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Abstract. Let X be a G-space such that the orbit space X/G is metrizable. Suppose a
family of slices is given at each point of X. We study a construction which associates, under
some conditions on the family of slices, with any metric on X/G an invariant metric on X.
We show also that a family of slices with the required properties exists for any action of a
countable group on a locally compact and locally connected metric space.
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1. Introduction

Let G be a topological group acting continuously on a topological space X . Exis-

tence of a G-invariant metric on X compatible with the topology of X is a distinct
property of the action and provides an important technical tool. The obvious neces-

sary condition is metrizability of X , and we assume this in the sequel. The standard
case when an invariant metric is given by a simple formula, is the case of a compact

group G endowed with a finite measure ν invariant under (say, right) translations.
Then from any metric d on X we obtain an invariant metric by averaging:

d̃(x, y) =
∫

G

d(gx, gy)ν(dg).

The most important example is the Haar measure on a compact Lie group.

For a topological group G acting on itself by (say, left) translations, the theorem

of Birkhoff [2] and Kakutani [4] (cf. [6]) gives a sufficient condition for the existence
of an invariant metric, namely the existence of a countable base of open sets at the
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unit. The general case is less known. Koszul [5] and Palais [8] showed that for proper

(in a sense) actions of Lie groups on a separable and metrizable space there exists
an invariant metric.
A similar existence problem can be stated for riemannian metrics and actions on

smooth manifolds. Sufficient conditions for the existence of an invariant riemannian
metric were given by Koszul [5], Palais [8] and Alekseevski [1].

In the present paper we follow ideas coming from differential geometry. In order to
explain this in a comprehensible way we discuss first in some detail the case of totally

discontinuous actions (in particular, the group G is discrete). This is equivalent to
assuming that the projection p : X → X/G, where X/G is the space of orbits with

the quotient topology, is a covering map. Assuming X , X/G and the projection to
be smooth, one can lift any riemannian metric from X/G to X , since the map p is a

local diffeomorphism. To measure the distance between points x, y ∈ X , we have to
measure the length of geodesics joining x with y This can be done in X/G, since the

projection p becomes a local isometry, in particular, geodesics are preserved locally.
The resulting metric is invariant by construction, since it is defined in terms of the

quotient space.
One can follow this observation to construct an invariant metric for a general

covering space with a metrizable base. So for any metric d on X/G and a given
family U of open subsets of X define

(1) %(x, y) = inf
k−1∑

i=1

d(pxi, pxi+1),

where x1, . . . , xk is an allowable sequence of points of X , which means that x1 = x,
xk = y and any two adjacent points lie in one set belonging to the family U . The

infimum is taken over all allowable sequences. Whatever family U we are given, we
will call its elements small sets.

The minimal requirement for U is that a small set U should be elementary, i.e. it
is mapped homeomorphically by p onto its image (which we also call an elementary

set). We also want the family to be G-invariant, to ensure G-invariance of %. The
definition of % is the analogue of lifting geodesics piece by piece when they are divided

so that each segment lies in an elementary subset. By the definition of a covering
map, the quotient space has a base of open elementary sets. However, if we allow all

elementary sets in (1), then % is only a pseudometric. One can see this easily even in
the simplest example of the action of integers on the real line, which gives a covering

of the circle by � . For locally connected spaces it is not difficult to find a remedy.
We consider all balls which are elementary and balls of radius 4 times larger are still

elementary. The detailed discussion of that case together with a generalization (to
coverings in the category of spaces with group actions) is given in Section 3.
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We want to explain when the formula (1) works, hence in fact we investigate

the problem of lifting a given metric on X/G to X instead of mere existence of
an invariant metric. The assumption of metrizability of X/G is therefore natural.
Moreover, it is easy to observe that any invariant metric comes from X/G if the

latter is metrizable.

One can observe the strength of the assumption considering those actions on the
real line � which have metrizable orbit spaces. There are only few possibilities for
the latter: the line itself, the halfline, the closed interval, the circle and the point.
According to this, we may classify groups which act effectively on the real line with

a metrizable quotient. Any such action is equivalent to one of the following:

i) the (trivial) action of the trivial group;

ii) the involution x → −x;

iii) the action of integers by x → x + n;

iv) the action of the subgroup of isometries of � generated by two elements: x →
x + 1 and x → −x;

v) a transitive action.

This implies that for any effective action on � with a metrizable quotient there
exists an invariant metric except for those examples in case v) when the group is in
a sense larger than the orbit (e.g. the whole affine group). This shows that the group

must be related to the topology of the orbit, if we want to find an invariant metric.
One consequence of this is that the action must be proper in a sense (there are various

meanings of this word in literature). We use the name perfect action (as considered
by Koszul and Alekseevski) for the type of properness we use. It is not difficult to

give examples of non-proper actions with a metrizable quotient. We observe that
any perfect action of a countable group on a locally compact space has a metrizable
orbits space. This and other topological preliminaries are given in Section 2. Then,

as a consequence of our construction and some classical theorems of P.A. Smith and
Mongomery-Zippin, we show that any discrete action (cf. Definition 3) on a manifold

is perfect.

