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Keywords: prime submodules, weak multiplication modules, rank of modules

MSC 2000 : 13E05

1. Introduction

Throughout this paper all rings are commutative with identity and all modules
are unitary. A proper submodule N of a module M over a ring R is said to be

prime (P -prime) if ra ∈ N for r ∈ R and a ∈ M implies that either a ∈ N or
r ∈ (N : M) = P (see, for example, [4], [6]). The set of all prime submodules in an

R-module M is denoted SpecR M or Spec M.

Recall that if R is an integral domain with the quotient field K, the rank of an
R-moduleM (rankM or rankR M) is defined to be the maximal number of elements

of M linearly independent over R. We have rankM = the dimension of the vector
space KM over K, that is rankM = rankK KM ([7]).

An R-module M is called a multiplication module if for every submodule N of M
we have N = IM , where I is an ideal of R ([3]).

2. Weak multiplication modules

Definition. An R-moduleM is called a weak multiplication module if Spec M =
∅ or for every prime submodule N of M we have N = IM , where I is an ideal of R.

One can easily show that if M is a weak multiplication module, then N = (N :
M)M for every prime submodule N of M ([1]).
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As is seen in [1], Q is a weak multiplication Z-module which is not a multiplication

module.

If R is a ring (not necessarily an integral domain) and M is an R-module, the
subset T (M) of M is defined by

T (M) = {m ∈ M | ∃ 0 6= r ∈ R such that rm = 0}.

Obviously, if R is an interal domain, then T (M) is a submodule of M .
It is well known that if R is a ring in which every proper ideal is prime, then R is

a field. Compare it with the following result.

Proposition 2.1. Let R be a ring and O 6= M an R-module, then R is a field if

and only if every proper submodule ofM is a prime submodule ofM and T (M) 6= M .

�
	��
���
. ⇒ Is obvious.

⇐ Let a ∈ M − T (M), so Ann(a) = O. In view of the assumption, it is easy to
see that every proper submodule of the R-module M ∗ = Ra is a prime submodule

of M∗ andM∗ = Ra ∼= R as R-modules, therefore every proper ideal of R is a prime
ideal, hence R is a field. �

Note. The condition T (M) 6= M in the previous result is necessary. For example,

let R be a ring which is not a field and let m be a maximal ideal of R, then for the R-
moduleM = R

m every proper submodule is prime, indeed the only proper submodule

of M is m
m which is prime as well.

Lemma 2.2. Let P be a prime ideal of R, let S be a multiplicatively closed

set such that P ∩ S = ∅ and let M be an R-module. Then there exists a one-to-

one correspondence between the P -prime submodules of M and the S−1P -prime

submodules of S−1M .

�
	��
���
. See [5, Proposition 1]. �

Lemma 2.3. An R-module M is a weak multiplication module if and only if

the RP -module MP is a weak multiplication module for every prime (or maximal)

ideal P of R.

�
	��
���
. Let M be a weak multiplication R-module and N a prime submodule

ofMP where P is a prime ideal of R. According to Lemma 2.2, we know that N ∩M

is a prime submodule of M . So N ∩M = IM , therefore N = (N ∩M)P = IP MP .

Conversely, let N be a prime submodule of M . We show that
(

N
(N :M)M

)
P

= O

for every maximal ideal P .
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If (N : M) ⊆ P , then by Lemma 2.2, NP is a prime submodule, so NP = (NP :
MP )MP , and by Corollary 1 of [5], (NP : MP ) = (N : M)P . Hence

(
N

(N :M)M

)
P

=
NP

(N :M)P MP
= NP

(NP :MP )MP
= O. If (N : M) 6⊆ P , then clearly NP = MP and

(N : M)P = RP , so obviously

( N

(N : M)M

)
P

=
NP

(N : M)P MP
=

MP

MP
= O.

�

Proposition 2.4. If M is a weak multiplication module over an integral domain,

then

(i) If M is a non-zero torsion-free module, then rankM = 1.
(ii) If M is a torsion module, then rankM = 0.
(iii) M is either torsion or torsion-free.

