
Czechoslovak Mathematical Journal

Jiří Rachůnek; Dana Šalounová
Non-transitive generalizations of subdirect products of linearly ordered rings

Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 3, 591–603

Persistent URL: http://dml.cz/dmlcz/127825

Terms of use:
© Institute of Mathematics AS CR, 2003

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/127825
http://dml.cz


Czechoslovak Mathematical Journal, 53 (128) (2003), 591–603

NON-TRANSITIVE GENERALIZATIONS OF SUBDIRECT
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Abstract. Weakly associative lattice rings (wal -rings) are non-transitive generalizations
of lattice ordered rings (l -rings). As is known, the class of l -rings which are subdirect
products of linearly ordered rings (i.e. the class of f -rings) plays an important role in the
theory of l -rings. In the paper, the classes of wal -rings representable as subdirect products
of to-rings and ao-rings (both being non-transitive generalizations of the class of f -rings) are
characterized and the class of wal -rings having lattice ordered positive cones is described.
Moreover, lexicographic products of weakly associative lattice groups are also studied here.

Keywords: weakly associative lattice ring, weakly associative lattice group, representable
wal -ring

MSC 2000 : 06F25, 06F15

0. Introduction

Weakly associative lattice groups (wal -groups) and totally semiordered groups
(to-groups) are non-transitive generalizations of lattice ordered groups (l -groups)
and totally ordered groups (o-groups). In contrast to l -groups and o-groups, non-

trivial wal -groups and to-groups need not be torsion free and, moreover, there are
many finite cases of such groups. Properties of wal -groups and to-groups, as well
as of varieties of wal -groups, have been studied by the first author in [8], [9], [10],
[11] and [12]. The second author introduced the notions of weakly associative lattice

rings (wal -rings) and totally semiordered rings (to-rings) in [13], and developed the
basic structure theory of these algebras.

The first author was supported by the Council of Czech Government, J14/98: 15100011.
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Since wal -rings and to-rings are non-transitive counterparts of lattice ordered rings
(l -rings) and totally ordered rings (o-rings) and since the class of f -rings (i.e. l -rings
which are isomorphic to subdirect products of o-rings) is one of the most important
classes of l -rings, in the present paper we introduce and study wal -rings which are
representable as subdirect products of to-rings.
We prove that the class ROwal of such wal -rings is a variety of wal -rings.

Moreover, we introduce the class AoROwal of almost ordered representable (ao-
representable) wal -rings which is closer to the class of f -rings and show that also
AoROwal is a variety. Further, the class of almost l -rings is defined and described.
Moreover, we deal with lexicographic products of wal -groups.
For necessary results from the theory of l -groups and l -rings see e.g. [1], [4], and [6].

1. Basic notions

A weakly associative lattice (a wa-lattice) is an algebra A = (A,∨,∧) of signa-
ture 〈2, 2〉 satisfying the identities
(I) a ∨ a = a; a ∧ a = a.
(C) a ∨ b = b ∨ a; a ∧ b = b ∧ a.

(Abs) a ∨ (a ∧ b) = a; a ∧ (a ∨ b) = a.
(WA) ((a ∧ c) ∨ (b ∧ c)) ∨ c = c; ((a ∨ c) ∧ (b ∨ c)) ∧ c = c.

This notion has been introduced by E. Fried in [3] and H. L. Skala in [14] and

[15]. It is obvious that the notion of a wa-lattice generalizes that of a lattice because
the identities of associativity of the operations “∨” and “∧” required for lattices are
special cases of identities (WA) of weak associativity. Nevertheless, similarly as for
lattices, the properties of “∨” and “∧” make it possible to define a binary relation
“6” on A also for wa-lattices as follows:

∀ a, b ∈ A ; a 6 b ⇐⇒df a ∧ b = a.