The main aim of the present paper is to extend the construction of the lifting
beyond totally discontinuous actions.

In the presence of nontrivial isotropy (while still assuming the orbits to be discrete)

we have to change formula (1) slightly. This is because p can not be a local isometry
in general, hence in an allowable sequence we have to impose a stronger condition.

The condition corresponds to the radial distance preserving, which means that in any
small set there is a base point (origin) such that the map p preserves the distance

between the base point and any other point of the set. One can see the problems we
encounter even in the simple example of the finite cyclic group acting on the plane � 2
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by rotations. One can see how the properties of % depend on various choices of the

class of small sets.

The next level is the case when the orbits (hence the group) are not discrete. Like

in the case of locally trivial bundles, we have to introduce into the formula the metric
along the orbit. Such a family of metrics in orbits we call an orbital distance when

some subcontinuity conditions are satisfied (cf. Section 4). The small sets have to
be more refined, in order to remain related to the topology of the orbit space. The
appropriate requirement is that small sets should be slices (cf. Definition 2).

The usefulness of slices is clear since the Palais paper [8] and in fact this notion

plays the role analogous to horizontal distributions in locally trivial smooth fibra-
tions. From our point of view this is crucial, as the lift of a geodesic from the base
to the total space of a fibration requires the use of a horizontal distribution (or a

connection).

Having now a family of small slices {Sx : x ∈ X} and an orbital distance dO , we
can again define the lift of a metric d on X/G.

Definition 1. We say that x1, . . . , xk is an allowable sequence of points in X if
for any two consecutive points one of them belongs to a small slice at the other, or

they are in the same orbit.

Let % be the function

(2) %(x, y) = inf
k−1∑

i=1

(d(pxi, pxi+1) + dO(xi, xi+1)),

where the infimum is taken over all allowable sequences such that x1 = x, xk = y.

Our main result consists of two parts. The first is Theorem 19 which describes

properties of the orbital metric and of the family of small sets sufficient to ensure
that the formula (1.2) gives an (invariant) metric. The properties are independent
of the given metric d, hence once we have such a family, any metric can be lifted.

Then we give an existence theorem. Theorem 22 shows that for any locally com-

pact and locally connected metrizable space X and any discrete action of a countable
group there exists a family satisfying the hypothesis of Theorem 19.

So the class of spaces for which the construction works is rather large, as it contains
all manifolds and all locally finite polyhedra.
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2. Topological preliminaries

Notation. Given a metric %, by K%(x, ε) we denote the ball of radius ε centered
at x with respect to %.

In the sequel, all actions will be assumed continuous. For an action of a group G

on X we denote by X/G the orbit space and by p : X → X/G the quotient map.

By Gx we denote the stabilizer (isotropy subgroup) of x; Gx = {g ∈ G : gx = x}.
GA = {ga : g ∈ G, a ∈ A}, hence Gx = G{x} denotes the orbit of x.
The map ex : G → Gx; g 7→ gx will be called the evaluation map.

Definition 2. By a slice at x ∈ X we mean a subset Sx such that

1. x ∈ Sx;

2. gSx ∩ Sx 6= ∅ implies gx = x;

3. gSx = Sx for g ∈ Gx, hence Gx acts on Sx;

4. the map (G×Sx)/Gx → X given by the evaluation is a homeomorphic embed-

ding onto an open neighbourhood of the orbit Gx.

Note that our definition is stronger than the usual one, since it includes condi-
tion 4, which implies that the evaluation map G → Gx is open for any x. Under

this assumption the topology of G is strictly related to the topology of orbits. In
particular, this excludes the examples given by changing the topology of a group

acting on X , for instance from a connected group to a discrete group. Note the
following properties of slices:

1) the image of any slice is open in X/G;

2) for any open set U ⊂ X/G, the intersection p−1U ∩ Sx is open in Sx and, if
px ∈ U , it is another slice at x.

For an action of a discrete group, the slice is an open subset. This leads to the

following definition.

Definition 3. The action of a (discrete) group G on a topological space X is
called discrete if for any orbit Gx there exists an open neighbourhood U of x such

that for all h 6∈ Gx we have hU ∩ U = ∅ and every point x ∈ X has a base of
open Gx-invariant neighbourhoods.

Any orbit of a discrete action is discrete in X . If the action is free and discrete,
then it is totally discontinuous.

The following observation is well known (cf. [8], p. 319).
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Proposition 4. Let Γ be a group acting by isometries on a metric space (X, %)
such that each orbit Γx is closed in X . Then the formula

d(px, py) = inf{%(a, b) : a ∈ Γx, b ∈ Γy}

defines a metric on the orbit space.

