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Abstract. Some generalizations of the Ostrowski inequality, the Milovanović-Pečarić-Fink
inequality, the Dragomir-Agarwal inequality and the Hadamard inequality are given.
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1. Introduction

In 1938, Ostrowski [1] (see also [2, p. 468]) proved the following integral inequality:

(1.1)

∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣ 6
[
1
4

+
(x− a+b

2 )2

(b− a)2

]
(b− a)M

where f : [a, b] → � is a differentiable function such that |f ′(x)| 6 M for all x ∈ [a, b].
G.V. Milovanović and J. Pečarić [3] and A.M. Fink [4] (see also [2, p. 470]) have

considered generalizations of (1.1) in the form

(1.2)

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

Fk(x)
]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ 6 K(n, p, x)‖f (n)‖p

where Fk(x) is defined by

(1.3) Fk(x) =
n− k

k! (b− a)
[f (k−1)(a)(x − a)k − f (k−1)(b)(x− b)k]
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so that they estimated a “two point expressions of f”. For n = 1 the above sum is
defined to be zero. As usual, let 1/p + 1/p′ = 1 with p′ = 1 for p = ∞, p′ = ∞ for
p = 1, and

‖f‖p =
(∫ b

a

|f(t)|p dt

)1
p

.

In fact, G.V. Milovanović and J. Pečarić have proved that ([2, p. 469])

(1.4) K(n,∞, x) =
(x− a)n+1 + (b− x)n+1

n(n + 1)! (b− a)

while A.M. Fink gave the following generalization of this result ([2, p. 473]):

Theorem 1. Let f (n−1) be absolutely continuous on (a, b) and let f (n) ∈ Lp(a, b).
Then the inequality (1.2) holds with

(1.5) K(n, p, x) =
[(x− a)np′+1 + (b− x)np′+1]1/p′

n! (b− a)
B((n− 1)p′ + 1, p′ + 1)1/p′

,

where 1 < p 6 ∞, B is the beta function, and

(1.6) K(n, 1, x) =
(n− 1)n−1

nnn! (b− a)
max[(x− a)n, (b− x)n].

Moreover, for 1 < p the inequality (1.2) is the best possible in the strong sense that
for any x ∈ (a, b) there is an f for which equality holds at x.

In fact, for n = 1 relation (1.6) becomes

(1.7) K(1, 1, x) =
1

b− a
max[x− a, b− x].

This result was recently obtained by S. S. Dragomir and S. Wang [5] in an equivalent
form

(1.8) K(1, 1, x) =
1
2

+
1

b− a

∣∣∣∣x−
a + b

2

∣∣∣∣.

Of course, since max[(x− a)n, (b− x)n] = maxn[(x− a), (b− x)], one can write (1.6)
in an equivalent form

(1.9) K(n, 1, x) =
(n− 1)n−1

n! nn(b− a)

[
b− a

2
+

∣∣∣∣x−
a + b

2

∣∣∣∣
]n

.
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Dragomir and Wang have also given various applications of their result. Moreover,

Dragomir and Wang [6] also obtained (1.5) for n = 1, that is

(1.10) K(1, p, x) =
[(x − a)p′+1 + (b− x)p′+1]1/p′

(b− a)(p′ + 1)1/p′

and gave various applications of this result.

In this paper we will give generalizations of the previous results as well as some
related ones.

2. Some identities

Let (Pn) be a harmonic sequence of polynomials, that is P ′
n = Pn−1, n > 1,

P0 = 1. Furthermore, let I ⊂ � be a segment and let f : I → � be such that f (n−1)

is absolutely continuous for some n > 1. Then the following generalized Taylor
formula is valid [7]:

f(y) = f(x) +
n−1∑

k=1

(−1)k[Pk(x)f (k)(x)− Pk(y)f (k)(y)](2.1)

+ (−1)n

∫ x

y

Pn−1(t)f (n)(t) dt

for x, y ∈ I . If we set x = a, y = b, n = m+1 and replace f(t) by
∫ t

a f(u) du in (2.1)
we get

∫ b

a

f(t) dt =
m∑

k=1

(−1)k[Pk(a)f (k−1)(a)− Pk(b)f (k−1)(b)](2.2)

+ (−1)m

∫ b

a

Pm(t)f (m)(t) dt.

