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Abstract. In this paper we deal with the notions of projectability, spliting property and
Dedekind completeness of lattice ordered groups, and with the relations between these
notions.
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Projectable and strongly projectable lattice ordered groups were investigated in
[1], [3], [5], [7], [8], [10]–[13]; for the case of vector lattices cf. [14].

The splitting property in the class A of all archimedean lattice ordered groups
was studied in [1], [5], [6], [14].

Let K be a class of lattice ordered groups. In the present paper we define the

splitting property in K in such a way that for the case when K = A the new
definition coincides with that used in the above mentioned papers.

We deal with the notions of projectability, splitting property and Dedekind com-

pleteness of lattice ordered groups, and with the relations between these notions.

The results and methods from [6] and [11] will be applied.

1. Splitting property

In this section we investigate the splitting property in the class of projectable
lattice ordered groups.

Supported by VEGA SAV 2/6087/99.

907



In the whole paper G denotes a lattice ordered group. Further, let A and K be

as above.

1.1. Definition. G is said to be a strong subgroup of a lattice ordered group H

if

(i) G is a convex `-subgroup of H , and

(ii) whenever 0 < g ∈ G, h ∈ H and ng < h for each positive integer n, then there
exist g1 ∈ G+ and h1 ∈ H such that h = g1 + h1 and h1 ∧ g2 = 0 for each
g2 ∈ G+.

If G is a strong subgroup of H , then we express this fact by writing G ⊆s H .

1.2. Definition (cf. [5]). G has the splitting property in A if it satisfies the
following conditions:

(i) G ∈ A ;

(ii) whenever H ∈ A and G is a convex `-subgroup of H , then G is a direct factor
of H .

1.3. Definition. G has the splitting property in K if

(i) G ∈ K , and

(ii) whenever H ∈ K and G ⊆s H , then G is a direct factor of H .

Since each convex `-subgroup of an archimedean lattice ordered group H is a

strong subgroup of H , we infer that for the class A , Definitions 1.2 and 1.3 coincide.

Let H be a lattice ordered group such that G is a convex `-subgroup of H .

For X ⊆ G and Y ⊆ H we denote by Xβ and Y δ the corresponding polars in G

or in H , respectively; i.e.,

Xβ = {g ∈ G : |g| ∧ |x| = 0 for each x ∈ X},

and Y δ is defined analogously.

If X is a one-element set, then Xββ is said to be a principal polar of G.

G is called projectable (strongly projectable) if each principal polar of G (or each
polar of G, respectively) is a direct factor of G.

We denote by P the class of all projectable lattice ordered groups. Then neither
the relation A ⊆ P nor the relation P ⊆ A is valid.

If A is a direct factor of G and g ∈ G, then the component of g in A will be

denoted by gA.

A nonempty indexed system (ai)i∈I of elements of G is said to be disjoint if xi > 0
for each i ∈ I and xi(1) ∧ xi(2) = 0 whenever i(1) and i(2) are distinct elements of I .

G is called laterally complete if each disjoint indexed system of elements of G

possesses the supremum in G.
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We recall the following two theorems concerning the splitting property in A (The-

orem (A) was deduced in [1] by applying results of [2] and [6]; for (B), cf. [6]).
(A) Let G belong to A and be laterally complete. Then G has the splitting

property in A .

(B) Let G be a complete lattice ordered group. Then G has the splitting property
in A if and only if it is laterally complete.

For y ∈ H we denote [y] = {y}δδ.

1.4. Lemma. Suppose that G, H ∈ P and that G is a convex `-subgroup of H .

Let 0 < k ∈ H . Then there exists 0 6 g0 ∈ G such that g0 6 k and either

(i) g ∧ (k − g0) = 0 for each g ∈ G+, or

(ii) i(k − g0) 6 k for each positive integer i.

