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Abstract. We show that the global-in-time solutions to the compressible Navier-Stokes
equations driven by highly oscillating external forces stabilize to globally defined (on the
whole real line) solutions of the same system with the driving force given by the integral
mean of oscillations. Several stability results will be obtained.
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1. Introduction and statement of result

There seems to be a common belief that highly oscillating driving forces of zero
time average do not influence the long-time dynamics of dissipative systems. Thus

for instance the solutions of the semilinear parabolic equation

ut −∆u = f(u) + sin(t2)g(x)

will behave as solutions of the corresponding autonomous problem when the time t

tends to infinity. Averaging a function over a short time interval should be considered

analogous to making a macroscopic measurement in a physical experiment. The
result of such an experiment being close to zero, the effect on the solutions of robust

dynamical systems, if any, should be negligible at least in the long run. From the
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mathematical point of view, these ideas have been made precise in the paper by

Chepyzhov and Vishik [1] dealing with trajectory attractors of evolution equations.
They showed that a trajectory attractor of a dissipative dynamical system perturbed
by a highly oscillating forcing term is the same as for the unperturbed system. These

results apply to a vast class of equations including the wave equation with weak
dissipation and the Navier-Stokes equations of incompressible fluids in three space

dimensions. Note, however, that the theory of trajectory attractors itself is based on
considering the time averages rather than the instantaneous values of solutions.

The time evolution for t ∈ � + = (0,∞) of the density % = %(t, x) and the velocity
u = [u1(t, x), u2(t, x), u3(t, x)] of a driven compressible fluid flow contained in a
bounded domain Ω ⊂ � 3 can be described by the Navier-Stokes equations:

(1.1)

{
%t + div(% u) = 0,

(% u)t + div(% u⊗ u) +∇p = div T (u) + %[∇F (x) + g(t, x)].

}

Here T is the Cauchy stress tensor

T = Ti,j(u) = µ(ui
xj

+ uj
xi

) + λ div uδi,j , µ > 0, λ + µ > 0

and p is the isentropic pressure

p = p(%) = a%γ , a > 0, γ > 1.

We shall assume that Ω has a Lipschitz boundary and impose the no-slip boundary
conditions for the velocity

(1.2) u|∂Ω = 0.

The flow is driven by an external force f(t, x) = ∇F (x) + g(t, x) where F is a
globally Lipschitz potential independent of t and g is a measurable bounded pertur-

bation.
In accordance with the available existence theory (see Lions [13] and [4]) we shall

deal with the finite energy weak solutions of the problem, that is
• the functions % > 0 and u belong to the spaces

% ∈ L∞loc( � + ; Lγ(Ω)), u ∈ L2
loc( � + ; [W 1,2

0 (Ω)]3);

• the total energy E[%, (%u)] =
∫
Ω

1
2%|u|2 + a/(γ − 1)%γ dx is locally integrable

on � + and the energy inequality

(1.3)
dE

dt
+

∫

Ω

µ|∇u|2 + (λ + µ)| div u|2 dx 6
∫

Ω

%[∇F + g].u dx

holds in D ′( � + );
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• the equations (1.1) are satisfied in D ′( � + × Ω);
• the continuity equation holds in the sense of renormalized solutions, i.e.,

∂tb(%) + div(b(%)u) + (b′(%)%− b(%)) div u = 0

in D ′( � + × Ω) for any b ∈ C1( � ) satisfying

b′(z) = 0 for all z such that |z| > M

for a certain constant M = M(b); moreover, we assume

∂t% + div(%u) = 0

to hold in D ′( � + × � 3 ) provided %, u were prolonged to be zero outside Ω.
Any finite energy weak solution complies with the total mass conservation princi-

ple:

m =
∫

Ω

%(t, x) dx is independent of t ∈ � +

(see [10, Lemma 3.1]). Rescaling a, µ and λ we shall always assume m = 1.
As for the unperturbed system, we report the following result (see [6, Theo-

rem 1.1]):

Theorem 1.1. Let γ > 3
2 , g ≡ 0, and let F be such that the upper level sets

[F > k] = {x ∈ Ω | F (x) > k} are connected in Ω for all k ∈ � .