By integration, (2.1) becomes

∫ b

a

f(y) dy = (b− a)
[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x)
]

(2.3)

−
n−1∑

k=1

(−1)k

∫ b

a

Pk(y)f (k)(y) dy

+ (−1)n

∫ b

a

∫ x

y

Pn−1(t)f (n)(t) dt dy.
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Using (2.2), we have

∫ b

a

f(y) dy = (b− a)
[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x)
]

−
n−1∑

k=1

[ k∑

j=1

(−1)j [Pj(b)f (j−1)(b)− Pj(a)f (j−1)(a)] +
∫ b

a

f(t) dt

]

+ (−1)n

∫ b

a

∫ x

y

Pn−1(t)f (n)(t) dt dy,

that is,

n

∫ b

a

f(y) dy = (b− a)
[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x)
]

(2.4)

−
n−1∑

k=1

(−1)k(n− k)[Pk(b)f (k−1)(b)− Pk(a)f (k−1)(a)]

+ (−1)n

∫ b

a

∫ x

y

Pn−1(t)f (n)(t) dt dy.

Using the notation

F̃k =
(−1)k(n− k)

b− a
[Pk(a)f (k−1)(a)− Pk(b)f (k−1)(b)]

and

k(t, x) =

{
t− a if t ∈ [a, x],

t− b if t ∈ (x, b],

relation (2.4) becomes

1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x) +
n−1∑

k=1

F̃k

]
− 1

b− a

∫ b

a

f(t) dt(2.5)

=
(−1)n−1

n(b− a)

∫ b

a

Pn−1(t)k(t, x)f (n)(t) dt.

The above sums are defined to be zero for n = 1.
For the harmonic sequence of polynomials

Pk(t) =
(t− x)k

k!
, k > 0,
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relation (2.5) becomes a result from [4]:

1
n

[
f(x) +

n−1∑

k=1

Fk(x)
]
− 1

b− a

∫ b

a

f(t) dt(2.6)

=
1

n! (b− a)

∫ b

a

(x− t)n−1k(t, x)f (n)(t) dt

where Fk(x) is defined by (1.3).
For the harmonic sequence of polynomials

Pk(t) =
1
k!

(
t− a + b

2

)k

, k > 0,

relation (2.5) becomes

1
n

[
f(x) +

n−1∑

k=1

(−1)k

k!

(
x− a + b

2

)k

f (k)(x)(2.7)

+
n−1∑

k=1

(b− a)k−1(n− k)
k! 2k

[f (k−1)(a)− (−1)kf (k−1)(b)]
]

− 1
b− a

∫ b

a

f(t) dt

=
1

n! (b− a)

∫ b

a

(a + b

2
− t

)n−1

k(t, x)f (n)(t) dt.

Let us transform relation (2.5) to a form suitable for harmonic sequences defined on
the segment [0, 1]. Set f = h, x = u, a = 0 and b = 1. We have

1
n

[
h(u) +

n−1∑

k=1

(−1)kPk(u)h(k)(u) +
n−1∑

k=1

Hk

]
−

∫ 1

0

h(t) dt(2.8)

=
(−1)n−1

n

∫ 1

0

Pn−1(t)k̃(t, u)h(n)(t) dt

where Hk = (−1)k(n− k)[Pk(0)h(k−1)(0)− Pk(1)h(k−1)(1)] and

k̃(t, u) =

{
t if t ∈ [0, u],

t− 1 if t ∈ (u, 1].