In the sequel we will need the following fact. If X/G is T1, then any orbit is
a closed subset of X . Thus any accumulation point of Gx belongs to that orbit.

Therefore either there are no accumulation points or, by homogeneity, every point
of Gx is its accumulation point. When X is locally compact, in the latter case we
would get an uncountable orbit. This yields the following lemma.

Lemma 5. Let G be a countable group acting on locally compact Hausdorff

space X such that the quotient space is a T1-space. Then any orbit is discrete in X .

When we want to apply our construction, the following notion arises naturally. It

is stronger than the usual notion of proper actions.

Definition 6. We call an effective action of a group G on a Hausdorff space X

perfect if for any compact sets U, V ⊂ X the set {g ∈ G : gU ∩ V 6= ∅} is compact.

Any perfect action has compact stabilizers (hence finite, if the group is countable).

If a countable group acts perfectly on a locally compact space X , then any orbit is
discrete in X .

Now we will show that the quotient space of any perfect action of a countable dis-

crete group on a locally compact metrizable space is metrizable. Note, however, that
perfectness is not a necessary condition. The following example shows a nonperfect

action with a decent quotient.

Consider the subset Y = {(x, 0) : x ∈ � }∪⋃
n

Yn of the plane, where Yn is the sum

of two closed intervals with a common initial point (n, 0), for every n ∈ � . The group
acting on Y is generated by homeomorphisms gn which exchange the two intervals
attached at (n, 0) and fix the rest of Y .

Theorem 7. Let G be a countable group acting on a locally compact metriz-

able space X . If the action is perfect, then the group is discrete and the quotient

space X/G is metrizable.

��� ���"!
. First note that by the remark above, each orbit Gx is closed, so X/G is

a T1 space. Note also that under the assumptions of the theorem, for any compacts
K1, K2 ⊂ X the set {g ∈ G : gK1 ∩K2 6= ∅} is finite.
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Now let A be a closed subset of X/G and Gx0 any orbit which does not belong

to A. Then there exists δ > 0 such that K(z, δ) is compact and K(z, δ)∩p−1(A) = ∅,
where z ∈ Gx0.

For any y ∈ p−1(A) one can find K(y, δy) which is relatively compact and such
that Gx0 ∩K(y, δy) = ∅. Then

B = {g ∈ G : g(K(z, δ)) ∩K(y, δy) 6= ∅}

is finite, so there exists εy 6 δy such thatK(y, εy) is disjoint with
⋃

g∈G

gK(z, δ). Since
( ⋃

g∈G

g(K(z, δ))
)
∩

( ⋃
g∈G

g(K(y, εy))
)

= ∅, we see that the space X/G is regular.

Now the following result of A.H. Stone (cf. [3, 4.5.17]) completes the proof. �

Theorem 8. If f : X → Y is a continuous and open mapping from a locally

separable metric space X onto a regular space Y and the set f−1(y) is separable for
every y ∈ Y , then Y is a metrizable space.

3. Covering spaces

In this section we consider totally discontinuous actions of discrete groups, so that
the projections p : X̃ → X = X̃/G are coverings. Our aim is twofold. First we

want to explain our construction in a relatively simple case. Secondly we show the
existence of a lifted metric for coverings in the category of spaces with group actions.

Definition 9. Consider a group epimorphism ϕ : G̃ → G. Suppose that a

group G acts on X and G̃ acts on X̃ . By a covering in the category of spaces
with group actions we mean a covering map p : X̃ → X such that

p(g̃(x̃)) = ϕ(g̃)(px̃)

for any x̃ ∈ X̃ and g̃ ∈ G̃.

In the following we assume that X̃ is connected. If not, one can apply our con-
struction to every connected component of X̃ .

Definition 10. Let p : X̃ → X be a covering map. Any open set U ⊆ X

such that its counterimage p−1(U) is homeomorphic to a disjoint sum
⋃

j∈J

Uj and

p restricted to Uj is a homeomorphism onto U , is called elementary. Any of its
homeomorphic copies Uj will be also called elementary.
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Theorem 11. For any covering map p : X̃ → X of a localy connected space X

and for any metric d on X there exists a metric % on X̃ such that p is locally

isometric. Moreover, if X is a G-space and X̃ is a G̃-space covering of (X, G), then
any G-invariant metric lifts to a G̃-invariant metric on X̃ .

��� ���"!
. Since X is locally connected, thus each point of X (and thus of X̃) has

a base of connected elementary neighbourhoods.
Let x ∈ X . Take a connected elementary neighbourhood Ux of x. Then there

exists a ball K(x, εx) ⊆ Ux and a connected open set Vx ⊆ K(x, εx/4) containing x.
Define now a family V of small sets as the family of all connected components of

sets p−1Vx for all x ∈ X . Note that all such small sets are elementary, since all Vx

are. As in Definition 2 define now

%(a, b) = inf
{k−1∑

i=1

d(px̃i, px̃i+1)
}

,

where the infimum is taken over all V -admissible sequences ξ = {a = x̃1, x̃2, . . . , x̃k =
b} in X̃, i.e. such that any two consecutive points of the sequence belong to the same
small set.