���
�
��

. It suffices to apply the same method as in the proof of Lemma 2 in [6]

(pp. 259–263) with the following distinctions:
a) we take H instead of H∧ (p. 2601);

b) the relation e1 ∈ G (p. 2602) is a consequence of e1 ∈ [0, e] and of the fact that
G is a convex `-subgroup of H ;

c) the last two lines of the proof under consideration are now to be omitted. �

1.5. Lemma. Let G, H ∈ P , G ⊆s H , 0 < k ∈ H . Then there are g1 ∈ G+ and

h1 ∈ H such that h = g1 + h1 and h1 ∧ g2 = 0 for each g2 ∈ G+.

���
�
��

. Either (i) or (ii) from 1.4 is valid. If (i) holds, then we put g1 = g0 and
h1 = −g0 + k; the desired relations are satisfied.

If (ii) holds, then the validity of the assertion of the lemma is a consequence of
the relation G ⊆s H . �

1.6. Theorem. Suppose that G is a projectable lattice ordered group and that

it is laterally complete. Then G has the splitting property in the class P .

���
�
��

. We apply 1.5 and the same method as in the proof of [6, Theorem 1].
�

1.7. Theorem. Let G be a complete lattice ordered group. Then the following

conditions are equivalent:

(i) G has the splitting property in the class P ;

(ii) G is laterally complete.

���
�
��

. In view of the Riesz Theorem, G belongs toP . Next, G is archimedean.

Since 1.2 and 1.3 are equivalent for archimedean lattice ordered groups, our assertion
is a consequence of [6, Theorem 2]. �
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Theorems 1.6 and 1.7 are analogous to the results (A) and (B) which were men-

tioned above.

2. The relation GDL = GLD

Again, let G be a lattice ordered group. We denote by GL and GD the lateral
completion or the Dedekind completion of G, respectively (for definitions, cf. e.g.,

[11]). The notion of D-completeness is used in the same sense as in [11].

In [2], the following result was proved:

(∗) (Bernau) Let G be an archimedean lattice ordered group. Then the relation

(1) GDL = GLD

is valid.

In [11] it was shown that the relation (1) holds also for the case when G is strongly
projectable.

In the present section we prove that (1) is valid for projectable lattice ordered

groups, generalizing the result of [11].

Since the lateral completion and the Dedekind completion are defined uniquely up
to isomorphism, the relation (1) is also to be considered up to isomorphism (leaving

all elements of G fixed).

ForX ⊆ G we now denote the polar ofX in G byXδ; this differs from the notation

in Section 1 above (the reason for this change is that we are now to be compatible
with the notation in [11]).

If X1 = {xi}i∈I ⊆ X ⊂ G is such that

(i) the set X1 is disjoint,

(ii) xi > 0 for each i ∈ I ,

(iii) for each 0 < x ∈ X there exists i ∈ I with xi ∧ x > 0,
then X1 is said to be a maximal disjoint subset of X .

2.1. Lemma. Assume that G is projectable and laterally complete. Then it is

strongly projectable.


���
�
��
. Let X ⊆ G. Put B = Xδ. We have to verify that B is a direct factor

of G. The cases X = ∅, X = {0} and B = {0} being trivial we can suppose that
∅ 6= X 6= {0} 6= B.

By applying Axiom of Choice we conclude that there exist

(i) a maximal disjoint subset {xi}i∈I1 in X , and

(ii) a maximal disjoint subset {xi}i∈I2 in B.
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We have I1 ∩ I2 = ∅. Put I = I1 ∪ I2. Then {xi}i∈I is a maximal disjoint subset

in G. Next, the relation

(2) B = ({xi}i∈I1)
δ

is valid.

For each i ∈ I we put Gi = {xi}δδ . Since G is projectable, Gi is a direct factor of
G. If g ∈ G, then we denote by gi the component of g in Gi.

Consider the mapping ϕ : G → ∏
i∈I

Gi defined by

ϕ(g) = (gi)i∈I

for each g ∈ G. Then ϕ is a homomorphism of G into
∏
i∈I

Gi.