Now, for h(t) = f(a+t(b−a)) and u = x−a
b−a , we have h(k)(t) = (b−a)kf (k)(a+t(b−a))

and h(k)(u) = (b− a)kf (k)(x). Further,

Hk = (−1)k(n− k)(b− a)k−1[Pk(0)f (k−1)(a)− Pk(1)f (k−1)(b)]
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and

∫ 1

0

Pn−1(t)k̃(t, u)h(n)(t) dt

= (b− a)n

∫ 1

0

Pn−1(t)k̃
(
t,

x− a

b− a

)
f (n)(a + t(b− a)) dt

= (b− a)n−1

∫ b

a

Pn−1

(y − a

b− a

)
k̃
(y − a

b− a
,
x− a

b− a

)
f (n)(y) dy

= (b− a)n−2

∫ b

a

Pn−1

(y − a

b− a

)
k(y, x)f (n)(y) dy

since k̃
(

y−a
b−a , x−a

b−a

)
= 1

b−ak(y, x). Therefore (2.8) becomes

1
n

[
f(x) +

n−1∑

k=1

(−1)k(b− a)kPk

(x− a

b− a

)
f (k)(x) +

n−1∑

k=1

Hk

]
(2.9)

− 1
b− a

∫ b

a

f(t) dt

=
(−1)n−1

n
(b− a)n−2

∫ b

a

Pn−1

(y − a

b− a

)
k(y, x)f (n)(y) dy.

This identity is suitable for some harmonic sequences of polynomials. Let us give

two examples: Bernoulli polynomials and Euler polynomials.
Bernoulli polynomials Bn(t) can be defined by the formula

xetx

ex − 1
=

∞∑

n=0

Bn(t)
n!

xn, |x| < 2 � , t ∈ � .

They satisfy the relation [10, 23.1]: B′
n(t) = nBn−1(t), n ∈ � .

The sequence Pn(t) = 1
n!Bn(t), n > 0, is a harmonic sequence of polynomials.

The numbers Bn = Bn(0), n > 0, are called the Bernoulli numbers. We also have
Bn(1) = Bn(0) = Bn, n > 2, and B2n+1 = 0, n > 1.
Now, for Pn(t) = 1

n!Bn(t), 0 6 t 6 1, formula (2.9) becomes

1
n

[
f(x) +

n−1∑

k=1

(−1)k

k!
(b− a)kBk

(x− a

b− a

)
f (k)(x) +

n−1∑

k=1

H̃k

]
(2.10)

− 1
b− a

∫ b

a

f(t) dt

=
(−1)n−1

n!
(b− a)n−2

∫ b

a

Bn−1

(y − a

b− a

)
k(y, x)f (n)(y) dy
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where H̃k = 0 for k odd, and

H̃k =
(n− k)(b− a)k−1

k!
Bk[f (k−1)(a)− f (k−1)(b)]

for k even, and Bk is the Bernoulli number.
The other sequence important in this context is the sequence of Euler polynomials.

These polynomials can be defined by the formula

2etx

ex + 1
=

∞∑

n=0

En(t)
n!

xn, |x| < � , t ∈ � .

They satisfy the relation [10, 23.1]: E ′
n(t) = nEn−1(t), n ∈ � .

The sequence Pn(t) = 1
n!En(t), n > 0, is a harmonic sequence of polynomials.

Further, we have

En(0) = −En(1) = − 2
n + 1

(2n+1 − 1)Bn+1, n ∈ � .

Now for Pn(t) = 1
n!En(t), 0 6 t 6 1, formula (2.9) becomes

1
n

[
f(x) +

n−1∑

k=1

(−1)k

k!
(b− a)kEk

(x− a

b− a

)
f (k)(x) +

n−1∑

k=1

Ĥk

]
(2.11)

− 1
b− a

∫ b

a

f(t) dt

=
(−1)n−1

n!
(b− a)n−2

∫ b

a

En−1

(y − a

b− a

)
k(y, x)f (n)(y) dy,

where Ĥk = 0 for k even, and

(2.12) Ĥk =
2(2k+1 − 1)(n− k)

(k + 1)!
(b− a)k−1Bk+1[f (k−1)(a) + f (k−1)(b)]

for k odd, and Bk is the Bernoulli number.
Relation (2.5) can be modified in another way, very useful in our context, by

replacing Pn(t) by Pn(t− x). We get

1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(0)f (k)(x) +
n−1∑

k=1

F̃k(x)
]

(2.13)

− 1
b− a

∫ b

a

f(t) dt

=
(−1)n−1

n(b− a)

∫ b

a

Pn−1(t− x)k(t, x)f (n)(t) dt,
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where

F̃k(x) =
(−1)k(n− k)

b− a
[Pk(a− x)f (k−1)(a)− Pk(b− x)f (k−1)(b)].