Then the relation “6” is reflexive and antisymmetric (i.e. “6” is a so-called
semiorder of A and (A, 6) is a semiordered set) and for each x, y ∈ A there exist

sup{x, y} = x ∨ y and inf{x, y} = x ∧ y in A. Conversely, if (A, 6) is a semiordered
set such that any x, y ∈ A have a supremum sup{x, y} and an infimum inf{x, y},
then (A, sup, inf) is a wa-lattice. Therefore we can equivalently view any wa-lattice
as a special kind of a semiordered set.

A special case of a wa-lattice is a tournament. A semi-ordered set (A, 6) is said to
be a tournament (totally semiordered set) if any elements a, b ∈ A are comparable,

i.e.
∀ a, b ∈ A; a 6 b or b 6 a.
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If (G, +, 6) is a group and (G,∨,∧) = (G, 6) is a wa-lattice then the system
G = (G, +, 6) is called a weakly associative lattice group (wal-group) if G satisfies
the condition

(M+) ∀ a, b, c, d ∈ G ; a 6 b =⇒ c + a + d 6 c + b + d.

If for a wal -group G the wa-lattice (G, 6) is a tournament, then G is called a
totally semiordered group (to-group).
For basic properties of wal -groups and to-groups see [8].
If (R, +, ·, 6) is an associative ring and (R,∨,∧) = (R, 6) is a wa-lattice then

the system R = (R, +, ·, 6) is called a weakly associative lattice ring (wal-ring) if
R satisfies the conditions

∀a, b, c ∈ R ; a 6 b =⇒ a + c 6 b + c;(M+)

∀a, b, c ∈ R ; 0 6 c and a 6 b =⇒ ac 6 bc and ca 6 cb.(M·)

If for a wal -ring R the wa-lattice (R, 6) is a tournament, then R is called a totally
semiordered ring (to-ring).
(For basic properties of wal -rings see [13].) In contrast to lattice ordered rings

(l -rings) and linearly ordered rings (o-rings) (see [1]), there are non-trivial finite
wal -rings and to-rings.

The class of all wal -rings is a variety of algebras of type 〈+, 0,−(·), ·,∨,∧〉 of
signature 〈2, 0, 1, 2, 2, 2〉, and l -rings form its subvariety. The variety of wal -rings is
characterized by identities describing the varieties of all rings and all wa-lattices and
further by the following identities:

a + (b ∨ c) + d = (a + b + d) ∨ (a + c + d),

(a ∨ b)(c ∨ 0) > a(c ∨ 0) ∨ b(c ∨ 0),

(c ∨ 0)(a ∨ b) > (c ∨ 0)a ∨ (c ∨ 0)b.

Now we recall some notions and results concerning wal -rings and their subrings
(see [13]).

If R is a wal -ring then R+ = {x ∈ R ; 0 6 x} is called the positive cone of R and
its elements are positive.

Example 1.1. Let us consider the ring � 3 = {0, 1, 2} with the addition and
multiplication mod 3. We denote R = (R, +, ·) = ( � 3, +, ·), � +

3 = R+ = {0, 1}. It is
clear that � +

3 is the positive cone of a total semiorder of the ring � 3.
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Example 1.2. The ring R = ( � , +, ·)
a) with the positive cone R+ = {0, 1, 2, 4, 6, . . .} is a wal -ring, not a to-ring. If

x ∈ R then we have:

1) x ∈ R+ ⇒ x ∨ 0 = x;

2) −x ∈ R+ ⇒ x ∨ 0 = 0;
3) x /∈ R+, −x /∈ R+ ⇒ x ∨ 0 = max{x, 0}+ 1,
where max{x, 0} is meant in the natural ordering of � .

b) with the positive cone R+ as follows:

1) 0, 1 ∈ R+.

Let 1 6= n ∈ � .
2) If n is the product of an odd number of prime factors (for example 12 =

2 · 2 · 3), then −n ∈ R+.

3) If n is the product of an even number of prime factors, then n ∈ R+.