Let g ∈ G and suppose that ϕ(g) = 0. Then ϕ(|g|) = 0. Hence

|g|i ∧ xi = 0 for each i ∈ I.

Thus in view of the maximality of {xi}i∈I in G we obtain that |x| = 0. Therefore
x = 0 and so ϕ is an isomorphism of G into

∏
i∈I

Gi.

Choose xi ∈ Gi, xi > 0 for each i ∈ I . Then (xi)i∈I is a disjoint indexed system

in G. Since G is laterally complete there exists x0 ∈ G with

x0 =
∨

i∈I

xi.

It is easy to verify that (x0)i = xi for each i ∈ I . Hence
(∏

i∈I

Gi

)+

⊆ ϕ(G). This

yields that
∏
i∈I

Gi ⊆ ϕ(G). Hence ϕ is an isomorphism of G onto
∏
i∈I

Gi.

Put

G1 =
∏

i∈I1

Gi, G2 =
∏

i∈I2

Gi.

Then G = G1 × G2. From the definition of G2 and from (2) we obtain B = G2,
completing the proof.

�

2.2. Proposition (cf. [13]). Let G be projectable and let H be a lateral comple-

tion of G, 0 < h ∈ H . Then there exists a disjoint indexed system (xi)i∈I of elements

of G such that the relation h =
∨
i∈I

xi is valid in H .
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2.3. Lemma. Let A and B be laterally complete lattice ordered groups. Then

A×B is laterally complete as well.

���
�
��

. Let (xi)i∈I be a disjoint indexed system of elements of A × B. Hence
(xiA)i∈I is a disjoint indexed system of elements of A and (xiB)i∈I is a disjoint

indexed system of elements of B. Then there are a ∈ A and b ∈ B such that

a =
∨

i∈I

xiA in A,

b =
∨

i∈I

xiB in B.

Hence these relations are valid also in A×B. For each i ∈ I we have

xi = (xiA) ∨ (xiB).

Thus

a ∨ b =
(∨

i∈I

xiA

)
∨

(∨

i∈I

xiB

)
=

∨

i∈I

(xiA ∨ xiB) =
∨

i∈I

xi =
∨

i∈I

xi(A×B).

�

2.4. Lemma. Suppose that G is projectable and G = A×B. Let H be a lateral

completion of G. Then H can be written in the form H = A1 × B1, where A1 and

B1 are lateral completions of A and B, respectively.

���
�
��

. Let A1 and B1 be lateral completions of A and B, respectively. Ac-

cording to 2.3, A1 × B1 is laterally complete. In view of 2.2 we have A ⊆s A1 and
B ⊆s B1. This yields that G ⊆s (A1 × B1). Then there exists a lateral completion
H of G such that H ⊆s (A1 ×B1) (cf. [4] and [11], 1.5).
Let 0 < x ∈ A1 × B1. Thus x = a1 ∨ b1 for a1 = xA1, b1 = xB1. There exist

disjoint indexed systems (ai)i∈I of elements of A and (bj)j∈J of elements of B such
that

a1 =
∨

i∈I

ai is valid in A1,

b1 =
∨

j∈J

bj is valid in B1.

Hence the indexed system S consisting of all ai (i ∈ I) and all bj (j ∈ J) is a disjoint
indexed system of elements of G and the join of this system in H is the element x.

Therefore A1 ×B1 is a lateral completion of G. �
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2.5. Lemma. Under the assumptions and notation as in 2.4, A1 is a double polar

of A in H , and B1 is a double polar of B in H .

