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ON A PROBLEM CONCERNING k-SUBDOMINATION

NUMBERS OF GRAPHS
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, Liberec

(Received September 19, 2000)

Abstract. One of numerical invariants concerning domination in graphs is the k-
subdomination number γ−11kS (G) of a graph G. A conjecture concerning it was expressed
by J.H. Hattingh, namely that for any connected graph G with n vertices and any k
with 12n < k 6 n the inequality γ−11kS (G) 6 2k − n holds. This paper presents a simple
counterexample which disproves this conjecture. This counterexample is the graph of the
three-dimensional cube and k = 5.
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In [2] the following conjecture from [1] is presented:

For any connected graph G of order n and any k with 1
2n < k 6 n, γ−11

kS (G) 6
2k − n.

A problem is suggested to settle this conjecture. By a simple counterexample we

shall show that this conjecture is false.

We start by defining basic concepts.

Let G be a graph with the vertex set V (G), |V (G)| = n. Let v ∈ V (G). The
closed neighbourhood NG[v] of the vertex v in the graph G is the set consisting of

the vertex v and of all vertices which are adjacent to v in G.

If f is a mapping of V (G) into a certain set of numbers and S ⊆ V (G), then we
denote f(S) =

∑
x∈S

f(x). The weight w(f) of f is the number w(f) = f(V (G)) =
∑

x∈V (G)

f(x).

Let k be an integer, 1 6 k 6 n. Let f : V (G) → {−1, 1}. The function f is called
a signed k-subdominating function (shortly a signed kSF) of G, if f(NG[v]) > 1 for
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at least k vertices v of G. The minimum of w(f) taken over all signed kSF’s of G is
the signed k-subdomination number γ−11

kS (G) of G.
Now we define some auxiliary notation. Let f : V (G) → {−1, 1}. Then V +

f =
{x ∈ V (G) | f(x) = 1}, V −

f = {x ∈ V (G) | f(x) = −1}, W +
f = {x ∈ V (G) |

f(NG[x]) > 1}. The subgraphs of G induced by the sets V +
f , V −f will be denoted

by G+
f , G

−
f .

Now we are able to disprove the conjecture. A simple counterexample is the
graph Q3 of the three-dimensional cube and k = 5.

Theorem. Let Q3 be the graph of the three-dimensional cube, let k = 5. Then
γ−11

kS (Q3) = 4.
���	�����

. Suppose that γ−11
5S (Q3) < 4. Let f be a 5SF such that w(f) = γ−11

5S (Q3).
We have |V +

f |+ |V −f | = 8, γ−11
5S (Q3) = |V +

f | − |V −f | and thus γ−11
5S (Q3) must be even

and γ−11
5S (Q3) 6 2. Then |V +

f | = 1
2 (γ−11

5S (Q3) + n) 6 5 and |V −f | > 3. We shall
investigate the possibilities for the functions f : V (G) → {−1, 1} with |V −

F | = 3.
(The functions with |V −

f | > 3 are obtained from them by changing some values
from 1 to −1.) These functions are of three types. The functions of the same type
can be transferred into each other by automorphisms of Q3. In the first type G−f
is a path of length 2 (with two edges). In the second type G−f has two connected
components, one isomorphic to K2, the other to K1. In the third type G−f consists
of three isolated vertices. These types are illustrated in Figs. 1, 2, 3. The vertices
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of V −f are depicted as white circles and the vertices of V
+
f by black circles. At each

vertex v the value f(NQ3 [v]) is written. We see that in all of the types |W +
f | 6 4

and thus no function f : V (G) → {−1, 1} with |V −
f | = 3 is a 5SF in Q3. Evidently

this holds also if |V −f | > 3. We have proved that γ−11
5S (Q3) > 4. Now take a function

f : V (G) → {−1, 1} such that |V −
f | = 6 and G+

f contains a circuit of length 6
(Figs. 4, 5). Such a function is a 5SF and thus γ−11

5S (Q3) = 4. �
The assertion of Theorem disproves the conjecture, because in this case 2k−n = 2.
But in [2], beside this conjecture there is another conjecture which is weaker and

analogous; instead of any connected graph it is spoken in it about any tree. Our
result does not exclude the validity of that conjecture.
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