It is clear that (2.6) is a special case of this formula.

The notation of this section will be used throughout the rest of the paper.

3. Generalization of Milovanović-Pečarić-Fink inequality

Theorem 2. Let f : [a, b] → � be such that f (n−1) is absolutely continuous for

some n > 1 and f (n) ∈ Lp[a, b], 1 6 p 6 ∞. Then the inequality

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x) +
n−1∑

k=1

F̃k

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣(3.1)

6 C(n, p, x)‖f (n)‖p

holds for x ∈ [a, b], and

(3.2) C(n, p, x) =
1

n(b− a)
‖Pn−1k(·, x)‖p′ ,

where 1/p + 1/p′ = 1.

����� �"!
. By (2.5) and Hölder’s inequality we have

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x) +
n−1∑

k=1

F̃k

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣

=
∣∣∣∣
(−1)n−1

n(b− a)

∫ b

a

Pn−1(t)k(t, x)f (n)(t) dt

∣∣∣∣

6 1
n(b− a)

∫ b

a

|Pn−1(t)k(t, x)f (n)(t)| dt

6 1
n(b− a)

[∫ b

a

|Pn−1(t)k(t, x)|p′
dt

]1/p′[∫ b

a

|f (n)(t)|p dt

]1/p

= C(n, p, x)‖f (n)‖p,

and (3.1) follows. �

180



Corollary 1. Under the assumptions of the above theorem, we have

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

Fk(x)
]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ 6 K(n, p, x)‖f (n)‖p

where Fk(x) is given by (1.3) and K(n, p, x) by (1.5).

����� �"!
. Set Pk(t) = 1

k! (t−x)k , k > 0, in the theorem. The corollary is equivalent
to Theorem 1 proved in [4], where we can find some additional interesting results

concerning this inequality. �

Corollary 2. Under the assumptions of Theorem 2, we have

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

(−1)k

k!

(
x− a + b

2

)k

f (k)(x)

+
n−1∑

k=1

(b− a)k−1(n− k)
k! 2k

[f (k−1)(a)− (−1)kf (k−1)(b)]
]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣

6 H(n, p, x)‖f (n)‖p,

where H(n, p, x) = 1
n(b−a)‖Pn−1k(·, x)‖p′ .

����� �"!
. Set Pk(t) = 1

k!

(
t− a+b

2

)k
, k > 0, in Theorem 2. �

Remark 1. The estimateH(n, p, x) cannot be calculated easily. It can be roughly
estimated by

H(n, p, x) 6 (b− a)n−1

2n−1n!
.

One can easily see that x → H(n, p, x) has its maximum at x = a or x = b and
minimum at x = a+b

2 . This mimimum can be calculated as

H
(
n, p,

a + b

2

)
=

(b− a)n+1/p

2nn!
B((n− 1)p′ + 1, p′ + 1)1/p′

,

where B is the beta function.
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4. Inequalities of Dragomir-Agarwal type

S. S. Dragomir and R.P. Agarwal [8] have proved the following result:

Let I ⊂ � be an interval, a, b ∈ I , a < b, f : I → � a differentiable function. If
|f ′|q is convex on [a, b], where 1/p + 1/q = 1, 1 < p, then the following inequality

holds:

(4.1)

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ 6 b− a

2(p + 1)1/p

[ |f ′(a)|q + |f ′(b)|q
2

]1/q

.

C.E.M. Pearce and J. Pečarić [9] have shown that the result can be improved,

namely, the following inequality is valid for q > 1:

(4.2)

∣∣∣∣
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ 6 b− a

4

[ |f ′(a)|q + |f ′(b)|q
2

]1/q

.

Some similar results are also obtained in [9].

Here we will give some related results.