That means R+ = {0, 1,−2,−3, 4,−5, 6,−7,−8, 9, 10,−11,−12,−13, 14,
15, 16,−17, . . .}. Then R+ defines a total semi-order of the ring R. How-
ever, it is not a linear order because e.g. 4 6 1, 1 6 −2 but 4 > −2.

Subalgebras of wal -rings are called wal-subrings. That means if R is a wal -ring and
∅ 6= A ⊆ R, then A is a wal -subring of R if A is both a subring and a wa-sublattice
of R.

Let R be a wal -ring and I its ideal which is simultaneously its convex wa-sublattice.

Then I is called a wal-ideal of R if it satisfies the following mutually equivalent
conditions:

(Ia) ∀ a, b ∈ I, x, y ∈ R ; (x 6 a, y 6 b =⇒ ∃ c ∈ I ; x ∨ y 6 c,

(Ib) ∀ a, b, c ∈ I, x, y ∈ R ; x 6 a, y 6 b =⇒ (x ∨ y) ∨ c ∈ I .

The wal -ideals of wal -rings coincide with the kernels of homomorphisms of wal -rings.
If I is a wal -ideal of R, we can define a semiorder on R/I by

x + I 6 y + I ⇐⇒df ∃ a ∈ I ; x + a 6 y,

and R/I with this relation is a wal -ring.
A wal -ideal I of R is said to be straightening if it satisfies the following mutually

equivalent conditions:

(Sa) x, y ∈ R, 0 6 x ∧ y ∈ I =⇒ x ∈ I or y ∈ I ,

(Sb) x, y ∈ R, x ∧ y = 0 =⇒ x ∈ I or y ∈ I ,

(Sc) R/I is a to-ring.
A wal -ideal I of a wal -ring R is called semimaximal if there exists an element

a ∈ R such that I is a maximal wal -ideal of R with respect to the property “not
containing a”.
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Let us recall ([1] and [4]) that an l -ring R is called a ring of functions (f-ring) if
R is isomorphic to a subdirect product of linearly ordered rings (o-rings).

2. Representable wal-rings

Definition. If R is a wal -ring, then R is called representable if it is isomorphic
to a subdirect product of to-rings.

Proposition 2.1. Let R be a representable wal -ring. Then for any a, b, c ∈ R we

have

(1) c > 0 ⇒ (a ∨ b)c = ac ∨ bc,

c(a ∨ b) = ca ∨ cb,

(a ∧ b)c = ac ∧ bc,

c(a ∧ b) = ca ∧ cb;

(2) a ∧ b = 0 implies ab = 0;
(3) if a ∧ b = 0 and c > 0, then ca ∧ b = 0 and ac ∧ b = 0;
(4) a2 > 0.

The above mentioned properties of a representable wal -ring are obvious for a
to-ring. They are observed by forming subdirect products. For the same reason, it
is evident that a representable wal -ring R is an l -ring if and only if R is an f -ring.

Proposition 2.2. A wal -ring is representable if and only if the intersection of all
its straightening wal -ideals is equal to {0}.
������� �

. Let R be a representable wal -ring. Then there exists a family of
surjective wal -homomorphisms pi : R −→ Ri, i ∈ I such that every Ri is totally
semi-ordered and

⋂
i∈I

Ker pi = {0}. Hence R/ Kerpi (i ∈ I) is totally semiordered

and this is the case if and only if Ker pi (i ∈ I) is a straightening ideal.
The converse implication is obvious. �

Proposition 2.3. If every semimaximal wal -ideal of a wal -ring R is straightening

then R is representable.
������� �

. By [13, Corollary 2.2.6], the intersection of all semimaximal wal -ideals
of a wal -ring is equal to {0}. �

Remark 2.4. It is obvious that we can write the property (3) from Proposition 2.1
in the following way:

(y ∨ 0)(x ∨ 0) ∧ (−x ∨ 0) = 0

(x ∨ 0)(y ∨ 0) ∧ (−x ∨ 0) = 0

}
for every x, y ∈ R.
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Indeed, let the identities be fulfilled and a∧ b = 0, c > 0. Then, by Proposition 13
of [8], a + b = a ∨ b, hence a = (a − b) ∨ 0 and b = (b − a) ∨ 0. We have 0 =
c((a− b)∨ 0)∧ ((b− a) ∨ 0) = ca∧ b. Similarly ac∧ b = 0. The converse implication
is obvious.