It is easy to check that % is a pseudometric and 0 < d(pa, pb) 6 %(a, b) when
pa 6= pb.

Consider two sets A, B ∈ V such that A∩B 6= ∅. By the definition of V , we have
pA = Vx, pB = Vy for some x, y ∈ X . When we assume that diam(Vy) 6 diam(Vx),
then diam(Vy) 6 diam(Vx) 6 εx/2 and Vx ∩ Vy 6= ∅, so we see that Vx ∪ Vy ⊆
K(x, εx) ⊆ Ux. Thus A ∪ B is elementary and because of the connectedness of Vx,
Vy and Ux it follows that A ∪ B is included in some component of p−1Ux.

Now take any points x̃, ˜̃x such that px̃ = p˜̃x = x. We will show that every
admissible sequence joining x̃ and ˜̃x contains z 6∈ p−1(Vx). Assume the contrary.
Then in such an admissible sequence there exist x̃i, x̃i+1 which belong to different
components of p−1(Vx), and belong to a component of p−1(Vz) for some z ∈ X . We

have now two cases:
i) Vx ∪ Vz ⊆ Sx. Then some component of p−1(Sx) intersects two different com-
ponents of p−1(Vx), which is impossible.

ii) Vx ∪ Vz ⊆ Uz. Then each component of p−1(Vx) is contained in precisely one
component of p−1(Uz) (p : X̃ → X is a covering map), but at least one com-
ponent of p−1(Vz) intersects two different components of p−1(Vx), which is a
contradiction.

Because Vx is open, so 0 < δ 6 %(x̃, ˜̃x). Note also that p restricted to any

component of any admissible set is an isometry. This yields compatibility of % with
the topology of X̃.
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To prove the second part of the theorem take as small sets the family of the

connected components of the sets {p−1(gVx) : g ∈ G, x ∈ X}. First note that if
U is elementary then gU is also elementary, because the action of G is covered by
the action of G̃. Thus V is G̃-invariant. Since G acts by isometries, so % defined

as before is G̃-invariant. By the same argument as in part one of the theorem we
obtain that % is a metric on X̃ compatible with the topology on X̃ . �

4. Orbital distance

When a G-space is endowed with an invariant metric, then we have in particular a

continuous family of metrics in orbits. On the other hand, an important ingredient of
our construction is a family of invariant metrics in orbits. We follow the construction

which works for locally product bundles. In this case, with help of a horizontal
connection, a metric on the total space can be obtained from a metric on the base

and a fiberwise family of metrics.

We encounter here two main difficulties. Even when the metric on an orbit is
induced from a metric on the group G, then there is no canonical way to do this,

because the identification of the orbit with the quotient G/Gx requires an apriori
choice of the base point x in the orbit. Once an orbit has a base point x, one may

want to use the slice Sx to endow the orbits in the neighbourhood GSx of Gx with
base points. But neighbour orbits in general cut the slice at many points, so we

are forced to assume that any such base point gives the same metric (i.e, that the
metric on G is right invariant with respect to Gx). The other problem is that the
family of metrics coming from G is not continuous in general. It has, however, some
subcontinuity properties which are sufficient for our purposes.

Let dG be a left invariant metric on G. Consider first a single orbit with a base

point x in it and assume that the evaluation map ex : G/Gx → Gx given by ex(g) =
gx is a homeomorphism. Using this identification, we want to endow the orbit with

an invariant metric. For a subgroup K ⊂ G define a left G-invariant pseudometric
on G/K by the formula

(3) dK(g1K, g2K) = inf{dG(g1u, g2v) : u, v ∈ K}.

In particular,

dK(g1K, g2K) 6 dG(g1, g2)

for any g1, g2 ∈ G.
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Lemma 12. Let H be a closed subgroup of the group G. If dG is left G-invariant

and right H-invariant, then for any closed subgroup K ⊂ H we have

(4) dK(g1K, g2K) = inf{dG(g1, g2u) : u ∈ K},

thus formula (3) defines a G-invariant metric on G/K, compatible with the quotient

topology. The same is true if K is a normal subgroup of G. When we replace K by

K ′ = hKh−1, h ∈ H , then G/K and G/hKh−1 with the metrics dK , dhKh−1 are

isometric under the natural map

ϕ(gK) = gh−1K ′.