Theorem 3. Let I ⊂ � be an interval, a, b ∈ I , a < b, f : I → � , n ∈ � ,
1/p + 1/p′ = 1, p > 1. Let f (n−1) be absolutely continuous on [a, b] and such that
f (n)(x) exists for all x ∈ [a, b]. Put

α(x) =

∫ b

a
t−a
b−a |Pn−1(t)k(t, x)| dt

∫ b

a
|Pn−1(t)k(t, x)| dt

, x ∈ (a, b).

(i) If |f (n)|p′
is convex on [a, b], then

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x) +
n−1∑

k=1

F̃k

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣(4.3)

6 1
n(b− a)

∫ b

a

|Pn−1(t)k(t, x)| dt

× [α(x)|f (n)(b)|p′
+ (1− α(x))|f (n)(a)|p′

]1/p′
.

(ii) If |f (n)| is concave on [a, b], then

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x) +
n−1∑

k=1

F̃k

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣(4.4)

6 1
n(b− a)

∫ b

a

|Pn−1(t)k(t, x)| dt · |f (n)(α(x)b + (1− α(x))a)|.

182



����� �"!
. (i) Let us use the identity (2.5), Hölder’s inequality and Jensen’s discrete

inequality. We obtain

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x) +
n−1∑

k=1

F̃k

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣

6 1
n(b− a)

∫ b

a

|Pn−1(t)k(t, x)| · |f (n)(t)| dt

6 1
n(b− a)

[∫ b

a

|Pn−1(t)k(t, x)| dt

]1/p

·
[∫ b

a

|Pn−1(t)k(t, x)| · |f (n)(t)|p′
dt

]1/p′

=
1

n(b− a)

[∫ b

a

|Pn−1(t)k(t, x)| dt

]1/p

×
[∫ b

a

|Pn−1(t)k(t, x)| ·
∣∣∣f (n)

( b− t

b− a
a +

t− a

b− a
b
)∣∣∣

p′

dt

]1/p′

6 1
n(b− a)

[∫ b

a

|Pn−1(t)k(t, x)| dt

]1/p

·
[
|f (n)(a)|p′

∫ b

a

|Pn−1(t)k(t, x)| b− t

b − a
dt

+ |f (n)(b)|p′
∫ b

a

|Pn−1(t)k(t, x)| t − a

b − a
dt

]1/p′

=
1

n(b− a)

∫ b

a

|Pn−1(t)k(t, x)| dt · [α(x)|f (n)(b)|p′
+ (1− α(x))|f (n)(a)|p′

]1/p′
.

(ii) Again by the identity (2.5) and Jensen’s integral inequality, we have

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(x)f (k)(x) +
n−1∑

k=1

F̃k

]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣

6 1
n(b− a)

∫ b

a

|Pn−1(t)k(t, x)| · |f (n)(t)| dt

6 1
n(b− a)

∫ b

a

|Pn−1(t)k(t, x)| dt ·
∣∣∣∣f (n)

(∫ b

a |Pn−1(t)k(t, x)|t dt
∫ b

a
|Pn−1(t)k(t, x)| dt

)∣∣∣∣

=
1

n(b− a)

∫ b

a

|Pn−1(t)k(t, x)| dt

×
∣∣∣∣f (n)

(∫ b

a |Pn−1(t)k(t, x)|
(

b−t
b−aa + t−a

b−ab
)
dt

∫ b

a
|Pn−1(t)k(t, x)| dt

)∣∣∣∣

=
1

n(b− a)

∫ b

a

|Pn−1(t)k(t, x)| dt · |f (n)(α(x)b + (1− α(x))a)|,

which proves our assertion. �

183



Corollary 3. Let f be as in Theorem 3 (i). Then

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

Fk(x)
]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣

6 (x− a)n+1 + (b− x)n+1

n(n + 1)! (b− a)
· [α̃(x)|f (n)(b)|p′

+ (1− α̃(x))|f (n)(a)|p′
]1/p′

,

where Fk(x) is given by (1.3) and α̃(x) by

α̃(x) =
2(x− a)[(x− a)n+1 + (b− x)n+1] + n(b− a)(b− x)n+1

(n + 2)(b− a)[(x− a)n+1 + (b− x)n+1]
.