���
�
��

. For X ⊆ H we denote the polar of X in H by X⊥. Since A ⊆ A1, for
each 0 6 a ∈ A and each 0 6 b1 ∈ B1 we have a ∧ b1 = 0. Hence A⊥ ⊇ B1 and thus

A⊥⊥ ⊆ (B1)⊥. Clearly (B1)⊥ = A1, whence A⊥⊥ ⊆ A1. Let 0 < a1 ∈ A1. There
exists an indexed system (ai)i∈I of elements of A such that the relation

a1 =
∨

i∈I

ai

is valid in A1, and hence this relation is valid also in H . Since A⊥⊥ is a closed

`-subgroup of H we conclude that a1 ∈ A⊥⊥. Thus A1 = A⊥⊥. Analogously,
B1 = B⊥⊥. �

2.6. Lemma. Let G be projectable and let H be a lateral completion of G. Then
H is projectable.

���
�
��

. Let 0 < h ∈ H . If X ⊆ H , then let X⊥ be as in the proof of 2.5. Put

Y = {h}⊥⊥. We have to verify that Y is a direct factor of H .
In view of 2.2, there exists a disjoint indexed system (xi)i∈I of elements of G such

that the relation
h =

∨

i∈I

xi

is valid in H and 0 < xi for each i ∈ I . Then {xi}i∈I is a maximal disjoint set in Y .

Next, Axiom of Choice and 2.2 yield that there exists a maximal disjoint indexed
system (xi)i∈I′ in H such that I ⊆ I ′ and all the elements xi (i ∈ I ′) belong to G.

Let i ∈ I ′. Put Gi = {xi}δδ . Since G is projectable, there is a convex `-subgroup
G′

i of G such that

G = Gi ×G′
i.

Then according to 2.4 and 2.5 we have

H = G1
i × (G′

i)
1,

where G1
i is a lateral completion of Gi and, moreover, G1

i = (Gi)⊥⊥.
Now by the same method as in the proof of 2.1 we obtain

H =
∏

i∈I′

G1
i ,

Y =
∏

i∈I

G1
i .

In view of I ⊆ I ′ we conclude that Y is a direct factor of G, completing the proof. �
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2.7. Lemma. Let G be projectable and let H be a lateral completion of G. Then
H is strongly projectable.


���
�
��
. This is a consequence of 2.6 and 2.1. �

2.8. Lemma. Let G be projectable and let H be a Dedekind completion of G.

Then H is projectable.


���
�
��
. Let 0 < h ∈ H . For X ⊆ H let X⊥ be as in the proof of 2.6. We have

to verify that {h}⊥⊥ is a direct factor of H .
There exists a subset X of G such that the relation

sup X = h

is valid in H . By Axiom of Choice, there exists a maximal disjoint set {xi}i∈I of the

ideal of the lattice G+ which is generated by the set X .

The remaining steps are analogous to those which were applied in the proof of 2.6.
�

2.9. Lemma. Let G be projectable and D-complete. Let H be the lateral

completion of G. Assume that 0 < h ∈ H , b ∈ G, h 6 b. Then h ∈ G.


���
�
��
. We apply the same method as in the proof of 3.5, [11] with the distinc-

tion that instead of Lemma 3.3 in [11] we now use Proposition 2.2. �

2.10. Lemma. Let G be projectable and D-complete. Suppose that H is a

lateral completion of G. Then H is D-complete.


���
�
��
. The method is as in the proof of [11], 3.6 (instead of 3.4.1, 3.5 and 3.3

from [11] we now apply 2.7, 2.9 or 2.2, respectively). �

2.11. Theorem. Let G be a projectable lattice ordered group. Next, let H

and K be a lateral completion or a Dedekind completion of G, respectively, H1 a

Dedekind completion of H and K1 a lateral completion of K. Then there exists an

isomorphism ϕ of K1 onto H1 such that ϕ(g) = g for each g ∈ G.


���
�
��
. We proceed as in the proof of 4.1 in [11] with the distinction that

(i) 3.4.1, 3.4.2 and 3.6 from [11] are now replaced by 2.7, 2.8 or 2.10, respectively;

(ii) instead of 3.2 from [11] we have now to apply 3.2 from [11] and 2.1 above. �
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