��� ���"!
. Both formula (4) and the isometry follow directly from the right

invariance. For instance, we have dK(g1K, g2K) = dK(g1h
−1hK, g2h

−1hK) =
dhKh−1(ϕ(g1K), ϕ(g2K)). Since we assumed K closed, thus dK is a metric. �

Under the identification of the orbit Gy with G/Gy by the evaluation map, the
metric dGy is a well-defined metric in the orbit. The translation of the orbit by

h ∈ Gx which changes the point y to hy corresponds to the above homeomorphism
ϕ : G/Gy → G/Ghy. Given a slice Sx at x and a metric in G which is left G-invariant

and right Gx-invariant we have a well defined metric in any orbit passing through Sx,
since we can use any of the points of intersection Gy ∩ Sx as the base point of Gy

(the stabilizer Gx corresponds to H and Sy to K). We denote the whole family of

metrics by dx to stress which slice was used to define the metrics.

Corollary 13. Let dG be an invariant metric on G. Given a point x, assume

either that dG is right Gx-invariant or that all stabilizers of points in Sx are normal.

Then we get from dG a family dx of G-invariant metrics in all orbits intersecting Sx.

For any point y ∈ Sx and g1, g2 ∈ G we have the inequalities

(5) dx(g1x, g2x) 6 dx(g1y, g2y) 6 dG(g1, g2).

If y ∈ g0Sx for some g0 ∈ G, then

(6) dx(y, gy) 6 dG(g0, gg0).

��� ���"!
. To prove (5) we start from the inequality dx(x, gx) 6 dx(y, gy) which

holds, by the definition of dx, for any y ∈ Sx and any g. Then we use the left

invariance of dx.
Inequality (6) follows from (5). �
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Thus, assuming that the action has slices, our construction works locally for the

following classes of actions:

• any action of a discrete group, or more generally of a group having a biinvariant
metric,

• perfect actions, and in general for actions with compact isotropy subgroups,
• actions whose all stabilizers are normal in G.

Now we globalize the procedure by gluing together the metrics defined locally with

the use of a decomposition of unity. Let a G-space X be given having a slice Sx at
each point such that Sgx = gSx and suppose that X/G is metrizable and endowed

with a metric d.

For any open set U ⊂ X/G, the set p−1U ∩Sx is also a slice at x, and we say that
it is a subslice (with respect to the given family of slices).

Under our assumptions, there exists a family Sα, each Sα a subslice of Sxα for a
point xα ∈ X , such that Sα ⊂ Sxα and the family pSα is a locally finite open cover

of X/G. The cover admits a decomposition of unity {χα}. Denote by dα the local
family of metrics in orbits in GSα and define the global family of metrics in orbits

by the formula

(7) dO(x, gx) =
∑

α

χα(px)dα(x, gx).

To describe it formally, denote V = {(x, y) : y = gx, g ∈ G}. Then dO : V → � is
G-invariant and restricted to each orbit it is a metric. In the sequel we will consider

the map as extended by zero map to the whole X ×X and we will call it an orbital
metric.

The orbital metric dO is in each orbit compatible with the topology of the orbit

(since each metric dα is). However, it is not a continuous function even on V , since
orbits with smaller isotropy do not converge to orbits of larger isotropy. For instance,

dO is not continuous at fixed points.

In order to get an orbital metric with nice properties, we assume that the given

family of slices {Sx}x∈X satisfies the following condition:

(∗) for any x ∈ X and y ∈ Sx, the intersection Sx ∩ Sy is open in Sy.

This implies in particular that any y ∈ Sx has an open neighbourhood U such
that Sy ∩ U ⊂ Sx.

The following conditions are stronger than (∗).
(1) For any y ∈ Sx we have Sy ⊂ Sx.

(2) For any y ∈ Sx and g 6∈ Gx we have Sy ∩ Sgx = ∅.
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First we show that assuming (∗) we have some subcontinuity properties for dO .

Let Sx(δ) = Sx ∩ p−1Kd(px, δ).

Property A. For any x ∈ X and any ε > 0 there exists δ > 0 such that
dO(y, gy) < ε if y ∈ Sx(δ) and dG(g, 1) < δ.

��� ���"!
. A given point x is in the closure of a finite number of sets GSα, say

GS1, . . . , GSr. It means that x ∈ GSx1 ∩ . . . ∩ GSxr , where Sxi is the slice which

by our assumption contains the closure of Si. Let gi be chosen such that gix ∈ Sxi .
By (∗) there exists δ > 0 such that for all y ∈ Sx(δ) we have giy ∈ Sxi . We can also

assume that Sx(δ) does not intersect Sα except for S1, . . . , Sr. Thus

dO(y, gy) =
r∑

i=1

χi(pxi)dxi(y, gy) =
r∑

i=1

χi(pxi)d(giy, gigg−1
i giy)

6
r∑

i=1

χi(pxi)dG(1, gigg−1
i )

by (5). Since the conjugation by gi in G is continuous, there exists δ with the required
properties. �

Now we will show that the orbital distance is subcontinuous.

Property B. For any point x there exists δ > 0 such that for any y ∈ Sx(δ) and
any g1, g2 ∈ G we have

(8) dO(g1x, g2x) 6 dO(g1y, g2y).