�
	��
���
. (i) First let O 6= M be a vector space which is a weak multiplication

module. If rankM > 1, then let O 6= W ⊂ M . According to Proposition 2.1, W is

a prime submodule of M , and since M is a weak multiplication module, W = IM

where I is an ideal of the field R. So I = O or I = R, which is a contradiction.

Hence rankM 6 1, and since 0 6= M , then rankM = 1.
Now in the general case, if M is a non-zero torsion-free R-module, then KM 6= O,

where K is the quotient field of R. By Lemma 2.3, KM is a weak multiplication

K-module (vector space), and as we have proved above, rankK KM = 1. Hence
rankM = rankK KM = 1.
(ii) Suppose that M is a torsion module, then KM = O and therefore rankM =

rankK kM = 0.
(iii) If T (M) 6= M , we show that T (M) = O. If T (M) 6= O, then KM 6= 0 and

by Lemma 2.3, KM is a non-zero weak multiplication K-module, so by part (i),
rankK KM = 1, that is rankM = rankK KM = 1. It is easy to see that T (M)
is a prime submodule of M , so T (M) = (T (M) : M)T (M) and since T (M) 6= O,
(T (M) : M) 6= O. Let 0 6= r ∈ (T (M) : M). Since rankM = 1, let {x} be a linearly
independent set in M . Now, rx ∈ rM ⊆ T (M), so there exists 0 6= r1 ∈ R such that
r1rx = 0, and this is a contradiction, because {x} is linearly independent. �

Proposition 2.5. A finitely generated module is a multiplication module if and
only if it is locally cyclic.

�
	��
���
. See [3, Proposition 5]. �
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Theorem 2.6. Let R be a local ring with a maximal ideal m and let M be a

finitely generated R-module. If {u1, u2, u3, . . . , un} is a basis of the vector space
M = M

mM over the field
R
m , then {u1, u2, u3, . . . , un} is a minimal basis of M .

�
	��
���
. See [7, Theorem 2.3]. �

Theorem 2.7. Every finitely generated weak multiplication module is a multi-
plication module.
�
	��
���

. Suppose that M is a finitely generated weak multiplication R-module.
We show that M is locally cyclic, and by Proposition 2.5, M is a multiplication

module. By localization and Lemma 2.3, we can assume thatM is a finitely generated
weak multiplication R-module where R is a local ring. Let m be the only maximal

ideal of R. Obviously M
mM is a finitely generated weak multiplication R

m -module. If
mM = M , then by Nakayama’s Lemma M = O, so it is cyclic.

If mM 6= M , then rankR/m
M

mM = 1, by Proposition 2.4 (i) and by Theorem 2.6,
M is a cyclic R-module. �

Theorem 2.8. If R is a ring , then the following are equivalent.
(i) dim R = 0.
(ii) For every weak multiplication R-module M , if T (M) = 0, then M is cyclic.

(iii) For every weak multiplication R-module M , if T (M) = 0, then M is a multi-

plication module.
�
	��
���

. (i) ⇒ (ii). First let R be a field. Let M be a torsion-free weak
multiplication R-module. IfM = 0, thenM is cyclic. So let 0 6= M . M is a non-zero

weak multiplication vector space over the field R. According to Proposition 2.4 (i),
we have rankM = 1. That is M ∼= R, and evidently M is cyclic.

Now we prove the general case. Let 0 6= M . It is easy to see that T (M) = 0 is a
prime submodule ofM . Hence (T (M) : M) is a prime ideal of R and since dim R = 0,

R
(T (M):M) is a field. Since T (M) = 0, one can easily show that M ∼= M

0 = M
T (M) is

a torsion-free weak multiplication R
(T (M):M) -module. So M is a torsion-free weak

multiplication module over the field R
(T (M):M) . And as we have proved aboveM is a

cyclic R
(T (M):M) -module and clearly M is a cyclic R-module.

(ii) ⇒ (iii). Is obvious.

(iii) ⇒ (i). Let P be a prime ideal of R. It is enough to prove that R
P is a field.

