo MV -algebras.

Let us put X1 = χ1(Y1) for each Y1 ∈ U . From the definitions of ψ1 and χ1 we

immediately obtain

3.10. Lemma.
(i) χ1 = ψ−1

1 .

(ii) If X1, X2 ∈ V1 and Y1, Y2 ∈ U , then

X1 ⊆ X2 ⇔ ψ1(X1) ⊆ ψ1(X2),

Y1 ⊆ Y2 ⇔ χ1(Y1) ⊆ χ1(Y2).

Hence we get as a corollary

3.11. Theorem. ψ1 is an isomorphism of the partially ordered set V1 onto the

partially ordered collection U .

4. The relation between U and V2

Assume that Z is a variety of lattice ordered groups. We denote by Y the class of

all unital lattice ordered groups (G, u) such that G belongs to Z.
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4.1. Lemma. The class Y is regular.

���
�
��

. It is obvious that Y is nonempty. We have to verify that the condi-

tions (i), (ii) and (iii) from 3.1 are satisfied.
The validity of (i) and of (ii) is obvious. Let (Gi, ui)i∈I , u0 and G1 be as in the

condition (iii) of 3.1. Further, let G0 be as above. Then Gi ∈ Z for each i ∈ I , hence
G0 ∈ Z and thus G1 belongs to Z as well. Also, u0 is a strong unit of G1. Therefore

(G1, u0) ∈ Y . Thus the condition (iii) from 3.1 is satisfied. �
If Z and Y are as above, then we write Y = ψ2(Z). Hence ψ2 is a mapping of V2

into U . It is clear that if Z1, Z2 are elements of V2, then

Z1 ⊆ Z2 ⇒ ψ2(Z1) ⊆ ψ2(Z2).

4.2. Lemma. Let Z1, Z2 ∈ V2. Assume that Z1 is not a subclass of Z2. Then

ψ2(Z1) is not a subclass of ψ2(Z2).

���
�
��

. By way of contradiction, assume that

(1) ψ2(Z1) ⊆ ψ2(Z2).

Since the varieties can be defined by identities and since the relation Z1 ⊆ Z2 fails
to be valid we conclude that there exists an identity

(2) p(x1, . . . , xn) = q(x1, . . . , xn)

where p and q are terms constructed by the operations +, −, ∧, ∨ such that
(i) the identity (2) is valid for Z2,
(ii) the identity (2) fails to be valid for Z1.

In view of (ii), there exists G1 ∈ Z1 such that G1 does not satisfy the identity (2).
Hence there are elements g1, g2, . . . , gn ∈ G1 such that

(3) p(g1, . . . , gn) 6= q(g1, . . . , gn).

Put

u = |g1| ∨ |g2| ∨ . . . ∨ |gn|
and let G′

1 be the convex `-subgroup of G1 which is generated by the element u.
Then u is a strong unit of G′

1, whence

(G′
1, u) ∈ ψ2(Z1).

Thus according to (1) we have (G′
1, u) ∈ ψ2(Z2). This yields that G′

1 ∈ Z2 and then,

in view of (i), G′
1 satisfies the identity (2). Since g1, g2, . . . , gn ∈ G′

1, according to (3)
we have arrived at a contradiction. �
Summarizing, from 4.1 and 4.2 we conclude
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4.3. Proposition. ψ2 is an injective mapping of V2 into U such that for Z1, Z2 ∈
V2 we have

Z1 ⊆ Z2 ⇔ ψ2(Z1) ⊆ ψ2(Z2).

Hence according to 3.10 we obtain

4.4. Theorem. There exists an injective mapping ϕ of V2 into V1 such that for

Z1, Z2 ∈ V2 we have

Z1 ⊆ Z2 ⇔ ϕ(Z1) ⊆ ϕ(Z2).
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