��� ���"!
. This is straightforward from the definition of dO (and from the fact

that isotropy is subcontinuous) once we know (as in A) that the element gi ∈ G

which brings x into Si does the same with any element of Sx(δ). But this is true
for δ small enough by (∗). �

Similarly, the assumption that the evaluation map G/Gx → Gx is a homeomor-
phism gives the following result.

Property C. For any point x ∈ X and any δ > 0 there exists ε such that

dO(x, gx) < ε implies that there exists u ∈ Gx satisfying the inequality dG(1, gu) < δ.

Given a G-space with slices and an invariant metric dG in G, by an associated
orbital metric dG we mean an orbital metric which in each orbit restricts to a
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G-invariant metric isometric to dK for a stabilizer K in the orbit and has prop-

erties A, B and C.

From the above considerations we know that an orbital metric exists for any
G-space with slices such that there exists a metric on G which is left G-invariant

and right Gx-invariant for any stabilizer Gx, or the stabilizers are normal, and the
quotient X/G is metrizable.

Remark. The metric in X/G is not necessary in our construction, it is enough to

assume the quotient is paracompact. More difficult it is to show that the condition (∗)
can be removed when the quotient is locally compact. We will not go into the details,
since we treat here the general case.

5. Main results

We will now prove the main theorems of this paper.

Consider an action of a group G on X and suppose that G admits a left invariant
metric dG. Assume we are given a family S = {Sx}x∈X of slices in X such that

Sgx = gSx for any x, g, an associated orbital metric dO in X and a metric d in X/G.

Definition 14. A sequence x1, . . . , xn is called an S -allowable (or simply al-
lowable) sequence if for each 1 6 i 6 n− 1 we have xi ∈ Sxi+1 , or xi+1 ∈ Sxi , or

xi+1 = gxi.

For an allowable sequence ξ = {x1, . . . , xn} in X denote

Σξ =
n−1∑

i=1

d(pxi, pxi+1), Φξ =
n−1∑

i=1

dO(xi, xi+1).

Definition 15.

%(x, y) = inf{Σξ + Φξ : ξ = {x1, . . . , xk} is allowable, x = x1, y = xk}.

We say that a G-space has small slices if there exists a slice at every point x ∈ X

and for any open neighbourhood of x and any slice Sx there exists a slice S ′
x ⊂ Sx∩U .

Theorem 16. Let G be a topological group with a left invariant metric dG,

acting on X . Suppose that X has small slices and we are given a family of slices

S = {Sx}x∈X satisfying

(i) gSx = Sgx for any x ∈ X and g ∈ G;

(ii) for any y ∈ Sx, Sy ∩ Sgx 6= ∅ implies gx = x.
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Suppose also a metric d in the orbit space X/G and an orbital distance dO are

given. Then formula (15) defines a lift of the metric d to the G-invariant metric %

in X , compatible with the topology of X .
��� ���"!

. It is a direct consequence of the definition that % is a pseudometric
in X and %(x, z) > d(px, pz) > 0 if px 6= pz. It remains to prove that % distinguishes

points in the same orbit and that it is compatible with the topology of X . For any
ε > 0 we denote Sx(ε) = Sx∩p−1Kd(px, ε) and by B(ε) the ball in G with the center

at the unit element and of radius ε. Recall that Sx(ε) is again a slice at x.

Lemma 17. For any point x ∈ X and ε > 0 there exists δ > 0 such that

B(δ)Sx(δ) ⊂ K%(x, ε).

Lemma 18. For any point x ∈ X and δ > 0 there exists a positive number ε such

that Kd(px, ε) ⊂ pSx and

K%(x, ε) ⊂ B(δ)Sx(ε).

��� ���"!
of Lemma 17. Consider an allowable sequence ξ = {x, y, gy}, where

y ∈ Sx(δ) and g ∈ B(δ). By Property A of orbital metrics for δ small enough,

%(x, gy) 6 dO(y, gy) + d(px, py) < ε. �
��� ���"!

of Lemma 18. Since the projection p is open, there exists ε such that

K(px, ε) ⊂ pSx. Let z ∈ K%(x, ε), ξ = {x = x1, x2, . . . , xk = z} be an allowable
sequence and Σξ + Φξ < ε. If an element xi of the sequence ξ does not belong to

GSx(ε), then Σξ > d(px, pxi) > ε. Thus any point xi in the sequence ξ can be
written as gix

′
i for some gi ∈ G, x′i ∈ Sx(ε). We can choose x′1, . . . , x

′
k and g1, . . . , gk

such that x′i = x′i+1 when xi+1 = gxi and gi = gi+1 if xi+1 ∈ Sxi . In the last case
we use the assumption (ii), which is equivalent to the inclusion Sy ∩ GSx ⊂ Sx for

any y ∈ Sx. It gives that for xi+1 = gi+1x
′
i+1 we have g−1

i gi+1 ∈ Gx, so we have
xi+1 = gig

−1
i gi+1x

′
i+1.