It is known that the above mentioned identities characterize f -rings (see [4]).
However, they do not characterize representable wal -rings.
We can consider an abelian wal -group (G, +, 6) which is not representable. The

existence of such groups has been verified in [10]: Consider the abelian wal -group
G = ( � , +, 6) with the positive cone G+ = {0, 1, 2, 4, . . . , 2n, . . .}. Since G has no

straightening subgroup different from G, we conclude that G is not representable.

Then the wal -ring R = (G, +, ·, 6), where x · y = 0 for every x, y ∈ G, satisfies
both the identities characterizing f -rings. At the same time the wal -ring R is not

representable. (Its wal -ideals coincide with wal -ideals of the wal -group (G, +, 6).)
Nevertheless, we will prove the following theorem.

Theorem 2.5. The class ROwal of all representable wal -rings is a variety of
wal -rings.

������� �
. By Birkhoff’s theorem, a nonempty class of algebras of a given type is

a variety if it is closed under direct products, subalgebras and homomorphic images.

a) Obviously, the direct product of representable wal -rings is a representable wal -
ring, too.

b) Let R ∈ ROwal and let S be a wal -subring of R. Let Kβ be a straightening

wal -ideal of R. Let us denote Sβ = S ∩Kβ . It is obvious that Sβ is an ideal of the
ring S which is a wa-sublattice of the wa-lattice S. Let a, b ∈ Sβ , x ∈ S, a 6 x,
x 6 b. Since a, b ∈ Kβ , we have x ∈ Kβ ∩ S = Sβ , hence Sβ is convex.

Let a, b, c ∈ Sβ , x, y ∈ S, x 6 a, y 6 b. Then (x∨ y)∨ c ∈ Kβ ∩ S = Sβ and so Sβ

is a wal -ideal of S.
Let x, y ∈ S, x ∧ y = 0. Then x ∈ Kβ or y ∈ Kβ , hence x ∈ Sβ or y ∈ Sβ. That

means Sβ is straightening.

Now, let {Kβ ; β ∈ ∆} be the system of all straightening wal -ideals of R. Then⋂
β∈∆

Sβ =
⋂

β∈∆

(S ∩ Kβ) ⊆ ⋂
β∈∆

Kβ = {0} and so, by Proposition 2.2, S is a repre-

sentable wal -ring.
c) Let R, R′ be wal -rings and f a surjective wal -homomorphism of R onto R′.

Since wal -rings are Ω-groups in the sense of Kurosch, we have by [7, III.2.13], if J is
a wal -ideal of R and J ′ = f(J) then J ′ is a wal -ideal of R′.

Suppose J is straightening. Consider x′ + J ′, y′ + J ′ ∈ R′/J ′. Let x, y ∈ R,
f(x) = x′, f(y) = y′. We can assume that x + J 6 y + J . Then there exists a ∈ J

596



such that x + a 6 y, and consequently x′ + f(a) 6 y′. We have x′ + J ′ 6 y′ + J ′

because f(a) ∈ J ′. Therefore J ′ is straightening.

Let R be representable and let {Jα ; α ∈ Γ} be the system of all straightening wal -
ideals of R. If there exists β ∈ Γ such that f(Jβ) = {0′}, then {0′} is a straightening
wal -ideal of R′, hence R′ is a to-ring and so representable.