Let f be as in Theorem 3 (ii). Then

∣∣∣∣
1
n

[
f(x) +

n−1∑

k=1

Fk(x)
]
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣

6 (x − a)n+1 + (b− x)n+1

n(n + 1)! (b− a)
· |f (n)(α̃(x)b + (1− α̃(x))a)|.

����� �"!
. Set Pk(t) = 1

k! (t− x)k, k > 0. Then

∫ b

a

|Pn−1(t)k(t, x)| dt =
(x− a)n+1 + (b− x)n+1

(n + 1)!

and

∫ b

a

(t− a)|Pn−1(t)k(t, x)| dt

=
2(x− a)[(x− a)n+1 + (b− x)n+1] + n(b− a)(b− x)n+1

(n + 2)!
,

which proves our assertion. �

Corollary 4. Let f be as in Theorem 3. Put

A =
1
n

[
f
(a + b

2

)
+

n−1∑

k=1

(n− k)(b− a)k−1

2kk!
[f (k−1)(a)− (−1)kf (k−1)(b)]

]

− 1
b− a

∫ b

a

f(t) dt.
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(i) If |f (n)|p′
is convex on [a, b], then

|A| 6 (b− a)n

2nn(n + 1)!

[ |f (n)(a)|p′
+ |f (n)(b)|p′

2

]1/p′

.

(ii) If |f (n)| is concave on [a, b], then

|A| 6 (b− a)n

2nn(n + 1)!

∣∣∣f (n)
(a + b

2

)∣∣∣.

����� �"!
. The result follows by putting x = 1

2 (a + b) in Corollary 3. �

Remark 2. For n = 1 the inequalities of the above theorem become

∣∣∣∣f
(a + b

2

)
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ 6 b− a

4

[ |f ′(b)|p′
+ |f ′(a)|p′

2

]1/p′

and
∣∣∣∣f

(a + b

2

)
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣ 6 b− a

4

∣∣∣∣f ′
(a + b

2

)∣∣∣∣.

These inequalities have been proved in [9].

5. Inequalities of Hadamard type

The Hadamard inequalities for convex functions are one of the cornerstones of

mathematical analysis: if f : [a, b] → � is a convex function, then

f
(a + b

2

)
6 1

b− a

∫ b

a

f(t) dt 6 f(a) + f(b)
2

.

Here we will give some generalizations of these inequalities. We use the same notation
as above. Further, to simplify notation, we denote the expression

(−1)n−1

[
1
n

[
f(x) +

n−1∑

k=1

(−1)kPk(0)f (k)(x) +
n−1∑

k=1

F̃k(x)
]
− 1

b− a

∫ b

a

f(t) dt

]

by Jn(x) and let

Sn(x) =
∫ b

a

Pn−1(t− x)k(t, x) dt.
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Theorem 4. Suppose that

(5.1) Pn−1(t− x)k(t, x) > 0, for all t ∈ [a, b].

If f (n)(t) > 0 for every t ∈ [a, b], then Jn(x) > 0. If f (n)(t) 6 0 for every t ∈ [a, b],
then Jn(x) 6 0. Moreover, if the reverse inequality holds in (5.1), then we obtain
the reverse inequalities for Jn(x).
����� �"!

. The identity (2.13) can be written as

Jn(x) =
1

n(b− a)

∫ b

a

Pn−1(t− x)k(t, x)f (n)(t) dt.

Our assertion follows immediately from this relation. �

Theorem 5. Let f (n) be convex on [a, b] and let

Pn−1(t− x)k(t, x) > 0 or Pn−1(t− x)k(t, x) 6 0

for every t ∈ [a, b]. Then

f (n)(β(x)b + (1− β(x))a) 6 n(b− a)
Jn(x)
Sn(x)

6 β(x)f (n)(b) + (1− β(x))f (n)(a),

where

β(x) =
1

(b− a)Sn(x)

∫ b

a

(t− a)Pn−1(t− x)k(t, x) dt.

If f (n) is concave on [a, b] the reverse inequality holds.
����� �"!