By Property B of the orbital metric, if ε is small enough then

dO(xi, xi+1) = dO(gix
′
i, gi+1x

′
i) > dO(gix, gi+1x)

in the case xi+1 ∈ Gxi, and we have zeros on both sides otherwise. It follows that

dO(x, gkx) 6
k−1∑

i=1

dO(gix, gi+1x) 6 Φξ < ε,

and by Property C for ε small enough there exists u ∈ Gx such that dG(1, gku) < δ.
So we have z = gkx′k = (gku)(u−1x′k). This completes the proof of Lemma 18. �
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The last lemma implies that % distinguishes points in orbits: if %(x, gx) = 0, then
there is a sequence gn ∈ G convergent to the unit of G such that gx = gnx. Thus
gx = x. Since the sets B(δ)× Sx(ε) generate the topology of X , Lemmas 17 and 18
show that % is compatible with the topology of X . �

Remark. Assumption (ii) can be omitted if the quotient space is locally compact
(cf. Section 4). If X is locally compact, then the assumption of existence of small
slices is superfluous.

When one wants to find a class of actions for which the assumptions of Theorem

16 are satisfied, the first try would be discrete actions. In that case the orbital
metric is trivially given by the (biinvariant) discrete metric on G, and we have an

easy description of slices. A slice at x is an open neighbourhood U of x which is
Gx-invariant and disjoint with any of its translations by any g 6∈ Gx. We prove that

for any locally compact and locally connected G-space one can find the family of
slices for actions with a Hausdorff orbit space. Note that the condition (∗) is easy to
obtain once we have slices, because for any slice Sx, any y ∈ Sx and a slice Sy, the
set Sx ∩ Sy is a slice at y.

Theorem 19. Let X be a metrizable, locally compact and locally connected

space and let G be a countable group acting on X such that the quotient space X/G

is Hausdorff. Then each orbit Gx is discrete in X and every point x ∈ X has a base

of connected, Gx-invariant open neighbourhoods.

Moreover, there exists a family Ux : x ∈ X of Gx-invariant, path connected open

sets satisfying

i) Ugx = gUx,

ii) if Ux ∩ Ugx 6= ∅ then g ∈ Gx.
��� ���"!

. Take any x ∈ X and an open set U containing x. There exists V ⊆ U

such that x ∈ V , V is compact and V ∩ Gx = {x}. We claim that there exists an
open set W such that x ∈ W ⊆ ⋂

g∈Gx

gV .

Assume it is not true. Then for any natural n there exist a connected neigh-
bourhood Vn ⊆ V of x such that x ∈ Vn ⊆ K(x, (1/n)) and gn ∈ Gx such that

(X − gnV ) ∩ Vn 6= ∅.
We want to show that ∂(gnV )∩Vn 6= ∅. If this holds, then Vn can be decomposed

as the sum of the sets Vn ∩ gnV and Vn ∩ (X − gnV ) which are disjoint, open and
non-empty, so Vn would be disconnected.

Pick any dn ∈ ∂(gnV ) ∩ Vn. Notice that %(dn, x) < 1/n, where % denotes an
auxiliary metric on X . It follows that wn = g−1

n dn ∈ ∂V . The last set is compact, so

up to passing to a subsequence we may assume wn → w′ ∈ ∂V . Since V ∩Gx = {x}
and X/G is Hausdorff, we get a contradiction.
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An open setW contains a connected neighbourhoodW ′ of x. NowW ′′ =
⋃

g∈Gx

gW ′

is an open, path connected and Gx-invariant subset of V . Since V can be chosen
arbitrarily small, the proof of the first part is complete.

Now the last part of the theorem.

Notice first that if a neighbourhood Ux of x is Gx-invariant then Ugx = gUx is
Ggx-invariant.

Assume, on the contrary, that for every Gx-invariant open set Sx containing x

there exists g 6∈ Gx such that gUx ∩ Ux 6= ∅.
Choose then a Gx-invariant neighbourhood U of x such that U ∩ Gx = {x}. For

every ball K(x, (1/n)) ⊆ U there exist open Vn ⊆ K(x, (1/n)) which are connected
and gn 6∈ Gx such that gnU ∩ Vn 6= ∅. The same argument as before yields a
contradiction. �

Theorem 20. Let X be a locally compact and locally path connected metric

space and let G be a countable group acting on X such that the quotient space X/G

is a metric space with a metric d. Then there exists an open covering {Sx}x∈X of X

such that

A) Ugx = gUx,

B) if Ux ∩ Ugx 6= ∅ then g ∈ Gx,

C) for any y ∈ Ux, if Uy ∩ Ugx 6= ∅ then g ∈ Gx for any x ∈ X and g ∈ G.