Let J ′
α = f(Jα) 6= {0′} for each α ∈ Γ. The map f induces a bijection preserving

inclusions of the set of all wal -ideals of R which are not contained in Kerf onto the

set of all wal -ideals of R′. At the same time the wa-lattices R/Jα and R′/f(Jα) are
isomorphic, hence f induces also a bijection of the set of all straightening wal -ideals
of R onto the set of all straightening wal -ideals of R′. Let J ′ =

⋂
α∈Γ

J ′
α 6= {0′}.

Then J = f−1(J ′) is a wal -ideal of R which is contained in all straightening wal -
ideals of R, hence J = {0}, a contradiction. Therefore J ′ = {0′}, that means R′ is
representable. �

Evidently, o-rings are special cases of to-rings, thus f -rings are special cases of

representable wal -rings and they form a subvariety of the variety ROwal .

3. The variety of ao-representable wal-rings

We could see that representable wal -rings are a non-transitive generalization of
f -rings and in addition, an l -ring is an f -ring if and only if it is a representable

wal -ring. Nevertheless, the class ROwal of all representable wal -rings is still rather
a large extension of the class ROl of all f -rings because the notion of a to-ring is a
considerable generalization of that of an o-ring. Therefore, in this part we will deal

with subdirect products of to-rings with total semiorders very close to linear orders.

A tournament (T, 6) is said to be circular if
(a) there exist a, b, c ∈ T such that a < b < c < a, and

(b) whenever x, y, z ∈ T satisfy x < y < z < x, then there exists no w ∈ T such

that w < {x, y, z} or w > {x, y, z}.

Definition. A to-group G is called circular if the tournament (G, 6) is circular.
A to-ring R is called circular if the tournament (R, 6) is circular.

Definition. A to-group G is called an almost o-group (ao-group) if G is either
an o-group or a circular to-group. A to-ring R is called an almost o-ring (ao-ring) if
R is either an o-ring or a circular to-ring.

The circular to-groups and the ao-groups have been introduced and studied in [9]
and [11].
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Proposition 3.1. Let R be a to-ring. Then R is an ao-ring if and only if R+ is

a linearly ordered set.
������� �

. Let R be a circular to-ring, a, b, c ∈ R+ \ {0}, a < b < c. Consider

a > c. Then a < b < c < a and 0 < {a, b, c}, a contradiction. Thus a < c, therefore
the restriction of < to R+ is transitive.

Conversely, let R+ be a linearly ordered set and let R be not a linearly ordered ring.
Then there exist a, b, c, d ∈ R such that a < b < c < a and, for example, d < {a, b, c}.
Then −d+a < −d+b < −d+c < −d+a and 0 < {−d+a,−d+b,−d+c}. Hence R+

is not a linearly ordered set, a contradiction. Similarly for d > {a, b, c}. It follows
that R is circular. �

Example 3.2.
a) It is obvious that every linearly ordered ring is an ao-ring.

b) Let us consider the ring � 3 = {0, 1, 2} with addition and multiplication mod 3
and � +

3 = {0, 1}. Then ( � 3, +, ·) is an ao-ring, not an o-ring because e.g. 0 <

1 < 2 < 0.

By Example 3.2, it is seen that there exist ao-rings both with an upper unbounded

positive cone and with a positive cone having the greatest element. Now we will inves-
tigate ao-rings with the greatest positive element which are simultaneously integral

domains.
Let R be an integral ao-domain containing the greatest element a 6= 0 in R+.

Since always a2 ∈ R+, we have a2 6 a.
a) Let a2 = a. Then (2a)2 = 4a2 = 4a, therefore 4a > 0, thus 4a 6 a. That means

a 6 −2a.
First, let us suppose that a = −2a. Then 3a = 0 and so 4a = a. Simultaneously

we get 4a2−a = 0, therefore a(4a−1) = 0. As R is an integral domain, we have
4a = 1, that means a = 1. That is why R has characteristic 3 in this case. Now

let a < −2a hold. Then −2a < 0. At the same time 0 < a, therefore a < 2a,
and so 2a < 0, a contradiction.

b) Let a2 < a and let R be finite. As 0 < a2 < a, we get 0 6 . . . 6 an 6 an−1 6
. . . 6 a2 < a, thus there exists n ∈ � such that an−1 6= 0 and an = 0, a
contradiction with the assumption that R is an integral domain.