If K is the quotient field of the integral domain R
P , then by Theorem 1 in [5],

Spec R
P

(K) = {O}. So K is a torsion-free weak multiplication R
P -module. Therefore

by assumption it is a multiplication module. And since R
P 6 K, we have R

P = IK,

where I is a non-zero ideal of R
P and obviously IK = K. Hence R

P = K, and this
completes the proof. �
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Corollary 2.9. If R is an integral domain, then the following are equivalent.
(i) R is a field.

(ii) Every weak multiplication R-module is cyclic.

(iii) Every weak multiplication R-module is a multiplication module.

�
	��
���
. If R is a field, then since every weak multiplication R-module is a

vector space, it is a torsion-free weak multiplication R-module, so the proof follows
by Theorem 2.8. �

Lemma 2.10. Let R be a ring andM an R-module whose annihilator is contained

in only finitely many maximal ideals m1, m2, . . . , mn of R. If Mmi is a cyclic Rmi-

module for 1, 2, . . . , n, then M is a cyclic R-module.

�
	��
���
. See Lemma 3 of [3]. �

In [3, Proposition 8], Barnard proved:

Every finitely generated Artinian multiplication R-module M is cyclic. In this
case we know that R

AnnM is an Artinian ring and obviously M is a multiplication
R

Ann M -module. So the following result is a generalization of this result.

Proposition 2.11. Every weak multiplication module over an Artinian ring is
cyclic.

�
	��
���
. Let M ′ be a weak multiplication module over an Artinian ring R′.

We prove that M ′ is locally cyclic and by Lemma 2.10, M ′ is cyclic. Let P be

a prime ideal. Put M ′
P = M and R′

P = R. So R is a local Artinian ring and
by Lemma 2.3, M is a weak multiplication R-module. Suppose that P is the

only prime ideal of R, then P n = O for some natural number n. If PM = M ,
obviously O = P nM = M , so let PM 6= M . M

PM is a weak multiplication
R
P -module.

Therefore, by Proposition 2.4 (i), we have rankR
P

M
PM = 1. That means PM is a

maximal submodule of M . If x ∈ M − PM , then PM ⊂ PM + Rx ⊆ M , and

therefore PM + Rx = M . Thus O = P n M
Rx = P M

Rx = M
Rx , so M = Rx. �

Proposition 2.12. If m is a maximal ideal of the ring R which is a minimal

prime ideal and m 6= m2, then the following are equivalent.

(i) m is a weak multiplication R-module.

(ii) There is no ideal between m2 and m.

(iii) SpecR m = {m2}.
�
	��
���

. By localization and Lemma 2.3 we can assume that R is a local ring
with the only prime ideal m.
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(i)⇒(ii). Let m be a weak multiplication R-module. If m2 ⊆ I ⊂ m where I

is an ideal of R, we show that I is a prime submodule of m. Let r1r2 ∈ I , where
r1 ∈ R and r2 ∈ m. Suppose that r2 6∈ I , then r1 is not a unit, hence r1 ∈ m, hence
r1m ⊆ m2 ⊂ I , that is I is a prime submodule of m.

Since m is a weak multiplication module, and I is a prime submodule, then I =
mm1 for some ideal m1 of R. If m1 = R, then I = mm1 = m, which is impossible.

So m1 ⊆ m, that is m2 ⊆ I = mm1 ⊆ m2, thus there is no ideal between m2 and m.
(ii)⇒(iii). Suppose that there is no ideal between m2 and m. If I is a prime

submodule of the R-module m, then (I : m) is a prime ideal. Further, since m is
the only prime ideal of R, we have (I : m) = m. Therefore m2 ⊆ I ⊂ m, and by

assumption I = m2, hence SpecR m = {m2}.
(iii)⇒(i) Is clear.
The following theorem is a known result, but we will also prove it by the above

result. �

Corollary 2.13. If R is a local Artinian ring and m is a maximal ideal of R, then

m is cyclic if and only if rank R
m

m
m2 6 1.

�
	��
���
. ⇒ Is obvious.

⇐ If rank R
m

m
m2 = 0, then m2 = m, and by Nakayama’s lemma we have m = 0. If

rank R
m

m
m2 = 1, then there is no ideal between m2 and m, so by Proposition 2.12, m

is a weak multiplication R-module and the proof follows by Proposition 2.11. �
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