. Let (5.1) hold. Then Sn(x) > 0 and by applying Jensen’s integral
inequality to the relation (2.13) we have

Jn(x) =
1

n(b− a)

∫ b

a

Pn−1(t− x)k(t, x)f (n)(t) dt

> 1
n(b− a)

Sn(x) · f (n)

(
1

Sn(x)

∫ b

a

Pn−1(t− x)k(t, x)t dt

)

=
1

n(b− a)
Sn(x) · f (n)

(
1

Sn(x)

∫ b

a

Pn−1(t− x)k(t, x)
( b− t

b− a
a +

t− a

b− a
b
)

dt

)

=
1

n(b− a)
Sn(x) · f (n)(β(x)b + (1− β(x))a).
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On the other hand, by applying discrete Jensen’s inequality to relation (2.13), we

have

Jn(x) =
1

n(b− a)

∫ b

a

Pn−1(t− x)k(t, x)f (n)(t) dt

=
1

n(b− a)

∫ b

a

Pn−1(t− x)k(t, x)f (n)
( b− t

b− a
a +

t− a

b− a
b
)

dt

6 1
n(b− a)

Sn(x) · (β(x)f (n)(b) + (1− β(x))f (n)(a)),

which proves our assertion in this case. If the reverse inequality holds in (5.1), apply

the same calculations to −Jn(x) and −Sn(x). If f (n) is concave on [a, b], apply the
above arguments to −f (n). �

The important case of the harmonic sequence of polynomials Pk(t) = 1
k! t

k, k > 0,
admits explicit calculations. In this case we have

Jn(x) = (−1)n−1

[
1
n

[
f(x) +

n−1∑

k=1

F̃k(x)
]
− 1

b− a

∫ b

a

f(t) dt

]
,

F̃k(x) =
n− k

k! (b− a)
[f (k−1)(a)(x− a)k − f (k−1)(b)(x − b)k]

and

Sn(x) =
1

(n + 1)!
[(a− x)n+1 − (b− x)n+1].

If n is odd, then Pn−1(t − x)k(t, x) changes its sign on [a, b] (except for x = a or

x = b). If n is even, then

Pn−1(t− x)k(t, x) 6 0 for all t ∈ [a, b],

Sn(x) =
−1

(n + 1)!
[(x − a)n+1 + (b− x)n+1]

and

Sn

(a + b

2

)
= − (b− a)n+1

2n(n + 1)!

and the above theorem applies. If x = a or x = b the theorem applies for every n.

For every n we have

Sn(b) =
(−1)n−1

(n + 1)!
(b− a)n+1 and Sn(a) = − (b− a)n+1

(n + 1)!
.
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Corollary 5. Let f (n) be convex on [a, b] and let n be even. Then

f (n)(̃α(x)b + (1− α̃(x))a)

6 n(b− a)(n + 1)!
(x− a)n+1 + (b− x)n+1

[
1
n

[
f(x) +

n−1∑

k=1

F̃k(x)
]
− 1

b− a

∫ b

a

f(t) dt

]

6 α̃(x)f (n)(b) + (1− α̃(x))f (n)(a)

where α̃(x) is defined in Corollary 3.
����� �"!

. The result follows by putting Pk(t) = 1
k! t

k, k > 0, in Theorem 5. �

Corollary 6. Let f (n) be convex on [a, b] and let n be even. Then

f (n)
(a + b

2

)
6 2nn(n + 1)!

(b− a)n
·
[

1
n

[
f
(a + b

2

)

+
n−1∑

k=1

(b− a)k−1(n− k)
2kk!

[f (k−1)(a)− (−1)kf (k−1)(b)]
]

− 1
b− a

∫ b

a

f(t) dt

]

6 f (n)(a) + f (n)(b)
2

.

����� �"!
. The result follows by putting x = 1

2 (a + b) in Corollary 5. �
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[7] M. Matić and J. Pečarić and N. Ujević: On new estimation of the remainder in gener-
alized Taylor’s formula. Math. Inequal. Appl. 2 (1999), 343–361.

188



[8] S. S. Dragomir and R.P. Agarwal: The inequalities for differential mappings and appli-
cations to special means of real numbers and to trapezoidal formula. Appl. Math. Lett.
11 (1998), 91–95.
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