��� ���"!
. We already know that a covering satisfying A) and B) exists. Further,

p : X → X/G is open, so pSx is open. Hence there exists K(px, εx) ⊆ pSx. Now
Sx ∩ p−1(K(px, (εx/8))) is open and x belongs in it, so there exists a Gx-invariant,

path connected and open set Vx contained in the set mentioned above. We will show
that the covering {Vx}x∈X satisfies C), because it obviously satisfies A) and B).

Note first that for y ∈ Vx the conditions Vx ∪ Vgx ⊆ Vy for some x, y ∈ X and

g 6∈ Gx can not be satisfied simultaneously. To see this take y ∈ Sx; then Sy ⊆ Gx

because of B); but also x ∈ Vx ⊆ Vy, so Gx = Sy. Now Vgx ⊆ Vy for some g 6∈ Gx

gives a contradiction by the argument described above for covering spaces.

Assume, on the contrary, that Vy ∩ Vgx 6= ∅ and y ∈ Vx for some x, y ∈ X and
g 6∈ Gx. We have two cases:

i) diam(pVy) 6 diam(pVx). Then pVy ⊆ pSx and for each g ∈ G there exists h ∈ G

such that Vgy ⊆ Uhx.

Then it is a clear contradiction because of A), B) and the connectedness of all sets
considered.

ii) diam(pVx) 6 diam(pVy). Then pVx ⊆ pUy and for every g ∈ G there exists

h ∈ G such that Vgx ⊆ Uhy. Then Vy ∪ Vx ∪ Vgx ⊆ Uy, but it is not consistent
with the remark made above. �
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Thus we have the following result.

Theorem 21. Let (X, %0) be a locally compact and locally connected metric
space, G a countable group acting discretely on X such that the quotient space X/G

is metrizable and let us fix a metric d on it. Then the formula

%(x, y) = inf
k−1∑

i=1

d(pxi, pxi+1)

where the infimum is over all allowable sequences joining x with y endows X with a

G-invariant metric % topologically equivalent to %0.

The result has several interesting corollaries.

First, it is possible to weaken the assumptions in Theorem 21, since it is enough
to assume that X is a metrizable, locally compact, locally connected space and X/G

is Hausdorff to ensure the existence of an invariant metric. This follows from Stone’s
theorem, since the image of a locally compact space under an open map is again

locally compact.
One has also the following consequence.

Corollary 22. If a countable group G acts effectively on a compact connected

manifold M such that M/G is Hausdorff, then G is finite.

This and the next corollary are related to the classical results of Newman [7],
Smith [9], and Montgomery-Zippin [6, Section 5.5.5].

Corollary 23. LetM be a connected topological manifold, G a countable discrete
group acting on M such that M/G is Hausdorff. Then

a) (rigidity) any element g ∈ G whose set of fixed points has nonempty interior is

the identity transformation,

b) the action is perfect and all isotropy groups are finite.
��� ���"!

. a) Let g be any element of M whose set of fixed points has nonempty
interior. If g 6= id then one can find x ∈ ∂(Fix g) such that each ball centered at x

intersects the interior of Fix g. It follows from the existence of a relatively compact
slice Ux and the theorems listed before the corollary that Ux ⊂ Fix g, which is a

contradiction.
b) Let x ∈ M and assume that Gx is infinite. Then by part a) Gx acts effectively

on some relatively compact slice Ux at x. When we denote Mg = {y ∈ Ux : gy = y},
then by Baire’s theorem there exists z ∈ Ux −

⋃
g∈Gx

Mg. Gxz is infinite in Ux. Thus

we obtain a contradiction.

465



Now we want to show that for any compactsA, B ⊂ X the set {g ∈ G : gA∩B 6= ∅}
is finite. If not, then the existence of slice yields the existence of an element of M

with an infinite stabilizer. �

Corollary 24. Let X be a compact, locally connected, metrizable G-space. If

G is a countable group and the orbit space is Hausdorff, then there exists an invariant

metric on X .

Corollary 25. Let X be a compact, locally connected metric G-space, G a count-

able group. If X/G is Hausdorff, then any sequence {gn} in G contains a subsequence

which is convergent in Homeo(X) (in the compact-open topology) to a homeomor-
phism.

��� ���"!
. We take an invariant metric on X . Using similar arguments as in

the classical Ascoli-Arzela’s theorem we can find a subsequence convergent to some

element of Homeo(X) in the compact-open topology. �

Corollary 26. Let X be a locally compact, locally connected, metrizable and

connectedG-space. IfG is a countable group acting onX such thatX/G is Hausdorff,

then either all stabilizers are finite, or all are infinite.
��� ���"!

. From the existence of a relatively compact slice at each point we see

that the set of points with infinite stabilizers is open. Existence of a slice gives that
the set of points with finite stabilizers is open. So for a connected space we see that

only one type of stabilizers can appear. �
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