Therefore we get the following proposition.

Proposition 3.3.
a) Let a non-trivial ao-ring R be an integral domain. If R+ has the greatest

element a and if a2 = a, then R has characteristic 3. In addition, the element a

is equal to the element 1.
b) Every non-trivial finite integral ao-domain has characteristic 3.
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Definition. A wal -ideal I of a wal -ring R is called an ao-straightening wal-ideal

of R if R/I is an ao-ring.

Definition. A wal -ring R is called ao-representable if it is isomorphic to a sub-

direct product of ao-rings.

Obviously, every ao-straightening wal -ideal is also straightening and every ao-rep-
resentable wal -ring is also representable.

Proposition 3.4. A wal -ring is ao-representable if and only if the intersection of
all its ao-straightening wal -ideals is equal to {0}.
������� �

. The proof is similar to that of Proposition 2.2. �

Theorem 3.5. The class AoROwal of all ao-representable wal -rings is a variety
of wal -rings.
������� �

. Similarly as in Theorem 2.5, we will use Birkhoff’s characterization of a

variety as a class of algebras of a given type closed under direct products, subalgebras
and homomorphic images. Let us denote W = AoROwal .

a) Evidently, the direct product of wal -rings belonging to W is also contained
in W .
b) Let R ∈ W be a subdirect product of ao-rings Rα (α ∈ Γ) and let S be a

wal -subring of R. Let Kβ be any ao-straightening wal -ideal of R. Let us denote

Sβ = S ∩Kβ . By the proof of Theorem 2.5, Sβ is a straightening wal -ideal of S.
Let {Kβ ; β ∈ ∆} be the system of all ao-straightening wal -ideals of R. Then⋂

β∈∆

Sβ =
⋂

β∈∆

(S ∩Kβ) ⊆ ⋂
β∈∆

Kβ = {0}, hence, by Proposition 3.4, S ∈ W .

c) Let R, R′ be wal -rings and let f be a surjective wal -homomorphism of R ontoR′.
For any wal -ideal J of R put J ′ = f(J). If J is a straightening wal -ideal of R then,
by the proof of Theorem 2.5, J ′ is a straightening wal -ideal of R′. Let now J be an
ao-straightening wal -ideal of R. Consider x′ + J ′, y′ + J ′, z′ + J ′ ∈ (R′/J ′)+ such
that x′ + J ′ 6 y′ + J ′, y′ + J ′ 6 z′ + J ′. Let x, y, z ∈ R be such that x′ = f(x),
y′ = f(y), z′ = f(z) and x + J , y + J , z + J ∈ (R/J)+. Since R/J is a to-ring,

x + J and y + J are comparable. If x + J > y + J then x′ + J ′ > y′ + J ′, hence
x′ + J ′ = y′ + J ′. Thus x′ + J ′ 6 z′ + J ′. Similarly for y + J > z + J . Therefore

we can suppose x + J 6 y + J and y + J 6 z + J . Since R/J is an ao-ring by
Proposition 3.1, we have x + J 6 z + J , hence x′ + J ′ 6 z′ + J ′, too. Therefore, by

Proposition 3.1, J ′ is an ao-straightening wal -ideal of R′.
Let now R ∈ W and let {Jα ; α ∈ Γ} be the system of all ao-straightening

wal -ideals of R. If there exists β ∈ Γ such that f(Jβ) = {0′}, then {0′} is an
ao-straightening wal -ideal of R′ and hence R′ is an ao-ring.
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Let J ′
α = f(Jα) 6= {0′} for each α ∈ Γ. As f induces a bijection preserving

inclusions of the set of all wal -ideals of R which are not contained in Kerf onto the
set of all wal -ideals of R′ and at the same time the wa-lattices R/Jα and R′/f(Jα)
are isomorphic, hence f induces also a bijection of the set of all ao-straightening wal -

ideals of R onto the set of all ao-straightening wal -ideals of R′. Let J ′ =
⋂

α∈Γ

J ′
α 6=

{0′}. Then J = f−1(J ′) is a wal -ideal of R which is contained in all ao-straightening
wal -ideals of R, hence J = {0}, a contradiction. Therefore J ′ = {0′}, and hence, by
Proposition 3.4, R′ is ao-representable. �

4. Almost l-rings

Let R be a wal -ring. It is obvious that its positive cone R+ is closed under
addition if and only if R is an l -ring. If a wal -ring R is not an l -ring, then R+

need not even be a wa-sublattice of R. For instance, for a wal -ring � such that
� + = {0, 1, 2, 4, 6, . . . , 2n, . . .} we have 1, 4 ∈ � +, but 5 = 1 ∨ 4 /∈ � +. However, it is

seen that for every representable wal -ringR, R+ is its wa-sublattice and, moreover, in
the case of an ao-representable wal -ring, R+ is a lattice. (Then we can say briefly that

R+ is a sublattice of R.) Evidently, each l -ring also has the same property. Denote by
PLOwal the class of all wal -rings with the property “R+ is a sublattice of R”. Then
PLOwal contains, among others, the varieties AoROwal of all ao-representable wal -

rings and Ol of all l -rings as proper subclasses. Now we characterize the wal -rings
belonging to PLOwal .

Definition. a) We say that a wal -ringR is circular if there exist elements a, b, c ∈
R such that a < b < c, and a 66 c and if R satisfies the condition

If x, y, z ∈ R are such that x < y < z and x 66 z,(R+
1 )

then there is no w ∈ R satisfying w < {x, y, z} or {x, y, z} < w.

b) A wal -ring R is called an almost l-ring (an al-ring) if R is either an l -ring or a
circular wal -ring.
Denote by AlOwal the class of all al -rings. It is obvious that each ao-ring belongs

to AlOwal .

Theorem 4.1. Let R be a wal -ring. Then its positive cone R+ is a sublattice

of R if and only if R+ is a wa-sublattice of R and R is an al-ring.
������� �

. a) Let R+ be a sublattice of R. Let us suppose that R is not an
l -ring. Then the relation 6 is not transitive, thus there exist elements a, b, c ∈ R
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such that a < b, b < c and at the same time a > c or a ‖ c. Suppose that there

exists w ∈ R such that w < {a, b, c}. Then −w + a, −w + b, −w + c ∈ R+ \ {0} and
−w + a < −w + b, but −w + a > −w + c or −w + a ‖ −w + c, hence R+ is not
a lattice, a contradiction. Similarly for {a, b, c} < w. Therefore R is an al -ring.

b) Let R be an al -ring and let R+ be a wa-sublattice of R. Suppose that R+ is
not a lattice. Then the restriction of the relation 6 to R+ is not transitive, thus
there exist a, b, c ∈ R+ \ {0} such that a < b < c and a 66 c, a contradiction with the

assumption that R is circular. Therefore R+ is a sublattice of R. �

Remark 4.2. By [8, Proposition 1.9] in any wal -group, and then in any wal -ring,
the quasi-identity (x ∨ z = y ∨ z, x ∧ z = y ∧ z) =⇒ x = y is satisfied. Thus, if R+

is a sublattice of R then a lattice R+ is distributive.

As an immediate consequence of Theorem 4.1 we get the following result.

Theorem 4.3. The classes of wal -rings PLOwal and AlOwal coincide and AlOwal

is a variety of wal -rings determined by the identities
(1) ((x ∨ 0) ∨ (y ∨ 0)) ∧ 0 = 0;
(2) (x ∨ 0) ∨ ((y ∨ 0) ∨ (z ∨ 0)) = ((x ∨ 0) ∨ (y ∨ 0)) ∨ (z ∨ 0);
(3) (x ∨ 0) ∧ ((y ∨ 0) ∧ (z ∨ 0)) = ((x ∨ 0) ∧ (y ∨ 0)) ∧ (z ∨ 0).