Then

(%u)(t) → 0 strongly in L1(Ω), %(t) → %s strongly in Lγ(Ω) as t →∞

for any finite energy weak solution of the problem (1.1), (1.2), where %s is the unique

solution of the stationary problem

(1.4) a∇%γ
s = %s∇F,

∫

Ω

%s dx = 1.

Related results may be found in [2], Novotný and Straškraba [14], and also

Straškraba [15]. Similar problems for mixtures of two incompressible fluids were
considered by Gerbeau and Le Bris [11]. The hypothesis of connectedness of the

upper level sets [F > k] guarantees uniqueness of solutions to the stationary prob-
lem (1.4) (see [5]). An interesting open question is to determine whether this
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condition is really necessary for the conclusion of Theorem 1.1 to hold. A partial

answer may be found in [7].
The goal of the present paper is to show that the conclusion of Theorem 1.1

remains valid provided g is a small or/and rapidly oscillating perturbation.

Highly oscillating sequences converge in the weak topology, i.e., the topology of
convergence of integral means. Consider a ball BG of radius G centered at zero in

the space L∞((0, 1)×Ω). The weak-star topology on BG is metrizable and we denote
the corresponding metric by dG.

The main result of this paper reads as follows:

Theorem 1.2. Let γ > 5
3 and let F be a globally Lipschitz function such that

all the upper level sets [F > k], k ∈ � are connected in Ω.
Then given G > 0, ε > 0 there exists δ = δ(G, ε) > 0 such that

(1.5) lim sup
t→∞

[‖%(t)− %s‖Lγ(Ω) + ‖%u(t)‖L1(Ω)] < ε

for any finite energy weak solution %, u of the problem (1.1), (1.2) provided

(1.6)





lim sup
t→∞

‖g‖L∞((t,∞)×Ω)) < G,

lim sup
t→∞

dG[g(t + s)|s∈[0,1], 0] < δ.





Here %s is the unique solution of the stationary problem (1.4).

Note that (1.6) allows for rapidly oscillating perturbations both in space and time.

Of course, Theorem 1.2 remains valid if dG is replaced by the (strong) norm distance
in, say, L1((0, 1)× Ω)).
Theorem 1.2 has a corollary concerning the stability of forced time-periodic solu-

tions. Consider a perturbation g which is bounded and periodic with respect to t

with a period ω > 0. Then the problem (1.1)–(1.2) possesses at least one finite en-
ergy weak solution periodic in time with the same period and the same mass (see [3,

Theorem 1.1]). In fact, the proof in [3] is done for rectangular domains with no-stick
boundary conditions for the velocity. However, the proof for a general Ω and the
boundary conditions (1.2) requires only one modification, namely, one has to have a
priori estimates ensuring the square integrability of % up to the boundary ∂Ω. This
type of result being now available (see [10]), the existence of time-periodic solutions
can be carried over with no additional effort. Accordingly, Theorem 1.2 gives rise to
the following

Corollary 1.1. Under the hypotheses of Theorem 1.2, let h = h(t) be a bounded
time-periodic function with zero mean and period ω and w = w(x) a function in
L∞(Ω).
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Then given ε > 0 there exists n0 such that

lim sup
t→∞

[‖%(t)− %(t)‖Lγ(Ω) + ‖(%u)(t)− (% u)(t)‖L1(Ω)] < ε

for any finite energy weak solution %, u of the problem (1.1), (1.2) provided g =
h(nt)w(x) or g = 1

nh(t)w(x) and n > n0. Here %, u is a time-periodic solution of

the problem (1.1), (1.2).

The rest of the paper is devoted to the proof of Theorem 1.2. It is worth-while to
note that the analysis goes well beyond the proof of Theorem 1.1. The main difficulty

of the perturbed problem lies in the fact that, unlike in the (unperturbed) potential
case, there is no Lyapunov function and, consequently, there are no a priori estimates

on the velocity field which would allow one to conclude that u is close to zero for
large times. Consequently, one must take care of possible oscillations of the density

resulting from the action of the external force. Moreover, it is by no means clear
that the solution stays bounded uniformly in time, i.e., that there are no resonance

phenomena due to the presence of g.

Our approach is based on two properties of the system (1.1), (1.2) established

in [8], [9]. According to (1.6), the function g is uniformly bounded on � + × Ω.
Consequently, making use of [9, Theorem 1.1] we are allowed to conclude that the

energy of any finite energy weak solution is bounded uniformly in time. Moreover, a
careful analysis of propagation of oscillations carried over in [8] enables us to prove
the existence of a trajectory attractor in the spirit of Chepyzhov and Vishik [1] with

respect to the strong L1-topology in the density and the weak Lp-topology in the
velocity (momenta) component. In the present case, the trajectory attractor happens

to be a small neighbourhood of the singleton [%s, 0] where %s is the solution of (1.4)
(see Section 3).

Finally, analyzing the behaviour of the energy E in the neighbourhood of the
trajectory attractor, we conclude that the convergence of %(t) is in fact strong in Lγ

and that (%u)(t) converges strongly in L1 as claimed in Theorem 1.2 (see Section 4).

To conclude, let us remark that our result adapts easily to the case of dimension

N = 1, 2. The long-time behaviour of solutions for N = 1 was studied in a recent
paper by Hoff and Ziane [12]. Note, however, that their hypotheses require much

more regularity of the driving force, in particular, they do not cover the case of
rapidly oscillating perturbations. The restriction γ > 9

5 is irrelevant if N = 1 and
the pressure p = p(%) can be taken an arbitrary increasing function with at least
linear growth for large values of %.
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2. Uniform boundedness

The components of a finite energy weak solution, namely, the density % and the

momenta %u are a priori defined only for a.a. t ∈ � + . However, it can be shown
(see e.g. Lions [13]) that the continuity equation is satisfied also in the sense of

renormalized solutions, in particular,

% ∈ C(J ; L1(Ω)) ∩ C(J ; Lγ
weak(Ω)) for any compact interval J ⊂ � + .

Moreover, the fact that the time derivative of the momenta can be expressed by
means of the equations of motion yields

(%u) ∈ C(J ; L
2γ

γ+1
weak(Ω)) for any compact J ⊂ � + .

Thus it makes sense to consider instantaneous values of both the quantities. More-
over, it can be shown (see [2, formula (1.12)]) that they satisfy the seemingly obvious

relation

(2.1) (%u)(t, x) = 0 for a.a. x ∈ V (t) = {x | %(t, x) = 0} for any t ∈ � + .

Finally, redefining the energy on a set of measure zero if necessary we set

E = E[%, (%u)] =
1
2

∫

%>0

|(%u)|2
%

dx +
a

γ − 1

∫

Ω

%γ dx.

Now, E is defined for any t ∈ � + ; and is a lower-semicontinuous function of t (see [2,
Corollary 1.1]).

By virtue of (1.6) the driving force ∇F + g in (1.1) is uniformly bounded for
t large enough by a constant depending only on G and the norm of ∇F . Thus we

can apply [9, Theorem 1.1] on the existence of bounded absorbing sets; specifically,
there is a constant E∞ depending only on the amplitude of the driving force such

that

(2.2) E(t) 6 E∞ for all t > T0

where T0 depends only on the value of E at an arbitrary Lebesgue point t ∈ [0, 1].
Moreover, by virtue of (1.6), T0 can be chosen so large that

ess sup
t>T0, x∈Ω

|g(t, x)| < G(2.3)

and

dG(g(t + s)|s∈[0,1], 0) < δ for all t > T0.(2.4)
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In view of these arguments, the conclusion of Theorem 1.2 will follow from the

next relatively simpler assertion:

Lemma 2.1. Assume γ > 5
3 and F satisfies the hypotheses of Theorem 1.2.