5. Lexicographic products of wal-groups

The construction called a lexicographic product is very important in the theory of
l -groups. This construction can be generalized to wal -groups as well.

Definition. Let {Hα ; α ∈ Γ} be a collection of wal -groups with a linearly
ordered index set. Consider all elements a = (aα) of the direct product of groups Hα

such that the set Γa of indices α such that aα 6= 0 (the support of the element a) is
well-ordered. We can define a semiorder by declaring a > 0 if and only if aα0 > 0
for the smallest element α0 of its support. The semiordered group obtained in this

way will be called the lexicographic product
−→∏
α∈Γ

Hα of wal -groups Hα.

Remark 5.1. Let us show that it does not make sense to introduce a similar
notion for wal -rings. Namely, let S, T be non-trivial wal -rings and let R = S

−→× T

and suppose 0 < s ∈ S, 0 < t ∈ T . Then (0, t), (s,−t) ∈ R+ and (0, t) · (s,−t) =
(0,−t2) /∈ R+, hence R is not even a semiordered ring.

Now we will study lexicographic products of wal -groups, to-groups and ao-groups.
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Theorem 5.2. a) Let Γ be a well-ordered set and let {Gα ; α ∈ Γ} be a system of
wal -groups. Then their lexicographic product G =

−→∏
α∈Γ

Gα is a wal -group if and only

if all Gα (α ∈ Γ) are to-groups or Γ has the greatest element β, Gβ is a wal -group
and all Gα for α < β are to-groups.

b) G is a to-group if and only if all Gα (α ∈ Γ) are to-groups.
������� �

. The proof is the same as the proof of an analogous proposition for
l -groups in [5] and hence it is omitted. �

Theorem 5.3. Let {Gα ; α ∈ Γ} be a system of non-trivial to-groups with a well-
ordered index set (Γ,≺), where α1 is the least element of Γ. Then the lexicographic

product G =
−→∏
α∈Γ

Gα is an ao-group if and only if Gα1 is an ao-group and all the

other groups Gα (α 6= α1, α ∈ Γ) are o-groups.
������� �

. By Theorem 5.2, G is always a to-group for any to-groups Gα.
a) Let Gα1 be an ao-group and let Gα be o-groups for all α ∈ Γ, α 6= α1. If

x ∈ Gα1 then denote by Kx the set of all a = (aα) in G such that aα1 = x. Then
the semiorder of Kx induced by the semiorder of G is a linear order. We have

G+ = L ∪⋃
(Kx ; x ∈ G+

α1
\ {0}), where L = {a ∈ G ; aα1 = 0 and aγ(a) > 0 for the

least element γ(a) ∈ Γa}.
The semiordered set L is isomorphic to a subset of the lexicographic product of

linearly ordered sets Gα, α ∈ Γ, α 6= α1, and therefore L is a linearly ordered set.

At the same time by [11] or by the proof of Proposition 3.1, G+
α1
\ {0} is a linearly

ordered set, hence K =
⋃

(Kx ; x ∈ G+
α1
\{0}), as the ordinal sum of linearly ordered

sets is a linearly ordered set, too.
In this way, G+ is the ordinal sum of linearly ordered sets L and K therefore G is

an ao-group.
b) Conversely, let there exist α ∈ Γ, α 6= α1, such that Gα is not an o-group.

Then there exist y1, y2 ∈ Gα such that 0 < y1 < y2 < 0. Let 0 < x ∈ Gα1 . Consider
a, b, c ∈ G such that aα1 = bα1 = cα1 = x and aα = 0, bα = y1, cα = y2. Then
a < b < c < a, hence G+ is not linearly ordered. Therefore G is not an ao-group. �
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