Then given G, E∞, ε > 0, there exists δ = δ(G, ε, E∞) > 0 such that (1.5) holds
for any finite energy weak solution of the problem (1.1), (1.2) satisfying

E[%(t), (%u)(t)] 6 E∞ for all t > 0

with

‖g‖L∞((0,∞)×Ω) 6 G, dG[g(t + s)|s∈[0,1], 0] < δ for all t > 0.

The proof of Lemma 2.1 will be carried out in the next two sections. It seems

convenient to argue by contradiction. Specifically, we shall assume there is a se-
quence %n, un of finite energy weak solutions of the problem (1.1), (1.2) with the

forcing term ∇F + gn such that

E[%n, (%nun)] 6 E∞ for all t > 0, n = 1, 2, . . .(2.5)





‖gn‖L∞((0,∞)×Ω) < G

dG[g(t + s)|s∈[0,1], 0] <
1
n
for all t > 0



(2.6)

but
{ ‖%n(Tn)− %s‖Lγ(Ω) + ‖%nun(Tn)‖L1(Ω) > κ > 0

for a certain sequence Tn →∞

}
.(2.7)

3. Weak convergence

Consider a sequence %n, un of finite energy weak solutions as in (2.5), (2.6). Let
tn →∞ and take the corresponding time-shifts

%n(tn + t), (%nun)(tn + t) on (−tn,∞).
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Now, it is relatively straightforward to pass to the limit (taking subsequences if

necessary) for tn →∞ to conclude that

%n(tn + t) → % in C(J ; Lγ
weak(Ω))

and

(%nun)(tn + t) → (% u) in C(J ; L
2γ

γ+1
weak(Ω)) for any compact J ⊂ �

where
{

%t + div(% u) = 0,

(% u)t + div(% u⊗ u) +∇p(%) = div T (u) + %∇F

}

in D ′( � × Ω) (see [2, Section 3] for details). Here p(%) denotes a weak limit of
p(%n(tn + t)). Note that the perturbation term disappears in the limit equation as,
in accordance with (2.6),

gn(tn + t) → 0 weakly star in L∞((0,∞)× Ω).

Moreover, by virtue of (2.5), the energy E[%, (% u)] 6 E∞ a.e. on � . Note that, for
the time being, we do not know if the energy corresponding to the limit functions %,
(% u) satisfies the energy inequality (1.3). This will follow as soon as we are able to
show the strong convergence of the density component which is equivalent to saying
that p(%) = p(%).
The arguments to show the strong convergence or compactness of the density

%n(tn + t) in, say, L1((0, 1) × Ω), are more delicate. Note that the only available
result in this direction, namely that of Lions [13], requires the “initial values”, i.e., the
values %n(tn) to be precompact in L1(Ω). A priori, there is no reason this should
be the case, i.e., there could be oscillations of the density component developing as
t → ∞ due to the action of the rapidly oscillating g. In other words, we have to

prove a uniform in time decay of possible oscillations which is independent of the
initial state. This is the main result of [8] and [12] we shall now briefly sketch.

We define a defect measure

D(t) =
∫

Ω

% log(%)(t)− %(t) log(%(t)) dx

where % log %(t) denotes a weak limit (in L1(Ω)) of the sequence %n log(%n)(tn + t).
Now, it is proved in [8] (see also [2, Section 2]) that D is a uniformly bounded and
continuous function on the whole real line t ∈ � and, moreover, it satisfies

D(t2)−D(t1) +
∫ t2

t1

Φ(D(t)) dt 6 0 for any t1 < t2
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where Φ is a strictly increasing, continuous function such that Φ(0) = 0. The func-
tion Φ represents the rate of time decay of possible oscillations in the density field.
Consequently, D being uniformly bounded, we have D ≡ 0 and, since z log(z) is
strictly convex, this implies strong L1-convergence of %n(tn + t).
All details of the above mentioned procedure can be found in [2], [8]. Adapting [2,

Proposition 3.1] to the present situation, we deduce the following result:

Lemma 3.1. Let %n, un satisfying (2.5) be a sequence of finite energy weak
solutions of (1.1), (1.2) where gn are such that (2.6) holds. Then any sequence

tn →∞ contains a subsequence (not relabeled) such that

%n(tn + t) → % in C([0, 1]; L1(Ω)),(3.1)

(%nun)(tn + t) → (% u) in C([0, 1]; L
2γ

γ+1
weak(Ω))(3.2)

and

E[%n(tn + t), (%nun)(tn + t)] → E[%, (% u)] strongly in L1(0, 1)(3.3)

where %, u is a finite energy weak solution of the problem (1.1), (1.2) with g ≡ 0
(the unperturbed problem) defined on the whole real line t ∈ � and such that
E[%, (% u)] ∈ L∞( � ).
Now, by virtue of the hypothesis of connectedness of the upper level sets [F > k],

the unperturbed problem admits exactly one globally defined (for t ∈ � ) finite energy
weak solution with globally bounded energy, namely,

% = %s, u = 0

where %s is the unique solution of the stationary problem (1.4) (see [2, Proposi-
tion 3.2]).

Consequently, (3.1), (3.2) yield

(3.4)
%n(tn + t) → %s in C([0, 1]; L1(Ω)),

(%nun)(tn + t) → 0 in C([0, 1]; L
2γ

γ+1
weak(Ω))

}
for any tn →∞

while (3.3) gives rise to
∫ 1

0

∫

Ω

%n(tn + t)|u(tn + t)|2 dx dt → 0 for any tn →∞,(3.5)

∫ 1

0

∫

Ω

%γ
n(tn + t) dx dt →

∫

Ω

%γ
s dx for any tn →∞(3.6)

where we have used the weak lower-semicontinuity of the Lγ-norm.
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4. Proof of Theorem 1.2, strong convergence

Now we take tn = Tn, where Tn is the sequence from (2.7), and make use of the
energy inequality (1.3). The energy being a lower-semicontinuous function of time,

one can use the Gronwall inequality to obtain

E[%n, (%nun)](Tn) 6 sup
t∈[Tn−τ/2,Tn]

E[%n, (%nun)](t)(4.1)

6 ess sup
t∈[Tn−τ/2,Tn]

E[%n, (%nun)](t)

6 ess inf
t∈[Tn−τ,Tn−τ/2]

E[%, (%u)](t) + τM
√

E∞,

where the constant M depends only on G and the norm of ∇F in L∞( � + × Ω),
E∞ is the quantity from (2.5), 0 < τ < Tn arbitrary.
Now, by virtue of (3.5), (3.6),

∫ Tn−τ/2

Tn−τ

E[%n, (%nun)] dt → τ

2
a

γ − 1

∫

Ω

%γ
s dx,

whence, in view of (4.1),

(4.2) lim sup
Tn→∞

E[%n, (%nun)](Tn) 6 a

γ − 1

∫

Ω

%γ
s dx + τM

√
E∞.

As τ > 0 can be taken arbitrarily small, (4.2) yields

lim sup
Tn→∞

1
2

∫

%n(Tn)>0

|(%nun)|2
%n

(Tn) dx +
a

γ − 1

∫

Ω

%γ
n(Tn) dx 6 a

γ − 1

∫

Ω

%γ
s dx.

Consequently,
‖%n(Tn)‖Lγ(Ω) → ‖%s‖Lγ(Ω)

and, making use of the uniform convexity of the Lγ-norm, we have

%n(Tn) → %s strongly in Lγ(Ω)(4.3)

and
∫

%n(Tn)>0

|(%nun)|2
%n

(Tn) dx → 0 as Tn →∞.(4.4)

By virtue of (2.1), the relation (4.4) yields
∫

Ω

|(%nun)|(Tn) dx =
∫

%n(Tn)>0

√
%n(Tn)

√
%n(Tn) |un(Tn)| dx

6
[ ∫

%n(Tn)>0

|%nun|2
%n

(Tn) dx

] 1
2
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which, combined with (4.4), gives

(4.5) (%nun)(Tn) → 0 strongly in L1(Ω).

The relation (4.3) together with (4.5) contradicts (2.7). This completes the proof of

Lemma 2.1 and, consequently, that of Theorem 1.2.
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